
Supplementary material to ”Preselection Bandits”
 

A. Proofs of Theorems 4.1 and 4.2 
For the proofs of Theorem 4.1 and Theorem 4.2 we need 
the following result on the Kullback-Leibler divergence 
of categorical probability distributions, which is Lemma 
3 in Chen & Wang (2018). Throughout the proofs we let 
γ ∈ (0, ∞) be some arbitrary degree of preciseness. 

Lemma A.1. Let P ∼ Cat(p1, . . . , pm), i.e. P (i) = piCmfor i = 1, . . . , m and = 1, as well as Q ∼i=1 pi 
Cat(q1, . . . , qm), such that qi = pi + εi and |εi| < 1 for 
any i = 1, . . . , m. Then, 

m-  T ε2 

KL P, Q ≤ i . 
qii=1 

Moreover, we will need the following auxiliary result for all 
lower bound results. 

Lemma A.2. For any δ ∈ (0, 1) and any γ ∈ (0, ∞) it 
holds that 

1 − (1 − δ)1/γ ≥ min{1, 1/γ} δ. 

Proof. First, consider the case γ ∈ (0, 1]. Then the assertion 
follows immediately as the left-hand side of the inequality 
is monotonically decreasing with γ and for γ = 1 the in
equality is valid. 

Next, let us consider the case γ ∈ (1, ∞). The assertion is 
equivalent to showing that f(x) = 1 − xδ − (1 − δ)x is 
non-negative for x ∈ (0, 1). The first and second derivatives 
are respectively 

f ' (x) = −δ − log(1 − δ)(1 − δ)x , 

f '' (x) = − log(1 − δ)2(1 − δ)x . 

By straightforward computations it can be shown that f has 
−δlog( log(1−δ) )a global maximum on (0, 1) at xmax = and flog(1− δ) 

is strictly increasing on (0, xmax) and strictly decreasing on 
(xmax, 1). As lim f(x) = lim f(x) = 0, we can conclude 

x→ 0 x→ 1 
the lemma. 

Proof of Theorem 4.1. We will use a similar proof tech
nique as in Chen & Wang (2018). Let ϕ be some ar
bitrary algorithm suggesting the l-sized subsets (prese

ϕlections) (St )t∈ [T ] ⊂ Al. For a set S ∈ Al we write 

θS = (θS (1), . . . , θS (n)) to denote the score parameter 
of the PL-model with components given by  

1, i ∈ S, 
θS (i) :=

1 − ε, i /∈ S, 

where ε ∈ (0, 1/2) is some hardness parameter specified 
below. Note that for any S ∈ Al the score parameter θS is an 
element of the parameter space Θ. For sake of convenience, 
we will write PS and ES to express the law and expectation 
associated with the parameter θS , i.e., PS = PθS . Recall 
the decomposition in (5) such that we have θS (i) = vS (i)

γ 

for some suitable vS (i)’s respectively and we define vS in 
the same spirit as θS . 

First, for any S, S̃ ∈ Al with S  = S̃ it holds that 

U(S; vS , γ ) − U(S̃; vS , γ) 
(1+γ) 

γ(l − 1) + (1 − ε)≥ 1 − 
l − ε 

1 (A.1)
(1 − ε)(1 − (1 − ε) γ ) 

= 
l − ε 

min{1, 1/γ} ε 
> ,

2 l 

where we used for the last step 1 − ε ≥ 1/2 and l − ε < l asCt 
ϕwell as Lemma A.2. For i ∈ [n] let Ni(t) = 1{ i∈ S }s=1 s 

denote the number of times an arm i is part of a preselec
tion till time instance t suggested by some algorithm ϕ. In 
particular, write Ni = Ni(T ), then (A.1) implies 

TT 
ϕES U(S, θS ) − U(S , θS )t
 

t=1
 (A.2)Tmin{1, 1/γ} ε ≥ ES Ni. 
2 l 

i /∈ S 

We can bound the expected regret from below as follows 

sup EθR(T ) 
θ∈ Θ 

≥ sup ES R(T ) 
S∈ Al 

TT 
= sup ES U(S, θS ) − U(St 

ϕ, θS ) 
S∈ Al t=1 

TT T1 ϕ≥ -  ES U(S, θS ) − U(S , θS )n t 
l S∈ Al t=1 



 
 

 

 

 

 
 

  

 
 

 

 

 
 

 

  

Preselection Bandits T T1 min{1, 1/γ} ε ≥ - ES Nin 2 l
l S∈Al i /∈S   T Tmin{1, 1/γ} ε 1 

= T − - ES Ni ,n2 l l S∈Al i∈S 

where we used for the last inequality (A.2) and for the C Cnlast equality that T l = ES Ni = ES Ni +i=1 i∈S 
ES Ni. Now, using Formulas (5) – (7) in Chen & 

C 
i /∈S 

Wang (2018) and H ̈older’s resp. Jensen’s inequality as in 
Section 3.4 of Chen & Wang (2018) one obtains 

supEθR(T ) 
θ∈Θ 

min{1, 1/γ} ε T ≥ 
2   - 2  T KL PS1 , PS1∪{i} 

  × − sup . 
3 S1 ∈Al−1

2(n − l + 1)
i∈S1 

The Kullback-Leibler divergence in the latter display can be 
dealt with by the following lemma which is proved below. 

Lemma A.3. For each S ' ∈ Al−1 and i ∈ S ' the following 
bound is true - 22 ε2 ES1 Ni

KL PS1 , PS1∪{i} ≤ . 
l 

With Lemma A.3 we have that for any S ' ∈ Al−1  -  T KL PS1 , PS1∪{i} 11 ε2 T ≤ ,
2(n − l + 1) n 

i∈S1 C 
since i∈S1 ES1 Ni ≤ T l. Thus, choosing ε =L 
min(C n/T , 1/2) for some appropriate small constant 
C > 0, independent of T , n and l, we obtain the asser
tion. 

Proof of Lemma A.3. Let S̃ ∈ Al be arbitrary. Then 
PS1 (·|S̃) denotes the (categorical) probability distribution 
on the set S̃ parameterized by θS1 , i.e., 

θS1 (j) j ∈ S̃, θS1 (k) , k∈S̃PS1 (j|S̃) = 
0, else. -

If i /∈ S̃ then KL PS1 (·|S̃), PS1 ∪{i}(·|S̃) = 0, as both dis
tributions coincide in this case. Thus, we have the following 
bound -
KL PS1 , PS1∪{i}-

≤ KL PS1 (·| ̃ S), PS1 ∪{i}(·| ̃ S) (A.3)S , i ∈ ˜ S , i ∈ ˜

× ES1 Ni, 

as i ∈ S̃ happens ES1 Ni times in expectation. We proceed 
by bounding the Kullback-Leibler-divergence on the right-
hand side of (A.3). Define J+ = |S̃ ∩ S ' |, and J− = 
|S̃ ∩ (S ' )8|. Since S̃ ∈ Al it holds that J+ + J− = l. With 
this, the categorical probabilities for j ∈ S̃ are given by 

θS1 (j) 
pj := PS1 (j|S , i ˜ ∈ S̃) = ,

J+ + (1 − ε)J− 

θS1 (j) 
qj := PS1 ∪{i}(j|S , i ˜ ∈ S̃) = . 

J+ + 1 + (1 − ε)(J− − 1) 

For j = i it holds that (pj −qj )
2
/qj ≤ 8ε2/l3 . We show this 

S̃ ∩ S 'exemplary for the case, where j = i and j ∈ , 
while the case j = i and j /∈ S̃ ∩ S ' , can be dealt with 
similarly. It holds that J+ + (1 − ε)J− = l − εJ− and 
J+ + 1 + (1 − ε)(J− − 1) = l + ε(1 − J−), so that 

ε
pj − qj =     

l − εJ− l + ε(1 − J−)

and with this 

(pj − qj )
2 ε2 8ε2 

=   ≤ , 2 l3qj l − εJ− l + ε(1 − J−)

as the terms inside the squared brackets are respectively 
greater than l/2, since ε ∈ (0, 1/2) and |J+|, |J−| ≤ l. If 
j = i, then (pj −qj )

2
/qj ≤ 20ε2/l. Indeed, we have -

ε 1 − l − ε(1 − J−)
pj − qj =     , 

l − εJ− l + ε(1 − J−)

so that - 2
(pj − qj )

2 ε2 1 − l − ε(1 − J−) 20ε2 

=   2  ≤ , 
qj ll − εJ− l + ε(1 − J−)- 2

since 1 − l − ε(J+ − J−) ≤ 2l2 + 2ε2l2 ≤ 5l2/2. Note 
that |pj − qj | < 1 for each case, so that by using Lemma 
A.1 and l ≥ 2 we obtain for Equation (A.3) that -
KL PS1 , PS1∪{i}  (l − 1)8ε2 20ε2 22ε2 

≤ ES1 Ni · + ≤ ES1 Ni · ,
l3 l l 

which completes the proof. 

