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Supplement

A. Upper bound for the supremum of
Gaussian processes

Proof of Lemma 5.3. By the Gaussian concentration
theorem (Boucheron et al., 2013, Theorem 5.8), with
probability at least 1− e−x we have

sup
B∈T∗

GB ≤ E sup
B∈T∗

GB+

σ
√

2x sup
B∈T∗

‖[2In×n − (B − Ā)](B − Ā)µ‖.

(A.1)
≤ C16γ2(T ∗, dG)+
σ
√

2x sup
B∈T∗

3‖(B − Ā)µ‖ (A.2)

where for the second inequality we used Talagrand’s
majorizing measure theorem (cf., e.g., (Vershynin, 2018,
Section 8.6)) and the fact that B, Ā have operator norm
at most one, where dG is the canonical metric of the
Gaussian process,

dG(A,B)2 = E[(GA −GB)2].

If D = B −A is the difference and P commutes with
A and B,

GB −GA =εT [2Dµ− 1
2 (A+B − 2Ā)Dµ

− 1
2D(A+B − 2P )µ] + εTD

(
Ā− P

)
µ.

By the triangle inequality and using that A,B, P, Ā
have operator norm at most one, dG(A,B) ≤ 6σ‖Dµ‖+
σ‖D(Ā− P )µ‖. This shows that

γ2(T ∗, dG) ≤ 6σγ2(T ∗, d1) + σγ2(T ∗, d2)

where d1(A,B) = ‖(B − A)µ‖ and d2(A,B) =
‖(A − B)(Ā − P )µ‖. By Lemma 5.2, γ2(T ∗, d1) ≤
C17∆(T ∗, d1) and similarly for d2 (note that d2 is sim-
ilar to d1 with µ replaced by µ′ = (P − Ā)µ).

If supB∈T∗ d(B, Ā) ≤ δ∗ for the metric d in (5.1), then
supB∈T∗ ‖(B − Ā)µ‖ ≤ δ∗ and ∆(T ∗, d1) ≤ 2δ∗. Fur-
thermore if P is the convex projection of Ā onto the
convex hull of T ∗ with respect to the Hilbert metric d
in (5.1), then

∆(T ∗, d2) = sup
B,B′∈T∗

d2(B,B′) ≤ 2‖(P − Ā)µ‖

≤2d(P, Ā) ≤ 2d(B0, Ā) ≤ 2δ∗

for any B0 ∈ T ∗ where we used that by definition of
the convex projection, d(P, Ā) ≤ d(B0, Ā).

B. Upper bound for the supremum of
Quadratic processes

The following inequality, known as the Hanson-Wright
inequality, will be useful for the next Lemma. If ε ∼
N(0, σ2In×n) is standard normal, then

P
[
|εTQε−σ2 traceQ| > 2σ2(‖Q‖F

√
x+‖Q‖opx)

]
≤ 2e−x,
(B.1)

for any square matrix Q ∈ Rn×n. We refer to
(Boucheron et al., 2013, Example 2.12) for a proof
for normally distributed ε and (Rudelson & Vershynin,
2013; Hsu et al., 2012; Bellec, 2014; Adamczak, 2015)
for proofs of (B.1) in the sub-gaussian case.

Proof of Lemma 5.4. We apply Theorem 2.4 in (Adam-
czak, 2015) which implies that if WB = εTQBε −
trace[QB ] where ε ∼ N(0, In×n) and QB is a symmet-
ric matrix of size n× n for every B, then

P
(

sup
B∈T∗

WB ≤E sup
B∈T∗

WB + C18σ
√
x sup
B∈T∗

E‖QBε‖

+ C19xσ
2 sup
B∈T∗

‖QB‖op
)
≥ 1− 2e−x.

For the third term, QB = 2(B − Ā) − (B − Ā)2/2
hence ‖QB‖op ≤ 6 because B, Ā both have operator
norm at most one. For the second term, since T ∗
is a family of ordered linear smoothers, there exists
extremal matrices B0, B1 ∈ T ∗ such that B0 � B � B1
for all B ∈ T ∗; we then have B −B0 � B1 −B0 and

‖QBε‖ ≤ 3‖(B − Ā)ε‖ ≤3‖(B1 −B0)ε‖+ 3‖(B0 − Ā)ε‖
≤3‖(B1 − Ā)ε‖+ 6‖(B0 − Ā)ε‖.

