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Abstract

Attention based Transformer architecture has en-
abled significant advances in the field of nat-
ural language processing. In addition to new
pre-training techniques, recent improvements cru-
cially rely on working with a relatively larger em-
bedding dimension for tokens. Unfortunately, this
leads to models that are prohibitively large to be
employed in the downstream tasks. In this paper
we identify one of the important factors contribut-
ing to the large embedding size requirement. In
particular, our analysis highlights that the scaling
between the number of heads and the size of each
head in the current architecture gives rise to a low-
rank bottleneck in attention heads, causing this
limitation. We further validate this in our experi-
ments. As a solution we propose to set the head
size of an attention unit to input sequence length,
and independent of the number of heads, result-
ing in multi-head attention layers with provably
more expressive power. We empirically show that
this allows us to train models with a relatively
smaller embedding dimension and with better per-
formance scaling.

1. Introduction

Attention based architectures, such as Transformers, have
been effective for sequence modelling tasks such as machine
translation (Gehring et al., 2017; Vaswani et al., 2017), ques-
tion answering, sentence classification (Radford et al., 2018;
Devlin et al., 2018) and document generation (Liu et al.,
2018). These models have emerged as better alternatives
to the recurrent models - RNNs (Sutskever et al., 2014),
LSTMs (Hochreiter & Schmidhuber, 1997) and GRUs (Cho
et al., 2014). This is mainly due to their feed forward struc-
ture, which removes the sequential processing bottleneck
for sequence data, making them easier to train compared
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to the recurrent models. Self attention models also have
found applications in vision (Wang et al., 2018), adversarial
networks (Zhang et al., 2018), reinforcement learning (Zam-
baldi et al., 2018; Li, 2017) and speech recognition (Chiu
et al., 2018).

Recent advances in using the self attention models in natural
language tasks have been made by first using a language
modeling task to pre-train the models and then fine tuning
the learned models on specific downstream tasks. Radford
et al. (2018) and Devlin et al. (2018) used Transformers to
pre-train a language model and showed that the fine tuned
model outperforms LSTMs on many natural language under-
standing and question answering tasks. For example, BERT
(Devlin et al., 2018), a 24 layer transformer model, is shown
to achieve the state of the art performance on several NLP
tasks, including on the SQuAD dataset. These advances, in
addition to novel pre-training tasks, relied on bigger models
with a larger embedding size. BERT model uses an embed-
ding size of 1024 (Devlin et al., 2018); GPT-2 uses models
with embedding size up to 1600 (Radford et al., 2019).

A single Transformer block consists of two key components:
a multi-head self attention layer followed by a feed forward
layer (Vaswani et al., 2017). A single head in a multi-head
attention layer, computes self attention between the tokens
in the input sequence, which it then uses to compute a
weighted average of embeddings for each token. Each head
projects the data into a lower dimensional subspace, and
computes the self attention in this subspace. This projection
size for each head is commonly referred to as the head size.

To keep the number of parameters fixed in the attention layer
regardless of the number of heads, the prevalent heuristic
is to scale the head size with 1/(number of heads). This
heuristic was initially proposed in Vaswani et al. (2017)
and has become a de facto standard heuristic in multi-head
attention models (Radford et al., 2018; Devlin et al., 2018).
However, increasing the number of heads decreases the head
size, decreasing the expressive power of individual heads.
We prove that reducing the head size to a value below the in-
put sequence length harms the representation power of each
head (see Theorem 1). This is because a smaller head size
introduces a rank constraint on the projection matrices in
each head, and limits their representation power. We indeed
notice this effect in practice: while the performance im-
proves with increasing the number of heads in the beginning
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# heads 8 16 32
# params 336M 336M 336M

SQuAD - F1 90.89±0.15 90.61±0.14 90.45±0.08
SQuAD - EM 84.1±0.34 83.75±0.27 83.48±0.13

MNLI 85±0.2 84.5±0.4 84.4±0.2

Table 1: Performance of BERTLARGE (Devlin et al., 2018),
a 24 layer Transformer with an embedding size of 1024,
suffers with the increasing number of heads after 8 heads.

(Devlin et al., 2018), we notice a drop in the performance
once the number of heads increases beyond a certain thresh-
old, as seen in Table 1 and Fig. 1 (see also Table 4(A) in
Vaswani et al. (2017)).

In order to avoid hurting the performance, the existing mod-
els allow for multiple heads by increasing the embedding
size, which in turn increases the head size. However, larger
embedding size, in addition to increasing the number of
parameters, makes it expensive to use the model and the
learned embeddings in downstream tasks, as the downstream
model sizes scale with the embedding size of the tokens.
For example, the inference time and memory required in re-
trieval tasks typically increases linearly with the embedding
size.

In this paper we propose setting the head size of attention
units to input sequence length. While this is a simple hyper-
parameter change in the Transformer architecture, we show
that it is important to set this value appropriately to avoid
the low-rank bottleneck (see Theorem 1), and to improve
the representation power (see Theorem 2). This fixed head
size is also independent of both the number of heads and
the embedding size of the model. This allows us to train
models with a relatively smaller embedding size (hence
fewer parameters) without affecting the head size. Another
advantage of the fixed head size is that unlike the standard
setting which requires the number of heads to be a factor of
the embedding size, we are free to set an arbitrary number
of heads as required for the task.

Interestingly, we note that this simple yet novel approach of
fixing the head size in multi-head Transformers results in
empirically superior performance. We evaluate Transform-
ers trained with this fixed head size on language modeling
(LM1B dataset), natural language inference (MNLI dataset)
and question answering tasks (SQuAD dataset). We show
that fixing the head size allows us to train Transformers with
a better performance scaling and smaller embedding size.
We show that with the fixed head size Transformers trained
with an embedding size of 512 can match the performance of
the BERTLARGE(Devlin et al., 2018), a Transformer with an
embedding size of 1024 (see Fig. 2). We further present ex-
perimental results evaluating the effect of different choices

of the head size and the embedding size in Section 4.