Proof of Theorem 4.2 (i). Let ϕ be some arbitrary algo
ϕrithm suggesting the subsets (St )t∈[T ] ⊂ Af ull . In the 

following we define two problem instances characterized by 
score parameters θ(1), θ(2) ∈ Θ such that   - - √ 

inf Eϕ R(T ) + Eϕ R(T ) ≥ Č T , (A.4)θ(1) θ(2)
ϕ

where the infimum is taken over all terminating algorithms ϕ 
for the flexible Pre-bandit problem and Č > 0 is a constant 
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similar to C as in the assertion. The proof will be then 
complete due to 

Eϕinf sup (R(T ))θϕ θ∈Θ 

1 
Eϕ - + Eϕ -≥ inf 
θ(1) R(T ) 

θ(2) R(T ) . 
2 ϕ 

Thus, we proceed by showing (A.4). 

The observation at t under the PL model assumption for 
the algorithm ϕ for an instance with score parameter θ is a 
random sample of PS ,θ = PS , whereϕ ϕ 

t t 

θi ϕ , i ∈ S 
ϕ t , 

j∈Sϕ tPS ,θ(i) := θj (A.5)
t 

0, else. 

The probability distribution with respect to ϕ and θ is de
noted by Pϕ = Pθ and the corresponding expectation byθ 
Eϕ = Eθ. The regret of ϕ for a PL model with parameter θθ 
over the time horizon T is -

Eϕ R(T )θ
 

T
T - ϕ = Eϕ U(S ∗ ) − U(S )θ t (A.6)
t=1T -

= U(S ∗ ) − U(S) Eϕ(NS (T )),θ 
S∈Af ull Ctwhere NS (t) = s=1 1{Ss 

ϕ =S} denotes the number of 
times the subset S ∈ Af ull was suggested by ϕ till time 
t ∈ [T ]. Note that we suppressed here the dependency of 
S∗ on θ in the notation for sake of brevity. 

Next, define 

θ(1) := 1, 1 − ε, θmin, . . . , θmin , 
(A.7) 

θ(2) := 1 − ε, 1, θmin, . . . , θmin , 

where ε ∈ (0, 1 − θmin) is a hardness parameter of the 
instances, which will be specified below. Note that both 
score parameters are elements of Θ and only differ in two 
of the n components. It is easy to see that for any S ∈ 
Af ull\{1} and S ' ∈ Af ull\{2} one has that 

U({1}, θ(1)) − U(S, θ(1)) ≥ min{1, 1/γ} ε, 
(A.8) 

U({2}, θ(2)) − U(S ' , θ(2)) ≥ min{1, 1/γ} ε. 

Indeed, recall the decomposition of θ in (5) and obtain 

1+γ 

(1 − ε)
U({1}, θ(1)) − U(S, θ(1)) ≥ 1 − 

γ 

1 − ε 
1 
γ= 1 − (1 − ε) 

≥ min{1, 1/γ} ε. 

The inequality U({2}, θ(2))−U(S ' , θ(2)) ≥ min{1, 1/γ} ε 
can be shown similarly. Clearly, the optimal subset to sug
gest for the problem instance characterized by θ(1) is {1}, 
while {2} is optimal for the other scenario associated with 
θ(2). Suggesting other subsets respectively results in an at 
least linear regret in the hardness parameter ε. By means of 
representation (A.6) and (A.8) it follows that for i = 1, 2 -

Eϕ 
θ(i) R(T ) - min{1, 1/γ} εT 

> Pϕ 
θ(i) N{1}(T ) ≤ T/2 . 

2 

The inequalities are intuitive: if the optimal set {1} for the 
parameter θ(1) is suggested at most T/2 times, then one 
obtains a regret of at least ε for the suggested sets in the 
remaining cases, which occur at least T/2 times. Similarly, 
if the suboptimal set {1} for the problem instance with θ(2) 

is suggested at least T/2 times, then one obtains a regret of 
at least ε in all these timesteps. The latter display implies 

Eϕ R(T ) + Eϕ R(T )
θ(1) θ(2) 

min{1, 1/γ} εT -
> Pϕ N{1}(T ) ≤ T/2

θ(1)2 -
+ Pϕ 

θ(2) N{1}(T ) > T/2 

min{1, 1/γ} εT - ϕPϕ≥ exp − KL 
θ(1) , Pθ(2) ,

2 

where we used in the last line a version of Pinkser’s inequal
ity, see Theorem 14.2 in Lattimore & Szepesvári (2020). 
We proceed by analyzing the Kullback-Leibler distance 
in the latter display by means of Lemma A.1 and the fol
lowing decomposition of the Kullback-Leibler divergence 
for the family of probability distributions (Pϕ)θ∈Θ whichθ 
can be shown analogously to Lemma 15.1 in Lattimore & 
Szepesvári (2020). 

Lemma A.4. Let θ, θ ' ∈ Θ, then - T -
PϕKL θ , Pθ

ϕ 
1 = Eθ(NS (T )) KL PS,θ, PS,θ1 . 

S∈Af ull 

Note that by definition of the score parameters in (A.7)-
it holds that KL PS,θ(1) , PS,θ(2) = 0 for any subset 
S ∈ Afull which does not contain {1} and {2}, as both 
distributions are the same for such subsets. For the remain
ing subsets S ' , which are of order O(2n−2) many, Lemma-
A.1 yields KL PS1,θ(1) , PS1,θ(2) ≤ 2θ−1 ε2 (cf. the proofmin 
of Lemma A.3). We distinguish two cases in the following. 

Case 1: T > 2n − 1. C 
As Eθ(NS (T )) = T for any θ ∈ Θ it is trueS∈Af ull 

that Eθ(NS (T )) ≤ T/2n−1 for each S ∈ Afull by the pi
geonhole principle. Thus, by means of Lemma A.4 obtain-
KL Pθ(1) , Pθ(2) ≤ CC T ε2 , where CC > 0 is some constant 
independent of n and T. Hence, 

Eϕ 
θ(1) R(T ) + Eϕ 

θ(2) R(T ) 
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min{1, 1/γ} εT − C≥ exp C T ε2 . 
2 

Case 2: T ≤ 2n − 1. 

In this case, note that there are at least 2n − 1 − T many C 
zero summands in Eθ(NS (T )) as the sum equals S∈Af ull 

T . Therefore, similar to the case before obtain by means - Cof Lemma A.4 that KL Pθ(1) , Pθ(2) ≤ C T ε2 for some 
constant CC > 0 independent of n and T . Consequently, 

Eϕ R(T ) + Eϕ R(T )
θ(1) θ(2) 

min{1, 1/γ} εT − C≥ exp C T ε2 . 
2 L 

By choosing in both cases ε = min(C̄ 1/T , 1 − θmin) 
¯for some appropriate constant C > 0 we obtain the assertion 

'with some constants C, C > 0 which are independent of 
T , l and n. 

Proof of Theorem 4.2 (ii). For the gap-dependent lower 
bound we will make use of the following result, which 
is Lemma 1 in Kaufmann et al. (2016). 

Lemma A.5. Let ν and ν ' be two MAB models with n 
'arms and νi resp. ν denotes the reward distribution for i 

arm i ∈ [n] respectively. Let At denote the arm played 
at round t and Rt be the corresponding observed reward. 
Moreover, let Ft = σ(A1, R1, . . . , At, Rt) be the sigma 
algebra generated by the observations till time instance t. 

'Suppose that νi and ν are mutually absolutely continuous i 
for each i ∈ [n], then it holds that T -

Eν [Ni(T )]KL νi, ν ' ≥ d(Eν (E), Eν1 (E))i
 

i∈[n]
 

for any FT -measurable random variable E . Here, d(x, y) = 
x log(x/y) + (1 − x) log((1−x)/(1−y)) and Ni(t) = Ct 

ϕ1is =i is the number of times an algorithm ϕ playss=1 
arm i till time instance t. 

