Supplement

A. Upper bound for the supremum of Gaussian processes

Proof of Lemma 5.3. By the Gaussian concentration theorem (Boucheron et al., 2013, Theorem 5.8), with probability at least $1-e^{-x}$ we have

$$
\begin{align*}
\sup _{B \in T^{*}} G_{B} & \leq \mathbb{E} \sup _{B \in T^{*}} G_{B}+ \\
& \sigma \sqrt{2 x} \sup _{B \in T^{*}}\left\|\left[2 I_{n \times n}-(B-\bar{A})\right](B-\bar{A}) \mu\right\| . \tag{A.1}\\
& \leq C_{16} \gamma_{2}\left(T^{*}, d_{G}\right)+ \\
& \sigma \sqrt{2 x} \sup _{B \in T^{*}} 3\|(B-\bar{A}) \mu\| \tag{A.2}
\end{align*}
$$

where for the second inequality we used Talagrand's majorizing measure theorem (cf., e.g., (Vershynin, 2018, Section 8.6)) and the fact that B, \bar{A} have operator norm at most one, where d_{G} is the canonical metric of the Gaussian process,

$$
d_{G}(A, B)^{2}=\mathbb{E}\left[\left(G_{A}-G_{B}\right)^{2}\right]
$$

If $D=B-A$ is the difference and P commutes with A and B,

$$
\begin{aligned}
G_{B}-G_{A}= & \epsilon^{T}\left[2 D \mu-\frac{1}{2}(A+B-2 \bar{A}) D \mu\right. \\
& \left.-\frac{1}{2} D(A+B-2 P) \mu\right]+\epsilon^{T} D(\bar{A}-P) \mu .
\end{aligned}
$$

By the triangle inequality and using that A, B, P, \bar{A} have operator norm at most one, $d_{G}(A, B) \leq 6 \sigma\|D \mu\|+$ $\sigma\|D(A-P) \mu\|$. This shows that

$$
\gamma_{2}\left(T^{*}, d_{G}\right) \leq 6 \sigma \gamma_{2}\left(T^{*}, d_{1}\right)+\sigma \gamma_{2}\left(T^{*}, d_{2}\right)
$$

where $d_{1}(A, B)=\|(B-A) \mu\|$ and $d_{2}(A, B)=$ $\|(A-B)(\bar{A}-P) \mu\|$. By Lemma 5.2, $\gamma_{2}\left(T^{*}, d_{1}\right) \leq$ $C_{17} \Delta\left(T^{*}, d_{1}\right)$ and similarly for d_{2} (note that d_{2} is similar to d_{1} with μ replaced by $\left.\mu^{\prime}=(P-\bar{A}) \mu\right)$.

If $\sup _{B \in T^{*}} d(B, \bar{A}) \leq \delta^{*}$ for the metric d in (5.1), then $\sup _{B \in T^{*}}\|(B-\bar{A}) \mu\| \leq \delta^{*}$ and $\Delta\left(T^{*}, d_{1}\right) \leq 2 \delta^{*}$. Furthermore if P is the convex projection of \bar{A} onto the convex hull of T^{*} with respect to the Hilbert metric d in (5.1), then

$$
\begin{aligned}
\Delta\left(T^{*}, d_{2}\right) & =\sup _{B, B^{\prime} \in T^{*}} d_{2}\left(B, B^{\prime}\right) \leq 2\|(P-\bar{A}) \mu\| \\
& \leq 2 d(P, \bar{A}) \leq 2 d\left(B_{0}, \bar{A}\right) \leq 2 \delta^{*}
\end{aligned}
$$

for any $B_{0} \in T^{*}$ where we used that by definition of the convex projection, $d(P, \bar{A}) \leq d\left(B_{0}, \bar{A}\right)$.

B. Upper bound for the supremum of Quadratic processes

The following inequality, known as the Hanson-Wright inequality, will be useful for the next Lemma. If $\varepsilon \sim$ $N\left(0, \sigma^{2} I_{n \times n}\right)$ is standard normal, then
$\mathbb{P}\left[\left|\varepsilon^{T} Q \varepsilon-\sigma^{2} \operatorname{trace} Q\right|>2 \sigma^{2}\left(\|Q\|_{F} \sqrt{x}+\|Q\|_{o p} x\right)\right] \leq 2 e^{-x}$,
for any square matrix $Q \in \mathbb{R}^{n \times n}$. We refer to (Boucheron et al., 2013, Example 2.12) for a proof for normally distributed ε and (Rudelson \& Vershynin, 2013; Hsu et al., 2012; Bellec, 2014; Adamczak, 2015) for proofs of (B.1) in the sub-gaussian case.

