Supplement

A. Upper bound for the supremum of Gaussian processes

Proof of Lemma 5.3. By the Gaussian concentration theorem (Boucheron et al., 2013, Theorem 5.8), with probability at least \(1 - e^{-x}\) we have

\[
\sup_{B \in T^*} G_B \leq \mathbb{E} \sup_{B \in T^*} G_B + \sigma \sqrt{2x} \sup_{B \in T^*} \|2I_n - (B - \bar{A})\|(B - \bar{A})\mu\|.
\]

\[
\leq C_1 \gamma_2(T^*, \sigma G) + \sigma \sqrt{2x} \sup_{B \in T^*} (B - \bar{A})\mu\| \tag{A.1}
\]

(5.1)

where for the second inequality we used Talagrand’s majorizing measure theorem (cf., e.g., (Vershynin, 2018, Section 8.6)) and the fact that \(B, A\) have operator norm at most one, where \(d_G\) is the canonical metric of the Gaussian process,

\[
d_G(A, B)^2 = \mathbb{E}[(G_A - G_B)^2].
\]

If \(D = B - A\) is the difference and \(P\) commutes with \(A\) and \(B\),

\[
G_B - G_A = \epsilon^T [2D\mu - \frac{1}{2}(A + B - 2\bar{A})D\mu - \frac{1}{2}D(A + B - 2P)\mu] + \epsilon^T D(\bar{A} - P)\mu.
\]

By the triangle inequality and using that \(A, B, \bar{A}\) have operator norm at most one, \(d_G(A, B) \leq 6\sigma \|D\mu\| + \sigma \|D(\bar{A} - P)\mu\|\). This shows that

\[
\gamma_2(T^*, \sigma G) \leq 6\sigma \gamma_2(T^*, d_1) + \sigma \gamma_2(T^*, d_2)
\]

where \(d_1(A, B) = \|(B - A)\|\) and \(d_2(A, B) = \|(A - B)(\bar{A} - P)\mu\|\). By Lemma 5.2, \(\gamma_2(T^*, d_1) \leq C_1\Delta(T^*)\). Similarly for \(d_2\) (note that \(d_2\) is similar to \(d_1\) with \(\mu\) replaced by \(\mu' = (P - A)\mu\))

If \(sup_{B \in T^*} \|d(B, A)\| \leq \delta^*\) for the metric \(d\) in (5.1), then

\[
\sup_{B \in T^*} \|(B - A)\| \leq \delta^* \text{ and } \Delta(T^*, d_1) \leq 2\delta^*.
\]

Furthermore if \(P\) is the convex projection of \(A\) onto the convex hull of \(T^*\) with respect to the Hilbert metric \(d\) in (5.1), then

\[
\Delta(T^*, d_2) = \sup_{B, B' \in T^*} d_2(B, B') \leq 2\|P - \bar{A}\| \leq 2d(P, A) \leq 2d(B_0, A) \leq 2\delta^*
\]

for any \(B_0 \in T^*\) where we used that by definition of the convex projection, \(d(P, A) \leq d(B_0, A)\). \(\square\)

B. Upper bound for the supremum of Quadratic processes

The following inequality, known as the Hanson-Wright inequality, will be useful for the next Lemma. If \(\varepsilon \sim N(0, \sigma^2 I_n)\) is standard normal, then

\[
\mathbb{P}\left|\varepsilon^T Q \varepsilon - \sigma^2 \text{trace } Q \right| > 2\sigma^2(\|Q\|_F \sqrt{x} + \|Q\|_{op} x) \leq 2e^{-x}.
\]

for any square matrix \(Q \in \mathbb{R}^{n \times n}\). We refer to (Boucheron et al., 2013, Example 2.12) for a proof for normally distributed \(\varepsilon\) and (Rudelson & Vershynin, 2013; Hsu et al., 2012; Bellec, 2014; Adamczak, 2015) for proofs of (B.1) in the sub-gaussian case.

Proof of Lemma 5.4. We apply Theorem 2.4 in (Adamczak, 2015) which implies that if \(W_B = \varepsilon^T Q \varepsilon - \text{trace}(Q_B)\) where \(\varepsilon \sim N(0, I_{n \times n})\) and \(Q_B\) is a symmetric matrix of size \(n \times n\) for every \(B\), then

\[
\mathbb{P} \left(\sup_{B \in T^*} W_B \leq \mathbb{E} \sup_{B \in T^*} W_B + C_{19} \sigma^2 \epsilon \mathbb{E} \|Q_B\|_F + C_{19} \sigma^2 \sup_{B \in T^*} \|Q_B\|_{op} \right) \geq 1 - 2e^{-x}.
\]

For the third term, \(Q_B = 2(B - \bar{A}) - (B - \bar{A})^2/2\) hence \(\|Q_B\|_{op} \leq 6\) because \(B, \bar{A}\) both have operator norm at most one. For the second term, since \(T^*\) is a family of ordered linear smoothers, there exists extremal matrices \(B_0, B_1 \in T^*\) such that \(B_0 \leq B \leq B_1\) for all \(B \in T^*\); we then have \(B - B_0 \leq B_1 - B_0\) and

\[
\|Q_B\| \leq 3\|(B - \bar{A})\| \leq 3\|(B_1 - B_0)\| + 3\|(B_0 - \bar{A})\| \leq 3\|(B_1 - B_0)\| + 6\|(B_0 - \bar{A})\|.
\]

Hence \(\mathbb{E}\|Q_B\| \leq \mathbb{E}\|Q_B\|_{2}^{1/2} \leq 3\sigma\|B_1 - A\|_F + 6\sigma\|B_0 - \bar{A}\|_F \leq 9\delta^*\).