In the following, we will adapt the proof of Theorem 3 in 
(Saha & Gopalan, 2019b) to our case, which boils down to 
incorporating our (different) notion of regret into their proof. 

To make use of Lemma A.5 we embed the flexible Pre-
Bandit problem into a classical MAB problem by consider
ing each subset S ∈ Af ull as an arm. Moreover, we define 
the score parameters 

θ(1) = (1, 1 − Δ, . . . , 1 − Δ), -
θ(i) = 1, 1 − Δ, . . . , 1 − Δ, 1 + ε, 1 − Δ, . . . , 1 − Δ , 

i = 2, . . . , n, 
(A.9) 

where Δ ∈ (0, 1 − θmin) and ε > 0 and the i-th component 
of θ(i) is 1 + ε. For θ ∈ Θ and S ∈ Af ull let PS,θ denote 
the categorical distribution as in (A.5). Using Lemma A.5 
with νS = PS,θ(1) and ν ' = PS,θ(i) for i = 1 for any S 
S ∈ Af ull as the reward distributions of the arms and the 
FT -measurable random variable E = N{i}(T )/T , one has 
that T -

Eθ(1) [NS (T )] KL PS,θ(1) , PS,θ(i) 

S∈Af ull T - ' = Eθ(1) [NS (T )] KL νS , ν (A.10)
S 

S∈Af ull 

≥ d(Eθ(1) [N{i}(T )/T ], Eθ(i) [N{i}(T )/T ]). 

Now, since d(x, y) ≥ (1 − x) log(1/(1−y)) − log(2) derive 
that 

d(Eθ(1) [N{i}(T )/T ], Eθ(i) [N{i}(T )/T ]) 

Eθ(1) [N{i}] T ≥ 1 − log − log(2). 
T T − Eθ(i) [N{i}] 

As we assume that ϕ is a no-regret algorithm, we have 
that Eθ(1) [N{i}] = o(T α) and T − Eθ(i) [N{i}] = C 
Eθ(i) [ ={i} N{i}] = o(T α) for some α ∈ (0, 1].S∈Af ull ,S  
Hence, by dividing the latter display by log(T ) and by con
sidering T → ∞ one obtains 

d(Eθ(1) [N{i}(T )/T ], Eθ(i) [N{i}(T )/T ])
lim 

T →∞ log(T ) 

1 T log(2) ≥ lim 1 − o(T α−1) log − 
T →∞ log(T ) o(T α) log(T ) 

≥ (1 − α). 

Hence, dividing (A.10) by log(T ) and considering the limit 
case obtain T -1 
lim Eθ(1) [NS (T )] KL PS,θ(1) , PS,θ(i) 

T →∞ log(T ) 
S∈Af ull 

≥ (1 − α). 
(A.11) 

The Kullback-Leibler divergence in (A.11) can be bounded 
by the following lemma, which first statement can be shown 
by following the lines of display (2) in Saha & Gopalan 
(2019b), while the second statement is straightforward from 
the choice of the score parameters in (A.9). 

Lemma A.6. For each i = 1 it holds that 

- (Δ + ε)2 

KL PS,θ(1) , PS,θ(i) ≤ . 
(1 − Δ)|S|(1 + ε) 

Moreover, if i /∈ S or if |S| = 1, then -
KL PS,θ(1) , PS,θ(i) = 0. 
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Using Lemma A.6 we can derive from (A.11) by multiplying 
with (1−Δ)2/(Δ+ε) that 

T Eθ(1) [NS (T )](1 − Δ)(Δ + ε)
lim 

T →∞ log(T ) |S|(1 + ε)
S∈Af ull \{i}, 

i∈S 

(1 − Δ)2 

≥ (1 − α). 
(Δ + ε) 

Summing over i ∈ {2, . . . , n} and taking the limit ε → 0 
in the latter display leads to 

nT T1 (1 − Δ)Δ
lim Eθ(1) [NS (T )] 

T →∞ log(T ) |S|
i=2 S∈Af ull \{i}, 

i∈S 

(1 − Δ)2 

≥ (n − 1) (1 − α). 
Δ 

(A.12) 

Next, we bound the cumulative regret in (9) for any algo
rithm ϕ for the flexible Pre-Bandit problem from below. 
For this purpose recall the decomposition in (5) and denote 

(1) (1) (1)
)1/γthe ith component of θ(1) by θ and let v = (θ .i i i 

Hence, we get -
Eθ(1) R(T ) 

TT - ϕ = Eθ(1) U(S ∗ ) − U(S )t
 
t=1
 

T
C - (1) 1+γ
T ϕ v

(1) i∈S it= Eθ(1) v1 − C - (1) γ 
ϕ vt=1 i∈S it 

TT T 
ϕ= Eθ(1) 1St =S 

t=1 S∈Af ull C -n (1) γ (1) (1)
1i∈S v (v − v )i=2 i 1 i -Cn (1) γ 

1i∈S vi=1 i 

≥ min{1, 1/γ} 
T nT T T 1i∈S (1 − Δ)Δ× Eθ(1) 1St 

ϕ =S |S|
t=1 S∈Af ull i=2 

= min{1, 1/γ} 
n TT T T (1 − Δ)Δ 

ϕ 
t 

× Eθ(1) 1S =S 1i∈S |S|
i=2 S∈Af ull t=1 

= min{1, 1/γ}
nT T (1 − Δ)Δ× Eθ(1) (NS [T ]) ,

|S|
i=2 S∈Af ull , i∈S 

where we used Lemma A.2 for the inequality together with C -n (1) γ 
1i∈S v ≤ |S|. With this obtain from (A.12) that i=1 i 

if ϕ is a no-regret algorithm, then 

1 -
lim Eθ(1) R(T )

T →∞ log(T ) 

min{1, 1/γ} · (1 − α)(1 − Δ)2 

≥ (n − 1),
Δ 

which concludes the proof as Δ corresponds to 
mini /∈S∗ θmax − θi for θ = θ(1) and (1 − α)(1 − Δ)2 

is some constant independent of T and n. 

B. Proof of Theorem 5.1 
We start by introducing the notation for the rest of the proof 
and recalling the main terms of the TRCB algorithm. There
after we give an outline of the proof, before deriving the 
details. 

B.1. Notation and relevant terms 

Throughout (St)t=1,...,T denotes the suggested subsets (the 
preselections) of the TRCB algorithm at each time instance 
respectively and (it)t=1,...,T the corresponding decisions of 
the selector, i.e., it ∈ St. Furthermore, let γ ∈ (0, ∞) be 
some arbitrary degree of preciseness. Next, we clarify the 
notation as well as recall the main terms emerging in the 
TRCB algorithm. We define Ct−1 

s=1 1{is =i, {i,j}∈Ss}, t > 1, 
wi,j (t) := (B.13)

0, t = 1, 

to denote the number of times i has been picked by the 
selector till time instance t, when i and j were both part of 
the preselection, while wi,j (t) := wi,j (t) + wj,i (t) is the 
number of times either i or j was picked till time instance t, 
when both were part of the preselection. The relative scores 
in (4) are estimated in time instance t by 

wi,j (t) − 1, wj,i (t) = 0,ˆ wj,i (t)Oi,j (t) := i, j ∈ [n]. 
θmin, else, 

(B.14) 

The arm with the most picks till time instance t is 

J := J(t) = arg max #{wi,j (t) ≥ wj,i (t) | j = i}. 
i∈[n] 

(B.15) 

Note that in the following we will suppress its dependency 
on the time instance t in the notation. The (thresholded) 
random value inside the confidence region of Ôi,J (t) is -
ÔTRCB ˆ(t) = θ−1 ∧ ,i,J min Oi,J + Cshrink βi(t) ∨ θmin 

OTRCB for i = J and ˆ (t) = 1 for i = J, wherei,J 

βi(t) ∼ Unif[−ci,J (t), ci,J (t)], 
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32 log(l t3/2) 

ci,J (t) = ,
θ4 
min wi,J (t) 

and Cshrink ∈ (0, 1/2) is some finite constant. Note that 
the βi’s are mutually independent. Recall the definition of 
regret for any time instance t ∈ [T ] in (9). Due to (10) we 
will consider the following scaled regret per time 

−1 r̃(t) := C ; OJ , γ ) − C r(St).U(S ∗ U(St; OJ , γ) = vJ 
(B.16) 

Finally, let Ft denote the σ-algebra generated by 
S1, i1, . . . , St−1, it−1 in time instance t, with F1 being the 
trivial σ-algebra. Note that J(t) as well as wi,J (t) resp. ci,J 

are Ft-measurable for any t ∈ [T ]. 