Proof of Lemma 5.4. We apply Theorem 2.4 in (Adamczak, 2015) which implies that if $W_{B}=\varepsilon^{T} Q_{B} \varepsilon-$ $\operatorname{trace}\left[Q_{B}\right]$ where $\varepsilon \sim N\left(0, I_{n \times n}\right)$ and Q_{B} is a symmetric matrix of size $n \times n$ for every B, then

$$
\begin{aligned}
& \mathbb{P}\left(\sup _{B \in T^{*}} W_{B} \leq \mathbb{E} \sup _{B \in T^{*}} W_{B}+C_{18} \sigma \sqrt{x} \sup _{B \in T^{*}} \mathbb{E}\left\|Q_{B} \varepsilon\right\|\right. \\
&\left.+C_{19} x \sigma^{2} \sup _{B \in T^{*}}\left\|Q_{B}\right\|_{o p}\right) \geq 1-2 e^{-x}
\end{aligned}
$$

For the third term, $Q_{B}=2(B-\bar{A})-(B-\bar{A})^{2} / 2$ hence $\left\|Q_{B}\right\|_{o p} \leq 6$ because B, \bar{A} both have operator norm at most one. For the second term, since T^{*} is a family of ordered linear smoothers, there exists extremal matrices $B_{0}, B_{1} \in T^{*}$ such that $B_{0} \preceq B \preceq B_{1}$ for all $B \in T^{*}$; we then have $B-B_{0} \preceq B_{1}-B_{0}$ and

$$
\begin{aligned}
\left\|Q_{B} \varepsilon\right\| \leq 3\|(B-\bar{A}) \varepsilon\| & \leq 3\left\|\left(B_{1}-B_{0}\right) \varepsilon\right\|+3\left\|\left(B_{0}-\bar{A}\right) \varepsilon\right\| \\
& \leq 3\left\|\left(B_{1}-\bar{A}\right) \varepsilon\right\|+6\left\|\left(B_{0}-\bar{A}\right) \varepsilon\right\| .
\end{aligned}
$$

Hence $\mathbb{E}\left\|Q_{B} \varepsilon\right\| \leq \mathbb{E}\left[\left\|Q_{B} \varepsilon\right\|^{2}\right]^{1 / 2} \leq 3 \sigma\left\|B_{1}-\bar{A}\right\|_{F}+$ $6 \sigma\left\|B_{0}-\bar{A}\right\|_{F} \leq 9 \delta^{*}$.
We finally apply a generic chaining upper bound to bound $\mathbb{E} \sup _{B \in T^{*}} W_{B}$. For any fixed $B_{0} \in T^{*}$ we have $\mathbb{E}\left[W_{B_{0}}\right]=0$ hence $\mathbb{E} \sup _{B \in T^{*}} W_{B}=\mathbb{E} \sup _{B \in T^{*}}\left(W_{B}-\right.$ $W_{B_{0}}$). For two matrices $A, B \in T^{*}$ we have $W_{B}-W_{A}=$ $\varepsilon^{T}\left(Q_{B}-Q_{A}\right) \varepsilon-\operatorname{trace}\left[Q_{B}-Q_{A}\right]$, and
$\varepsilon^{T}\left(Q_{B}-Q_{A}\right) \epsilon=\varepsilon^{T}\left[(B-A)\left(2 I_{n \times n}-\frac{1}{2}(A+B-2 \bar{A})\right)\right] \varepsilon$,
hence by the Hanson-Wright inequality (B.1), with probability at least $1-2 e^{-x}$,

$$
\begin{aligned}
\left|W_{B}-W_{A}\right| & \leq 2 \sigma^{2}\left\|(B-A)\left(2 I_{n \times n}-\frac{1}{2}(A+B-2 \bar{A})\right)\right\|_{F}(\sqrt{x}+x) \\
& \leq 8 \sigma^{2}\|A-B\|_{F}(x+\sqrt{x}) .
\end{aligned}
$$

Hence by the generic chaining bound given in Theorem 3.5 in (Dirksen, 2015), we get that

$$
\begin{aligned}
& \mathbb{E} \sup _{B \in T^{*}}\left|W_{B}-W_{B_{0}}\right| \\
& \leq C_{20} \sigma^{2}\left[\gamma_{1}\left(T^{*},\|\cdot\|_{F}\right)+\gamma_{2}\left(T^{*},\|\cdot\|_{F}\right)+\Delta\left(T^{*},\|\cdot\|_{F}\right)\right]
\end{aligned}
$$

For each $\alpha=1,2$ we have $\gamma_{\alpha}\left(T^{*},\|\cdot\|_{F}\right) \leq C_{21} \Delta\left(T^{*}, \| \cdot\right.$ $\|_{F}$) by Lemma 5.2. Since $\sigma\|B-\bar{A}\| \leq \delta^{*}$ for any $B \in T^{*}$, we obtain $\Delta\left(T^{*},\|\cdot\|_{F}\right) \leq 2 \delta^{*} / \sigma$.