We finally apply a generic chaining upper bound to bound \(\mathbb{E}\sup_{B \in T^*} W_B\). For any fixed \(B_0 \in T^*\) we have \(\mathbb{E}[W_{B_0}] = 0\) hence \(\mathbb{E}\sup_{B \in T^*} W_B = \mathbb{E}\sup_{B \in T^*}(W_B - W_{B_0})\). For two matrices \(A, B \in T^*\) we have \(W_B - W_A = \varepsilon^T (Q_B - Q_A)\varepsilon - \text{trace}(Q_B - Q_A)\), and

\[
\varepsilon^T (Q_B - Q_A)\varepsilon = \varepsilon^T [(B - A)(2I_n - \frac{1}{2}(A + B - 2\bar{A}))] \varepsilon,
\]

hence by the Hanson-Wright inequality (B.1), with probability at least \(1 - 2e^{-x}\),

\[
\|W_B - W_A\| \leq 2\sigma^2 \|(B - A)(2I_n - \frac{1}{2}(A + B - 2\bar{A}))\|_F(\sqrt{x}) \leq 8\sigma^2\|B - A\|_F(x + \sqrt{x}).
\]

Hence by the generic chaining bound given in Theorem 3.5 in (Dirksen, 2015), we get that

\[
\mathbb{E} \sup_{B \in T^*} |W_B - W_{B_0}| \leq C_{20} \epsilon^2 \left[\gamma_1(T^*, \| \cdot \|_F) + \gamma_2(T^*, \| \cdot \|_F) + \Delta(T^*, \| \cdot \|_F) \right].
\]
For each $\alpha = 1, 2$ we have $\gamma_\alpha(T^*, \| \cdot \|_F) \leq C_{21} \Delta(T^*, \| \cdot \|_F)$ by Lemma 5.2. Since $\sigma \| B - \bar A \| \leq \delta^*$ for any $B \in T^*$, we obtain $\Delta(T^*, \| \cdot \|_F) \leq 2\delta^*/\sigma$. \qed

C. Proof of Theorem 3.2

Proof. Consider $\mu \in \mathbb{R}^n$ with norm $\| \mu \|^2 = n(1 - c/\sqrt{n})$ for a numerical constant $c > 0$ to be determined. Set $A_1 = 0$ and $A_2 = I_n$, assume $\sigma^2 = 1$ for simplicity. The loss of A_1 is $\| \mu \|^2$ and the loss of A_2 is $\| \epsilon \|^2$

A_1 has smaller MSE than A_2 since $\| \mu \|^2 < n$. The regret for selecting based on C_p is thus $I_{\Omega_2}(\| \epsilon \|^2 - \| \mu \|^2)$ where I_{Ω_2} is the indicator of the event $C_p(A_2) < C_p(A_1)$, this event is

$$\Omega_2 = \{ C_p(A_2) = 2n < \| y \|^2 = C_p(A_2) \}.$$ Consider now for some absolute constants A, B, the events

$$\Omega_A = \{ -1 \leq \epsilon^T \mu / \| \mu \| \leq 0 \}$$

and

$$\Omega_B = \{ \| (I_n - \| \mu \|^2 \mu \mu^T) \epsilon \|^2 - n \geq 3\sqrt{n} \}.$$ The first event Ω_A involves the standard normal $\epsilon^T \mu / \| \mu \|$ and the second event Ω_B involves the random variable $\| (I_n - \| \mu \|^2 \mu \mu^T) \epsilon \|^2$ which has χ^2 distribution with $n - 1$ degrees-of-freedom. The two random variables are independent by properties of $\epsilon \sim N(0, I_n)$ so that Ω_A and Ω_B are independent and $\mathbb{P}(\Omega_A \cap \Omega_B) = \mathbb{P}(\Omega_A)\mathbb{P}(\Omega_B) \geq C_{22} > 0$ for some absolute constant.

Furthermore, on $\Omega_A \cap \Omega_B$ we have

$$\| y \|^2 - 2n = \| \mu \|^2 + \| \epsilon \|^2 + 2\epsilon^T \mu - 2n$$

$$\geq -c\sqrt{n} + 3\sqrt{n} - 2\| \mu \|$$

$$\geq (-c + 1)\sqrt{n}$$

so that $\Omega_A \cap \Omega_B \subset \Omega_2$ if, for instance, we choose $c = 1/2$.

Since $\| y \|^2 = \| \mu \|^2 + 2\epsilon^T \mu + \| \epsilon \|^2$, Ω_2 can be rewritten

$$\Omega_2 = \{ 2c\sqrt{n} - 2\epsilon^T \mu = 2(n - \| \mu \|^2) - 2\epsilon^T \mu < \| \epsilon \|^2 - \| \mu \|^2 \}.$$ Hence the regret is bounded from below on $\Omega_A \cap \Omega_B$ as

$$(\| A_k y - \mu \|^2 - \| A_1 y - \mu \|^2) = (\| \epsilon \|^2 - \| \mu \|^2)$$

$$\geq (2c\sqrt{n} - 2\epsilon^T \mu)$$

$$\geq 2c\sqrt{n} = \sqrt{n}.$$ Here, $\sqrt{n} \approx \| \mu \| = (R^n)^{1/2}$ up to an absolute multiplicative constant, so that the claim is proved. \qed