B.2. Outline of the proof 

We introduce in the following the core lemmas to prove 
the main result, which will be gradually verified in the next 
subsection. For t ∈ [T ] define 

OTRCB At := {∃i ∈ St ∪ S ∗ : | ˆi,J (t) − Oi,J | > ci,J (t)}. 
(B.17) 

Thus, At is the event on which the estimates for the relative 
scores for arms in the chosen preselection and the optimal 
preselection with respect to the currently most winning arm 
J are not close enough to their actual relative score, where 
the length of the confidence region ci,J (t) determines how 
closeness is to be understood in this case. 
As a consequence, one wishes that the probability that At 

happens is sufficiently small. The following lemma estab
lishes this requirement. 

Lemma B.1. It holds that 

- log(t)
Eθ 1{At} |Ft = O , 

t 

where the constant in the O-term is independent of T , l and 
n. In particular, for any i ∈ St ∪ S∗ ,   -

OTRCB Eθ Eθ | ˆ (t) − Oi,J | 1 |Fti,J Ac  t   32 log(l t3/2)≤ Eθ ci,J (t) = Eθ . 
θ4 
min wi,J (t)

Next, we investigate the deviation between the scaled regret 
per time (cf. (B.16)) and its empirical counterpart. For this 
purpose, note that 

r̃(t) = C ; OJ , γ ) − CU(S ∗ U(St; OJ , γ) C ; ÔTRCB ≤ U(S ∗ U(S ∗ (B.18); OJ , γ) − C , γ)J 

OTRCB + U(St; ˆ U(St; OJ , γ ) ,C , γ ) − CJ 

OTRCB OTRCB since C ; ˆ ) − C ) ≤ 0, by the defi-U(S∗ U(St; ˆJ J 
nition of St in line 11 of the TRCB algorithm. Here, we 

OTRCB OTRCB ÔTRCB abbreviated ˆ = ( ˆ , . . . , ).J 1,J n,J 

The following lemma gives a bound on the ratio between 
the two terms in squared brackets on the right-hand side of 
the latter display. 

Lemma B.2. Conditioned on Ft there exist constants 
C1, C2 > 0 depending if at all on θmin and γ (but indepen
dent of T , l and n) such that on A8 it holds with probability t 
at least 1 − C√1 that 

t 

C OTRCB U(S∗ ; OJ , γ ) − C ; ˆU(S∗ , γ )J ≤ C2. C OTRCB U(St; ˆ , γ ) − CU(St; OJ , γ)J 

−2(3+γ)Moreover, C2 is of the form const · θ . In particular, min 
with probability at least 1 − C√1 

t -
Eθ r̃(t)1Ac |Ft 

t -   C OTRCB  1) − C≤ (C2 + 1)Eθ U(St; ˆJ U(St; OJ ) Ac |Ft . 
t 

The next pillar of the proof is to transfer the high concen-
OTRCB tration of ˆ around OJ to a high concentration of the J 

corresponding utilities UC by exploiting its Lipschitz smooth
ness. 

Lemma B.3. For any t ∈ [T ]   C OTRCB  U(St; ˆ , γ ) − CU(St; OJ , γ)J
 

(γ−1)/(γ) (1−γ)/(γ)
 Tmax{θ , θ } 
OTRCB min min≤ | ˆi,J (t) − Oi,J |. 

γ 
i∈St 

Finally, an upper bound on the expected length of the con
fidence regions over time (that is basically (wi,J (t))

−1/2) 
has to be verified. 

Lemma B.4. The following statement is valid, T -T √√Eθ 1/ wi,J (t) ≤ 4 T n. 
t∈T i∈St 

Conclusion: Proof of Theorem 5.1 Given these core 
lemmas, we are now in the position to verify Theorem 5.1. 

Let θ ∈ Θ and T ∈ N with T > n, then since r(St) ≤ r̃(t), 
for any t ∈ [T ], we have 

TT -
Eθ[R(T )] ≤ Eθ E(r̃(t)|Ft) , 

t=1 

where we used the tower property of the conditional ex
pected value. Note that r̃ ≤ 1/θmin such that by applying 
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Lemma B.2, Lemma B.1 and then Lemma B.3, one can wi,j (t) θi≤ P − ≥ ε, wi,j (t) ≥ r 
derive that wi,j (t) θi + θj 

≤ 2 exp(−2 r ε2). 
Eθ[R(T )] 

TT - T - Proof of Lemma B.1. Define the function φ(x) = x−1 −1, -Eθ E(r̃(t)1At |Ft) + Eθ E(r̃(t)1 -≤ |Ft) wj,i (t) ˆ θjthen note that φ = Oi,j (t) and φ wi,j (t) 
cA = Oi,j .t 

θi +θjt=1 i∈St Further, by the mean value theorem there exists for any pair 
T TT - T 1 wj,i (t) θjandof arms (i, j ) some z̃i,j between such that Eθ E(r̃(t)1At |Ft) + C0 √≤ wi,j (t) θi+θj 

t 
t=1 t=1 -T wj,i (t) θj

Ôi,j (t) − Oi,j = φ − φOTRCB E( | ˆi,J+ C1Eθ (t) − Oi,J | 1 |Ft)c wi,j (t) θi + θjAt 
i∈St 

wj,i (t) θjTT = φ ' ( ̃zi,j ) −log(t) wi,j (t) θi + θj≤ C2 

t=1 
t 1 wj,i (t) θj

= − − .2TT -T z̃i,j wi,j (t) θi + θj 
OTRCB Eθ E( | ˆi,J (t) − Oi,J | 1 |Ft)+ C1 cAt Note that t=1 i∈St 

T TT log(t) T -T L 
log(l·t)/wi,J (t)≤ C2 + C3 Eθ , 

t 
t=1 t=1 i∈St 

where Ci > 0, for i ∈ {0, 1, 2, 3}, are constants depending 
if at all only on θmin and γ, but are independent of T , l √CT 

t−1/2and n. Next, since ≤ 2 T and log(l · t) ≤t=1 
2 log(T ), due to l ≤ n < T , we can further estimate the 
right-hand side of the latter display to obtain L 

Eθ[R(T )] ≤ C4 T log(T ) 
TL T T L 

+ C5 log(T ) Eθ 1/wi,J (t) 

t=1 i∈StL L 
≤ C4 T log(T ) + C6 log(T ) T n 

where we used Lemma B.4 for the second last inequality. 
Here, the constants C4, C5, C6 > 0 are as before depending 
(if at all) on θmin and γ, but are independent of T , l and n. 
In particular, we have C4 is of the form const · θ−1 

min, while 
C6 is of the form 

(γ−1)/(γ) (1−γ)/(γ)
max{θmin , θmin } −2(3+γ)

const · · θmin . 
γ 

This concludes the proof. 

B.3. Proofs of the core lemmas in Subsection B.2 

We start with the proof of Lemma B.1. For this we need 
the following result, which is Lemma 1 in Saha & Gopalan 
(2019a). 