Hence E‖QBε‖ ≤ E[‖QBε‖2]1/2 ≤ 3σ‖B1 − Ā‖F +
6σ‖B0 − Ā‖F ≤ 9δ∗.

We finally apply a generic chaining upper bound to
bound E supB∈T∗WB . For any fixed B0 ∈ T ∗ we have
E[WB0 ] = 0 hence E supB∈T∗WB = E supB∈T∗(WB −
WB0). For two matrices A,B ∈ T ∗ we haveWB−WA =
εT (QB −QA)ε− trace[QB −QA], and

εT (QB−QA)ε = εT [(B−A)(2In×n− 1
2 (A+B−2Ā))]ε,

hence by the Hanson-Wright inequality (B.1), with
probability at least 1− 2e−x,

|WB −WA| ≤2σ2‖(B −A)(2In×n − 1
2 (A+B − 2Ā))‖F (

√
x+ x)

≤8σ2‖A−B‖F (x+
√
x).

Hence by the generic chaining bound given in Theorem
3.5 in (Dirksen, 2015), we get that

E sup
B∈T∗

|WB −WB0 |

≤C20σ
2 [γ1(T ∗, ‖ · ‖F ) + γ2(T ∗, ‖ · ‖F ) + ∆(T ∗, ‖ · ‖F )] .
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For each α = 1, 2 we have γα(T ∗, ‖ ·‖F ) ≤ C21∆(T ∗, ‖ ·
‖F ) by Lemma 5.2. Since σ‖B − Ā‖ ≤ δ∗ for any
B ∈ T ∗, we obtain ∆(T ∗, ‖ · ‖F ) ≤ 2δ∗/σ.

C. Proof of Theorem 3.2
Proof. Consider µ ∈ Rn with norm ‖µ‖2 = n(1−c/

√
n)

for a numerical constant c > 0 to be determined. Set
A1 = 0 and A2 = In, assume σ2 = 1 for simplicity.
The loss of A1 is ‖µ‖2 and the loss of A2 is ‖ε‖2.

A1 has smaller MSE than A2 since ‖µ‖2 < n. The
regret for selecting based on Cp is thus IΩ2(‖ε‖2 −
‖µ‖2) where IΩ2 is the indicator of the event Cp(A2) <
Cp(A1), this event is

Ω2 =
{
CP (A2) = 2n < ‖y‖2 = CP (A2)

}
.

Consider now for some absolute constants A,B, the
events

ΩA = {−1 ≤ εTµ/‖µ‖ ≤ 0}

and

ΩB = {‖(In − ‖µ‖−2µµT )ε‖2 − n ≥ 3
√
n}.

The first event ΩA involves the standard normal
ε>µ/‖µ‖ and the second event ΩB involves the ran-
dom variable ‖(In − ‖µ‖−2µµT )ε‖2 which has χ2 dis-
tribution with n − 1 degrees-of-freedom. The two
random variables are independent by properties of
ε ∼ N(0, In) so that ΩA and ΩB are independent
and P(ΩA ∩ ΩB) = P(ΩA)P(ΩB) ≥ C22 > 0 for some
absolute constant.

Furthermore, on ΩA ∩ ΩB we have

‖y‖2 − 2n = ‖µ‖2 + ‖ε‖2 + 2εTµ− 2n
≥ −c

√
n+ 3

√
n− 2‖µ‖

≥ (−c+ 1)
√
n

so that ΩA ∩ ΩB ⊂ Ω2 if, for instance, we choose
c = 1/2.

Since ‖y‖2 = ‖µ‖2 + 2εTµ+ ‖ε‖2, Ω2 can be rewritten

Ω2 =
{

2c
√
n− 2εTµ = 2(n− ‖µ‖2)− 2εTµ < ‖ε‖2 − ‖µ‖2

}
.

Hence the regret is bounded from below on ΩA ∩ ΩB

as

(‖Ak̂y − µ‖
2 − ‖A1y − µ‖2) = (‖ε‖2 − ‖µ‖2)

≥ (2c
√
n− 2εTµ)

≥ 2c
√
n =
√
n.

Here,
√
n � ‖µ‖ = (R∗)1/2 up to an absolute multi-

plicative constant, so that the claim is proved.