C. Proof of Theorem 3.2

Proof. Consider $\mu \in \mathbf{R}^{n}$ with norm $\|\mu\|^{2}=n(1-c / \sqrt{n})$ for a numerical constant $c>0$ to be determined. Set $A_{1}=0$ and $A_{2}=I_{n}$, assume $\sigma^{2}=1$ for simplicity. The loss of A_{1} is $\|\mu\|^{2}$ and the loss of A_{2} is $\|\varepsilon\|^{2}$.
A_{1} has smaller MSE than A_{2} since $\|\mu\|^{2}<n$. The regret for selecting based on C_{p} is thus $I_{\Omega_{2}}\left(\|\varepsilon\|^{2}-\right.$ $\|\mu\|^{2}$) where $I_{\Omega_{2}}$ is the indicator of the event $C_{p}\left(A_{2}\right)<$ $C_{p}\left(A_{1}\right)$, this event is

$$
\Omega_{2}=\left\{C_{P}\left(A_{2}\right)=2 n<\|y\|^{2}=C_{P}\left(A_{2}\right)\right\} .
$$

Consider now for some absolute constants A, B, the events

$$
\Omega_{A}=\left\{-1 \leq \varepsilon^{T} \mu /\|\mu\| \leq 0\right\}
$$

and

$$
\Omega_{B}=\left\{\left\|\left(I_{n}-\|\mu\|^{-2} \mu \mu^{T}\right) \varepsilon\right\|^{2}-n \geq 3 \sqrt{n}\right\}
$$

The first event Ω_{A} involves the standard normal $\varepsilon^{\top} \mu /\|\mu\|$ and the second event Ω_{B} involves the random variable $\left\|\left(I_{n}-\|\mu\|^{-2} \mu \mu^{T}\right) \varepsilon\right\|^{2}$ which has χ^{2} distribution with $n-1$ degrees-of-freedom. The two random variables are independent by properties of $\varepsilon \sim N\left(0, I_{n}\right)$ so that Ω_{A} and Ω_{B} are independent and $\mathbb{P}\left(\Omega_{A} \cap \Omega_{B}\right)=\mathbb{P}\left(\Omega_{A}\right) \mathbb{P}\left(\Omega_{B}\right) \geq C_{22}>0$ for some absolute constant.

Furthermore, on $\Omega_{A} \cap \Omega_{B}$ we have

$$
\begin{aligned}
\|y\|^{2}-2 n & =\|\mu\|^{2}+\|\varepsilon\|^{2}+2 \varepsilon^{T} \mu-2 n \\
& \geq-c \sqrt{n}+3 \sqrt{n}-2\|\mu\| \\
& \geq(-c+1) \sqrt{n}
\end{aligned}
$$

so that $\Omega_{A} \cap \Omega_{B} \subset \Omega_{2}$ if, for instance, we choose $c=1 / 2$.
Since $\|y\|^{2}=\|\mu\|^{2}+2 \varepsilon^{T} \mu+\|\varepsilon\|^{2}, \Omega_{2}$ can be rewritten
$\Omega_{2}=\left\{2 c \sqrt{n}-2 \varepsilon^{T} \mu=2\left(n-\|\mu\|^{2}\right)-2 \varepsilon^{T} \mu<\|\varepsilon\|^{2}-\|\mu\|^{2}\right\}$.
Hence the regret is bounded from below on $\Omega_{A} \cap \Omega_{B}$ as

$$
\begin{aligned}
\left(\left\|A_{\hat{k}} y-\mu\right\|^{2}-\left\|A_{1} y-\mu\right\|^{2}\right) & =\left(\|\varepsilon\|^{2}-\|\mu\|^{2}\right) \\
& \geq\left(2 c \sqrt{n}-2 \varepsilon^{T} \mu\right) \\
& \geq 2 c \sqrt{n}=\sqrt{n}
\end{aligned}
$$

Here, $\sqrt{n} \asymp\|\mu\|=\left(R^{*}\right)^{1 / 2}$ up to an absolute multiplicative constant, so that the claim is proved.