Lemma B.5. It holds that for any r ∈ N, i, j ∈ [n] and 
ε > 0 that 

wi,j (t) θiP − ≥ ε, wi,j (t) = r 
wi,j (t) θi + θj 

z̃i,j ≥ min(wj,i (t)/wi,j (t), θj/θi+θj ) 

≥ min(wj,i (t)/wi,j (t), θmin/2) 

and in particular if j = J then 

z̃i,J ≥ min(1/2, θmin/2) = θmin/2, 

as wi,J ≤ 2wJ,i by definition of J and θmin < 1. Let us 
write Ei,J (t) = Ôi,J (t)−Oi,J for sake of brevity, then we 
get with the deviation above for ε > 0 for any t ∈ [2, T ] ∩ N 
that  √  
P Ei,J (t) ≥ ε/ wi,J (t)

t−1T θ2wJ,i (t) θJ min ε ≤ P − ≥ L 
wi,J (t) θi + θJ 4 wi,J (t)r=1 

∩ {wi,J (t) = r} 
t−1T θ2wJ,i (t) θJ εmin = P − ≥ √ 

wi,J (t) θi + θJ 4 r 
r=1 

∩ {wi,J (t) = r} 

θ4 ε2 
min≤ 2(t − 1) exp − ,
8 

where Lemma B.5 was used in the last step. Settingr 
ε = 8 log(l t3/2)/θ4 in the last display, we obtain in commin 

bination with the law of total expectation that conditioned 
on Ft that -

P At  T 
≤ (2ci,J (t))

−1 

[−ci,J (t),ci,J (t)]i∈St∪S∗  
× P Ei,J (t) ≥ ci,J (t) − Cshrink y dy 
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≤ P Ei,J (t) ≥ (1 − Cshrink ) ci,J (t) 

i∈St∪S∗ -
− θ4 ε2

√ √≤ 4 l (t − 1) exp min /8 = O( log(t)/ t), 

where we used that thresholding of the relative scores only 
makes the probability of the event smaller for the first in
equality and in the second last step that, firstly, Cshrink ≤√ 
1/2 in combination with 1/2 ci,J (t) = ε/ wi,J (t) and sec
ondly, that |St ∪ S∗| ≤ 2l. The constant in the O-term is 
independent of l, T and n. This concludes the lemma. 

C 1+γ 

Proof of Lemma B.2. Let us write S2 
∗(O) = O γ 

i∈S∗ i,J 

and S1 
∗(O) = 

C 
Oi,J . In the same spirit define S2 

∗(Ô),i∈S∗ 

S1 
∗(	Ô), S2 

t (O), S1 
t (O), S 2 

t (Ô) and S1 
t (Ô), where Ô is short 

OTRCB for ˆ . Then,J 

S ∗ (O) S ∗ (Ô)C U(S∗ OTRCB 
1 (O) − 

O)U(S∗ ; OJ , γ) − C ; ˆ , γ) S
2 
∗ 

S
2 
∗( ˆJ	 1= 

OTRCB	 St (Ô) St (O)2 2C , γ ) − CU(St; ˆ U(St; OJ , γ )J	 − 
St (Ô) S1 

t (O)
1 

[S ∗ (O)−S ∗ (Ô)] S ∗ (Ô)[S ∗ (Ô)−S ∗ (O)] 
S∗ 

2 2 2 1 1 

1 (O) + 
S∗(O)S∗(Ô)1 1 = 

[St (Ô)−St St (O)−St ( ˆ
. 

(O)] (O)[St O)]2 2 2 1 1 

St (Ô) 
+ 

St (Ô)St (O)1 1 1 

(B.19) 

It holds that 

1 
θmin/l ≤ ≤ 1/θminl,

S∗(O)1 

3+γ S2 
∗(Ô) 

3+γθmin/l ≤ ≤ 1/θ l, 
S∗(O)S∗(Ô) 

min 

1 1 

1 
θmin/l ≤ ≤ 1/θminl, 

St (Ô)1 

3+γ St 
2(O) 

3+γθmin/l ≤ ≤ 1/θ l. 
St min 

(Ô)St (O)1 1 

Hence, all of the latter terms can be bounded from below 
resp. above by C̃j /l for some suitable constants Cj which 
depend if at all on θmin. Following the lines of proof of 
Lemma B.1, it can be shown that there exists a constant 
C1 > 0 (depending on θmin and γ) such that the ratios of 
the terms in the squared brackets in (B.19) are bounded by 
some constant C2 > 0 on the event A8 

t , with probability 
at least 1 − C√1 . Hence, the whole term in (B.19) can be 

t 

bounded with probability at least 1 − C√1 by some constant 
t 

C3 > 0 which if at all depends only on θmin. This yields the 
first part of the lemma. The second part is just a consequence 
of the first part together with (B.18). 

Proof of Lemma B.3. Define the function φ(x1, . . . , xl) = 
(1+γ)/γ 

lx l 
/ i=1 for x1, . . . , xl ∈ [A, B] for 0 < A < i=1 i xi 

B. Then, we have that for i = 1, . . . , l 

1+γ 1/γ C C (1+γ)/γ 

∂ φ(x1, . . . , xl) γ xi j xj − j xj 
= C ,

∂xi	 ( j xj )2 

It can be easily checked that ⎧ 1−γ 

∂ φ(x1, . . . , xl) 
⎨ B γ 

, γ ≤ 1,γsup sup	 ≤ 1−γ , 
i xi∈[A,B] ∂xi ⎩ A γ 

γ	 , γ > 1. 

Without loss of generality assume that St = {1, . . . , l}, 
= OTRCB then by setting xi = Oi,J and yi i,J (t) and noting 

that φ(x1, . . . , xl) = CU(St; OJ ) as well as φ(y1, . . . , yl) = C OTRCB U(St; ˆ ), we obtain with the mean value theorem that J 

C OTRCB U(St; ˆ , γ ) − CU(St; OJ , γ)J T 
OTRCB ≤ C | ˆi,J (t) − Oi,J |, 

i∈St 

γ	−1 1−γ 
γ γθ 

Oi,J ≤ 1/θmin and θmin ≤ OTRCB 
by choosing C = max{θmin /γ, min /γ, }, since θmin ≤ 

i,J (t) ≤ 1/θmin. 

√CT 
t−1/2Proof of Lemma B.4. Since t=1 ≤ 2 T one LC √wi,J (T )has 1/ wi,J (t) ≤ 2 wi,J (T ). Due to wi,J (t)=1C 

Ewi,J (T ) ≤ T it follows by Jensen’s inequality i∈[n] rCT C	 √ 
that E 1 ≤ 4 T n. t=1 i∈St wi,J (t) 

C. Proof of Theorem 5.2 
We start by introducing the notation for the rest of the proof 
and recalling the main terms of the CBR algorithm. There
after we give an outline of the proof, before deriving the 
technical details. 

We break the proof down into two core lemmas, for which 
we first clarify the notation. We assume that without loss 
of generality |S∗| = 1, i.e., there is only one best arm, as 
this makes the learning problem only more difficult. Indeed, 
having several arms with the same highest score extends the 
opportunities to identify one of these highest score arms. To 
ease the notation we denote the score of the highest scored 
arm with θmax, which is 1 by definition of Θ and its index 
by imax. 

C.1. Notation and relevant terms 

We define the estimate for the pairwise winning probability 
qi,j (cf. (3)) by 

wi,j (t) 
i, j ∈ [n], i = j, wi,j (t)+wj,i (t) , q̂i,j = q̂i,j (t) =
 

0, i = j,
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T Twhere wi,j are as in (B.13) and with the convention that T T 
≤ P(Bt) + P(Rt ∩ B8)x/0 = 0. With J(t) = J we again denote the arm (within t 

t=1 t=1the active set) with the most picks till time instance t as in 
T(B.15). With Δi = θmax −θi we define the gap between the T 

+ E r(St)1score of the ith arm and the overall best arm. The lengths of c c∩RBt t 

the confidence intervals are t=1 

T Tr T T 
2 log(n t3/2) , i, j ∈ [n], i = j, ≤ P(Bt) + P(Rt ∩ B8)CBR t 

c (t) = ci,j = wi,j (t)
i,j t=1 t=1

0, i = j, 
TT 

thereby implicitly setting wii(t) = ∞ for any i ∈ [n]. + E r(St)1 c c∩R ∩EtBt t 
t=1 

TC.2. Outline of the proof T 
+ E r(St)1 c c c∩R ∩EB

We define the following events t t t 
t=1 

(γ−1)/(γ) (1−γ)/(γ)
max{θ , θ }min min = {∃i ∈ [n] | | q̂i,J (t) − qi,J | > ci,J (t)}, 

= {|St| > 1}. 
Bt ≤ C0n + C1 log(T ) 
Rt = {J(t) = imax}, Et 

Here, Bt is the event where an arm exists whose pair-
wise probability estimate for winning against J is not close 
enough to its actual parameter, where closeness is under
stood by means of the confidence length ci,J (t). Rt is the 
event when the most winning arm J is not the overall best 
arm and Et is the event, where the offered subset at time in
stance t is not a singleton. All these events are ”bad” events 
and we will show that their probability of occurrence is 
sufficiently small. 

We have the following key lemmas to prove the main result. 
Lemma C.1. There exist constants C1, C2, C3 > 0 inde
pendent of T and n and depending if at all on the parameter 
space Θ, such that 

TT 
P(Bt) ≤ C1 and 

t=1 

TT T 1
P(Rt ∩ B8) ≤ C2 log(T ) 

Δ2 + C3n.t
 
t=1 i∈[n]\{imax}
 i 

Lemma C.2. There exist constants C1, C2 > 0 independent 
of T and n and depending if at all on the parameter space 
Θ, such that 
TT T 1

P(B8 ∩R8 ∩Et) ≤ C1 log(T ) 
Δ2 +C2n.t t 

t=1 i∈[n]\{imax} i 

Lemma C.3. On the event R8 it holds that t 

(γ−1)/(γ) (1−γ)/(γ) Tmax{θ , θ }min min r(St) ≤ Δi. 
γ 

i∈[n]\S∗ 

Putting all together. Recalling the cumulative regret in 
(9), we obtain 

T- T 
E R(T ) = E r(St) 

t=1 

γ T 1 × ,
Δi 

i∈[n]\{imax} 

where we used Lemma C.1 and Lemma C.2 to derive the 
constants C0, C1 > 0, which are both independent of T and 
n, while Lemma C.3 introduced the factor accompanying 
C1. Furthermore, we used that on R8 ∩ E8 we have that Stt t 
equals {imax} = S∗ and thus r(St) = 0. 

C.3. Proofs of the core lemmas in Subsection C.2 

Proof of Lemma C.1. Using Lemma B.5 one obtains 

P(Bt) 
t−1TT -

≤ P |q̂i,J (t) − qi,J | > ci,J (t), wi,J (t) = r 
i∈[n] r=1 

t−1T 
5≤ 2n exp(−4 log(nt3/2)) ≤ 2/t . 

r=1 CT 5By summing over t till T , we get t=1 
2/t <C∞ 22 1/t = π2/3, which yields the first claim. t=1 

For the second claim, let At denote the set of active arms at 
time instance t, i.e., 

q̂i,J(s)(s) + ci,J(s)(s) − 1/2 
At = i ∈ [n] σ > 0,

2ci,J(s)(s) 

∀s ∈ [t] 

It holds that conditioned on B8 we have that imax ∈ Att 
almost surely. Indeed, 

P({imax ∈/ At} ∩ Bt 
8) 

q̂imax,J (t) + cimax,J (t) − 1/2 
= P σ ≤ 0, Bt 

8 

2cimax,J (t) 

= P q̂imax,J (t) + cimax,J (t) ≤ 1/2, Bt 
8 
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Preselection Bandits T8 log(T ) 1≤ P ,J (t) ≤ 1/2) = 0,qimax ≤ + 2 n T exp(− log(T )),
C2 Δ2 

ii∈[n]\{imax}
where we used that σ(x) ≤ 0 iff x ≤ 0 and for the last 

8 from which we can conclude the lemma. 
t ,inequality that q̂imax,J (t) + cimax ,J (t) ≥ qimax ,J (t) on B

while qimax,J (t) > 1/2 holds by definition of imax. 
i,imax Proof of Lemma C.2. For any i = imax we have that Next, consider the counting process Mt := wi,imax − 

wimax,i for some i ∈ At\{imax} and define for sake Tt−1

of brevity the event S̃i = {{i, imax} ∈ Ss}. Note that E(wi,imax (t)) = P(is ∈ {i, imax}, {i, imax} ∈ Ss). s 
i,imaxM can be written as s=1 
t 

Now, similar as in the proof of Lemma C.1 before, we can 
t−1

i,imax 
T C > 0 which depends if at all on Θ suchfind a constant ˜

M = }.t 1{{is =i}∩S̃s 
i } − 1{{is =imax,}∩S̃s 

i that P(is ∈ {i, imax}, {i, imax} ∈ Ss) ≥ θminC̃ for any 
s=1 

active arm i and each s ∈ [t]. With this, we obtain that 
˜It holds that the event {{i, imax} ∈ Ss} has a strictly posi- E(wi,imax (t)) ≥ (t − 1)θminC . Using Lemma C.6 with 

tive probability for any arm i ∈ At\{imax} and any s ∈ [t], wi,imax as the counting process one can derive that there 
as otherwise the arm would not be active anymore. Condi- exists a constant C > 0 depending on Θ such that 
tioned on some set Ss we have that (t − 1)C - (t − 1)C2 

P (t) ≤ ≤ exp − .- - wi,imax 2 8P {is = i} − P {is = imax} (C.20) 
θi θmax Δi 

= C − C ≤ − ,' Next, write for short δi,imax = q̂i,imax (t) + ci,imax (t) − 1/2θj θj Hj∈Ss j∈Ss and note that C'where H = θi. Thus, we can find a constant C > 0,i∈[n] P(B8 8∩ R ∩ Et)t t
which depends only on Θ such that for each s ∈ [t] 8 8 = P(∃i = imax : {i ∈ St}, B

δi,imax 

∩ R )t t 

P {is = i} ∩ S̃i − P {is = imax} ∩ S̃i ≤ −Δi C. T 
s s ≤ 8 8P σ ≥ 0, B ∩ Rt t2ci,imax (t)i∈[n]\{imax}T 

i,imaxTherefore, EM ≤ −(t − 1) C Δi and by Lemma C.5t
8 
t ∩ R8 

tit follows that ≤ P ≥ 0, Bδi,imax 

i∈[n]\{imax}


P(wi,imax ≥ wimax,i) T
 
≤ P 2ci,imax (t) ≥ 1/2 − qi,imaxi,imax i,imax= P(Mt ≥ 0) ≤ P(Mt ≥ −2(t − 1) C Δi) i∈[n]\{imax}
 - C2 Δ2 

i (t − 1) T
 8 log(nt3/2)≤ exp − . = P (t) ≤8 wi,imax )2(1/2 − qi,imaxi∈[n]\{imax}
The event Rt is contained in the event that there exists an T 20 log(T )
active arm i such that the winning count of imax against i ≤ P wi,imax (t) ≤ ,

)2(1/2 − qi,imaxis smaller than the winning count of i against imax, that is i∈[n]\{imax}
i,imaxM ≥ 0. Hence, using the union bound in combination 

8t where we used that J(t) for the first in= imax on Rwith the latter display we obtain t 
equality, σ(x) ≤ 0 iff x ≤ 0 for the second inequality, for 
the third inequality that q̂i,imax (t) − ci,imax (t) ≤ qi,imax (t)TT

8 8 
t , while the last inequality is due to log(nt3/2) ≤ 

t=1 5/2 log(T ), as max{n, t} ≤ T . One can find constants 
TT T - C2 Δ2 Ci ∈ [1/4, 1/2] such that 1/2 − qi,imax = CiΔi. Indeed,

i (t − 1)≤ exp − 
8 note that 1/2 − qi,imax = Δi/(2(θi+θmax)) and it holds that 

t=1 i∈[n]\{imax} 
Δi Δi Δir8 log(T )/C2 Δ2 l ≤ ≤ .T T C2 Δ2i -

i (t − 1) 4 2(θi + θmax) 2 
= exp − 

8 
i∈[n]\{imax } t=1 Hence, with these considerations one obtains 

TT C2 Δ2 T-
i (t − 1) T 

P(Rt ∩ B ) on Bt 

+ exp − 
8 P(B8 8∩ R ∩ Et)t t 

t≥r8 log(T )/C2Δ2li t=1 
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TT T 20 log(T )≤ P wi,imax (t) ≤ 
C2Δ2 

i it=1 i∈[n]\{imax}T 40 log(T )≤ 
C C i 

2Δi 
2 

i∈[n]\{imax} 

TT T 20 log(T )
+ P wi,imax (t) ≤ . 

C2Δ2 
i i40 log(T )i∈[n]\{imax} t=r l 

CC 2Δ2 
i i 

Now, the summation over t on the right-hand side of the last 
display is such that 20 log(T )/Ci 

2Δ2 
i ≤ (t−1)C/2. Thus, we can 

use (C.20) to further estimate the last display by 

T 
θi ≥ θmax = 1. 

i∈St 

With this, and the fact that θi ≤ θmax = 1, we can infer 
that T T 

(θ1/γ 1/γ 
(θ1/γ 1/γ

r(St) ≤ − θ ) ≤ − θ ).max i max i 
i∈St i∈[n]\S∗ 

Considering the function f(x) = x1/γ defined for x ∈ 
[θmin, θmax] the assertion follows easily by the mean-value 
theorem as in the proof of Lemma B.3. 

C.4. Technical results 

In this subsection we collect the technical auxiliary results 
needed for the proofs of the core lemmas. These technical 
results could also be of independent interest. 

The next two lemmas were of major importance for the 
proof of Lemma C.1. 

CtLemma C.4. Let Mt = Zs, where (Zs)s=1,...,t are s=1 
random variables with values in {−1, 0, 1}, such that Fs is 
the canonical filtration generated by {Z1, . . . , Zs−1} and 
Zs+1 is conditionally independent of Zs+2, . . . , Zt given 
Fs. We have that for any z > 0 

2- z
P(Mt − E(Mt) > z) ≤ exp − . 

8 t 

Proof of Lemma C.4. The function f(z1, . . . , zt) = z1 + 
. . . + zt is Lipschitz-continuous with Lipschitz constant 
L = 2 if −1 ≤ zi ≤ 1 for each i. It is a well-known result 
that the sequence of random variables (Xi)i=1,...,t with 
Xi = E[f(Z1, . . . , Zt)|Fi] is a martingale (the so-called 
Doob martingale) with bounded differences |Xi+1 − Xi| ≤ 

TT 2L = 4 (cf. Lemma 11 in Kocsis et al. (2006)). Consider 
the martingale difference sequence X̃i = Xi − EXi = 

8 8P(B ∩ R ∩ Et)t t 
t=1 T Xi − EMt and note that X̃t = Xt − EXt = Mt − EMt40 log(T ) 1 ˜≤ + C1nT −C2 , and X0 = 0 by setting F0 = {∅, Ω}. Thus, the Azuma-

C Ci 
2Δ2 

ii∈[n]\{imax} Hoeffding inequality implies for any z > 0 that 

P(Mt − E(Mt) > z) = P(X̃t − X̃0 > z)for some constants C1, C2 > 0. From the latter display we 
can conclude the lemma. ≤ exp(−z 2/(8 t)). 

Proof of Lemma C.3. Note that 
Lemma C.5. Consider the setting of Lemma C.4 and as-

r(St) = U(S ∗ ) − U(St) sume that there exists Δt such that E(Mt) ≤ Δt/2. Then,C γ 
i∈St 

(vmax − vi)vi - Δ2 
= C tγ P(Mt ≥ Δt) ≤ exp − .vi∈St i 32 t C 1/γ 1/γ

(θmax − θ )θii∈St i 
= C . Proof of Lemma C.5. 

i∈St 
θi 

P(Mt ≥ Δt) = P(Mt ≥ E(Mt) + Δt − E(Mt)) 

On the event R8 
t it holds that imax ∈ St, so that ≤ P(Mt ≥ E(Mt) + Δt/2) 

≤ exp(−Δ2/(32 t)),t 

where we used Lemma C.4 in the last step. 

For the proof of Lemma C.2 we use the following variant of 
Lemma 13 in Kocsis et al. (2006).CtLemma C.6. Let Nt = Zs, where (Zs)s=1,...,t are s=1 
random variables with values in {0, 1}, such that Fs is the 
canonical filtration generated by {Z1, . . . , Zs−1} and Zs+1 

is conditionally independent of Zs+2, . . . , Zt given Fs. If 
ENt ≥ 2Δt, for some Δt then -

− Δ2P(Nt ≤ Δt) ≤ exp t/2 t . 

Proof of Lemma C.6. By using ENt ≥ 2Δt, we have 

P(Nt ≤ Δt) = P(Nt ≤ ENt + Δt − ENt) 

≤ P(Nt ≤ ENt − Δt) -
− Δ2≤ exp t/2 t , 

where we used Lemma 12 of Kocsis et al. (2006) for the last 
inequality. 
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D. Optimal subsets for restricted Pre-Bandits 
and an efficient algorithm for utility 
maximization 

In this section, we show that the best arm is always element 
of the optimal preselection for the restricted Pre-Bandit case. 
Following this, we present a sophisticated algorithm (Algo
rithm 3) to avoid highly computational costs for determining 
the maximizing set in line 11 of Algorithm 1. 

The following lemma, which can be verified by simple tech
niques of curve sketching, is the foundation for Algorithm 
3 and the proof of Lemma D.2. 

Lemma D.1. Let 0 ≤ a < b be real values, (θ1, . . . , θn) ∈ 
[a, b]n and S ⊆ [n] be a nonempty subset. Further, define 
fγ : [a, b] → R+ by C 

θ1+γ 1+γ + θi∈S ifγ (θ) = fγ (θ; S) = C . 
θγ + θγ 

i∈S i 

The following statements are valid. 

γθ(i)	 For θ̃ = i∈S i 
1+γ

/ θ we have that fγ (θ̃) = i∈S i 

fγ (0) = θ. ˜

¯(ii)	 fγ has a unique global minimum in θ, which is the 
(unique) real-valued solution of the following equation 
in x -T T 

γ 1+γ x 1+γ + (1 + γ) v x − γ v = 0.i i 
i∈S i∈S 

¯It holds that fγ is strictly decreasing in [a, θ] and 
strictly increasing in [θ, b¯ ]. Moreover, θ̄ ≤ θ. ˜

Lemma D.2. Let θ ∈ Θ be such that |arg max θi| = 1 
i∈[n] 

and let J = arg max θi. Then, for any l ∈ N, one has 
i∈[n] 

J ∈ S∗ , where each S∗ is a maximizing subset as in (7) for 
A = Al. Furthermore, if |arg max θi| > 1 then U({J}) ≥ 

i∈[n] 

U({J} ∪ {i}) for any i ∈ [n], with an equality if and only 
if θi = θJ . The same holds true for UC . 
Proof of Lemma D.2. We prove the first assertion by con
tradiction. Hence, suppose that J ∈/ S∗ . Let J̃ ∈ S∗ be 
such that θ ̃ < θJ and define S̃ = S∗\{J̃} ∪ {J}. Thus, by J 
assumption it should hold that C1+γ 1+γ C 1+γθ + θ˜ i∈S∗\{J̃} i θJ	 i∈S∗ iU(S ∗ ) = C = Cγ γ γθ	 + θ θ˜ i∈S∗\{J̃} i i∈S∗ i C 1+γ 

CJ 
1+γ 1+γθ + θ

i∈S̃ θi J i∈S∗\{J̃} i 
>	 C = Cγ γ γθ θ + θi∈S̃ i J i∈S∗\{J̃} i 

= U( S̃). 

In terms of Lemma D.1 this means that fγ (θ ̃ , S∗\{J̃}) >J 

fγ (θJ , S∗\{J̃}), but this is a contradiction due to (i) and 
1+γ 

i∈S∗\{J̃} iθ(ii) of Lemma D.1, as θJ > θ̃ = γ and θ̄ ∈
θi∈S∗ \{J̃} i 

[0, θ̃]. The second claim follows immediately by the strict 
monotonic behavior of fγ and the claims for UC can be shown 
similarly. 

Algorithm 3 Utility-maximization 
input n many paramters θ1, . . . , θn, preciseness parameter 

γ , preselection size l 
1:	 initialization: τ ← S ort(θ1, . . . , θn) {determine per

mutation which sorts the scores in decreasing order}
2:	 S ← arg max θτ(i) {select all high-score items}

i∈τ ([n]) 

3:	 if |S| ≥ l then 
4: return: randomly selected l elements of S 
5:	 else 
6: A ← [n]\[|S|] { set of active arms }
7: repeat 

1+γ γ8: θ̃ ← i∈S θi / θi∈S i 

9: Anext ← arg min {|θ̃ − fγ (θτ(i); S)|}
i∈{min A,max A}

{fγ as in Lemma D.1, break ties arbitrarily}
10: S ← S ∪ τ (Anext) 
11: A ← A\Anext 

12: until |S| == l 
13: return: S 
14:	 end if 

Let θ(i) denote the i-th order statistic for (θ1, . . . , θn), i.e., 

θ(1) ≤ θ(2) ≤ . . . ≤ θ(n), -
then Lemma D.1 implies that fγ v; {θ(n)} ≤ -
fγ	 θ(n); {θ(n)} for any v ∈ [0, θ(n)] and the small-
est decrease of fγ ·; {θ(n)} over the discrete set 
{θ(1), . . . , θ(n−1)} is either for θ(n−1) or for θ(1). 

With this, Algorithm 3 successively builds a set S which 
will maximize the expected utility in (6) for a given score 
parameter θ = (θ1, . . . , θn). First, the scores are sorted in 
order to find the arms with the highest scores, as by Lemma 
D.2 these are always element of the maximizing subset. If 
more than (l − 1) elements have the same highest score, a 
randomly chosen l-sized set of these is returned, since the 
expected utility among all possible l-sized subsets of these 
is the same by Lemma D.1 or Lemma D.2. 

Otherwise, an active index set A is initialized containing 
all indices for which it is not decided yet, if they are part 
of the maximizing set S eventually. As by Lemma D.2 the 
expected utility decreases from that point on by enlarging 
the set S, the algorithm determines the arm with the small
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Figure 1. Mean cumulative regret for 1000 runs of randomly gen
erated restricted PB instances for (n, l) = (20, 4) (left) and 
(n, l) = (30, 5) (right). 

est decrease for the expected utility, where ties are broken 
arbitrary by two possible candidates. 

Since the expected utility of the currently set S is identical 
to fγ (0; S) only the arms with the smallest resp. highest 
score parameter in A have to be checked by the implication 
after Lemma D.2. It can be shown that the algorithm has 
worst complexity of O(l n log(n)) if an efficient sorting 
algorithm is used in the initial step. 

E. Further experiments for the Pre-Bandit 
problem 

In this section, we provide further experiments on synthetic 
data for the two variants of the Pre-Bandit problem. 

Restricted Pre-Bandit problem (larger number of arms) 
First, we present two additional scenarios of the simulation 
study in Section 6 for the restricted Pre-Bandit problem 
with larger numbers of arms n and different preselection 
sizes l. In particular, we investigate the performance of the 
following algorithms, which were also analyzed in Section 
6, for the restricted Pre-Bandit problem: 

•	 TRCB: The TRCB algorithm in Algorithm 1 with 
Cshrink = 7 · 10−5 and θmin = 0.02 (here as a param
eter of the algorithm). 

•	 UCB-Oracle: UCB-type algorithm of Agrawal et al. 
(2016) with knowledge of the best arm in advance and 
revenues are set to be the estimated score parameters 

ˆ(in short r = θ). 

•	 UCB-Sampling: UCB-type algorithm of Agrawal et al. 
(2016) without knowledge of the best arm in advance 
(sampled with MNL probability among the three best) 

ˆand r = θ. 

•	 TS-Oracle: The Thompson sampling algorithm of 
Agrawal et al. (2017) (Algorithm 1) with knowledge 

ˆof the best arm in advance and r = θ. 

Figure 2. Mean cumulative regret for 1000 runs of randomly gen
erated restricted PB instances for (n, l) = (10, 3) (left) and 
(n, l) = (20, 4) (right) and γ = 1/20. 

•	 TS-Sampling: The Thompson sampling algorithm of 
Agrawal et al. (2017) (Algorithm 1) without knowl
edge of the best arm in advance (sampled with MNL 

ˆprobability among the three best) and r = θ. 

•	 TS-Oracle-Corr: Correlated Thompson sampling al
gorithm of Agrawal et al. (2017) (Algorithm 2) with 

ˆknowledge of the best arm in advance and r = θ. 

The left picture in Figure 1 provides the findings for the case 
n = 20 and l = 4, while the right picture illustrates our 
results for n = 30 and l = 5. Both scenarios are considered 
for the time horizons T ∈ {i · 2000}5 and the score i=1 
parameters are drawn randomly from the n-simplex without 
any restrictions on θmin and with γ = 1. 

Table 1. Empirical standard deviations of the cumulative regret for 
the different time horizon steps for the scenarios (n, l) = (20, 4) 
and (n, l) = (30, 5). 

(n, l) = (20, 4) 
T 2000 4000 6000 8000 10000 

TRCB 21.47 32.93 43.73 57.51 66.36 
UCB-Oracle 43.90 79.27 119.19 165.42 202.54 

UCB-Sampling 98.31 187.52 280.59 370.10 479.20 
TS-Oracle 7.74 10.01 11.37 13.42 14.06 

TS-Sampling 86.11 161.01 235.16 329.54 429.52 
TS-Oracle-Corr 21.84 43.65 63.73 87.99 111.97 

(n, l) = (30, 5) 
TRCB 20.54 34.81 40.84 54.91 58.88 

UCB-Oracle 34.45 65.40 102.52 143.31 172.84 
UCB-Sampling 75.21 150.24 225.29 311.10 385.72 

TS-Oracle 6.91 9.48 11.17 13.43 13.91 
TS-Sampling 53.66 101.35 175.86 246.12 284.47 

TS-Oracle-Corr 18.01 38.74 55.92 80.59 97.91 

The findings are similarly as for the case n = 10 and l = 3, 
that is only the Thompson Sampling algorithm with knowl
edge of the best arm apriori (TS-Oracle) outperforms TRCB, 
while the other algorithms are outperformed by TRCB. Fur
thermore, we report the empirical standard deviations of the 
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Figure 3. Mean cumulative regret for 1000 runs of randomly gen
erated restricted PB instances for (n, l) = (10, 3) (left) and 
(n, l) = (20, 4) (right) and γ = 20. 

considered algorithms for each time horizon in both scenar
ios in Table 1. Only TS-Oracle has a throughout smaller 
standard deviation than TRCB, while all the others have 
variations of a higher magnitude than TRCB. 

Restricted Pre-Bandit problem (Varying degree of pre
ciseness) Next, we consider two additional scenarios, in 
which we initially set γ = 1/20 such that the most pre
ferred subsets consists throughout of the top-l arms and 
The results for γ = 1/20 are depicted in Figure 2 for the 
cases (n, l) = (10, 3) and (n, l) = (20, 4) for the algo
rithms described above. Note that TS-Oracle-Corr could 
not be compared as it sampled negative values for the score 
parameters, which lead to numerical issues regarding the 
evaluation of the utility function. Again the findings are 
in line with the observations we have made in the simula
tions before, i.e., only TS-Oracle is able to outperform our 
algorithm TRCB due to its advantage of knowing the best 
arm. In particular, this demonstrates that our algorithm per
forms well for scenarios where top-l subsets are the desired 
outcome for a user. 

In addition, we consider the case γ = 20 such that the most 
preferred subsets are basically all subsets which contain the 
arm with the highest score (cf. Example 2 in the main paper). 
Figure 3 illustrates the results for the cases (n, l) = (10, 3) 
and (n, l) = (20, 4), where we do not included the algo
rithms which have prior knowledge of the best arm, as these 
naturally have throughout a regret of zero. This experi
ment indicates that the considered DAS algorithms depend 
too much on the assumption that the no-choice option corre
sponds to the highest scored arm as also remarked in Section 
6. 

Flexible Pre-Bandit problem In addition to the simula
tions in Section 6, we investigate the empirical regret growth 
over time for larger numbers of arms n for our CBR algo
rithm for the flexible Pre-Bandit problem. We consider two 
variants of the CBR-algorithm: 

Figure 4. Mean cumulative regret of the variants of the CBR al
gorithm for 500 runs of randomly generated flexible Pre-Bandit 
instances for n ∈ {60, 120, 240}. 

• CBR: The CBR algorithm with 

σ(x) = (1 ∧ x)1[0,∞)(x). 

• CBR-As: The CBR algorithm with 

x−1/2 1σ(x) = 1 arctan ρ + and ρ = 2.π (1−x)ρx 2 

Figure 4 illustrates the results of our simulations for both 
CBR algorithm variants over 500 repetitions, respectively, 
with n ∈ {60, 120, 240}, over the time horizons T ∈ {i · 
2000}5 and the score parameters were drawn randomly i=1 
from the unit interval and with γ = 1. 

It is clearly visible that CBR-As outperforms CBR due to 
the more sophisticated choice of the S-curved function σ. 
Thus, it is reasonable to believe that the performance of CBR 
can be significantly improved by an appropriate choice of 
σ. Note that the Double Thompson Sampling considered 
in Section 6 was not competitive in these scenarios and is 
therefore omitted. 
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