Our contributions in this paper lie in identifying and rigor-
ously proving the low rank bottleneck in multi-head atten-
tion models, and showing that fixing the head size to input
sequence length results in a strictly better model, both the-
oretically and empirically. The contributions of this paper
are summarized below.

• We analyze the representation power of the multi-head
self attention layer and prove the low-rank bottleneck the
head size places on the attention units (Theorem 1).

• We propose to set the head size to input sequence length,
and show that fixing the head size strictly improves the
expressive power of the multi-head attention layers com-
pared to the standard heuristic for setting the head size
(Theorem 2). This allows us to both increase the num-
ber of heads per layer and decrease the embedding size,
without hurting the performance. We develop a novel
construction based approach to prove this result, which
can potentially be useful in analyzing other variants of
the Transformer architecture.

• We experimentally show that with a fixed head size,
Transformers can be trained with better performance scal-
ing and a smaller embedding size on three standard NLP
tasks.

1.1. Related Works

Given the significance of self attention models, there has
been work trying to both improve the performance and speed
up the computation in Transformers. Ott et al. (2018) and
You et al. (2019) reduce precision and use large batch train-
ing to reduce the training time of the attention models. Child
et al. (2019) propose sparse self attention models to speed
up the computation in the attention layer for long sequence
data generation tasks. They show that these sparse attention
models can be trained on tasks with sequence length greater
than 10k without sacrificing the accuracy. Dehghani et al.
(2018) propose a depth recurrent Transformer network that
reuses the parameters across layers. They show that this
modification makes the Transformer networks Turing com-
plete even with finite precision weights. Yang et al. (2019)
propose a new way to increase the effective sequence length
that the Transformer attends to, by reusing the intermediate
embeddings across sequences. They show that the modified
architecture performs better on tasks that require computing
context over longer sequence lengths. We note that most of
these modifications rely on the multi-head self attention, the
same building block of the Transformers. Our work is study-
ing this basic multi-head attention layer, and suggesting a
new way to set the head size, which can be easily applied
along with any of the above architectural modifications.
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Wu et al. (2019) propose to replace the self-attention layer
with lightweight dynamic convolutions and show improved
performance on machine translation and language modeling.
Even though the resulting model has faster inference time,
it still needs to use a large embedding size (1024), as big
as the original attention models. We believe the techniques
in this paper can be combined with these results to realize
both smaller embedding size and faster inference time.

Sun et al. (2019) perform neural architecture search using
evolutionary methods on sequence to sequence models and
find an evolved transformer architecture, which in addi-
tion to multi-head attention units, has convolution filter and
gated linear units. Our proposed modifications stay closer
to Transformers in spirit and can be used as seed units for
this architecture search.

Voita et al. (2019); Michel et al. (2019) study the importance
of different heads in an attention layer. They observe that,
during inference, many of the heads in each layer can be
pruned away with a little effect on the prediction. However,
they still need multiple heads during the training.

Child et al. (2019); Correia et al. (2019) impose sparsity
structure on the attention layer during training to improve
both interpretability and performance. Fixing the head size
will in fact make it easier to learn such sparsity patterns, as
a low rank constraint does not allow a head to express all
possible sparsity patterns. Combining these techniques can
hence potentially enable training of sparse attention models
with a smaller embedding size.

More recently Brunner et al. (2019) also rely on a rank argu-
ment to study the identifiability question in attention models:
when are attention weights unique for a given output of the
attention layer? They show that the attention weights are
not identifiable when the sequence length is longer than
the head size, i.e., there exists infinitely many weights that
result in the same output of the attention layer. This arises
from the smaller projection size (rank) of the value layer.
They are mainly concerned with using attention weights as
an explanation, given that different attention weights can
result in the same output, and do not address the question:
when can an attention layer compute an arbitrary attention
weight matrix? In contrast the focus of this work is on
characterizing how expressive power of an attention head is
constrained by its head size.

2. Transformer Architecture and Analysis

In this section, we present the Transformer architecture
and analyze the representation power of the multi-head self
attention, a key component of the Transformer block.

The input to a Transformer network is a sequence of n
tokens. Typically, each token is converted into a token

embedding of dimension d by an embedding layer. We let
X 2 Rd⇥n be the embedding matrix corresponding to the n
tokens in the input sequence.

2.1. Single-Head Attention

The Transformer block is a combination of a self atten-
tion layer followed by a feed forward layer (Vaswani et al.,
2017). Both layers have a skip connection and use Layer
Normalization (LN) (Ba et al., 2016). In particular, for to-
ken embeddings X, the dot product attention is computed
as follows.

Attention(X) = WvX · Softmax


(WkX)T (WqX)p

dk

�

= WvX ·P. (1)

Here Wq 2 Rdq⇥d, Wk 2 Rdk⇥d and Wv 2 Rdv⇥d

represent the projection matrices associated with the query,
key and value respectively in an attention unit (Vaswani
et al., 2017). For a single-head attention unit, we have dq =
dk = dv = d. In the dot-product attention (cf. (1)), P aims
to capture the context of the input for a given token based on
the remaining tokens in the input sequence. Subsequently,
the output of the attention layer takes the following form.

LN (X+Wo · Attention(X)) , (2)

where LN(·) represents the layer-normalization operation
and Wo 2 Rd⇥d. Given the attention module, as defined in
(1), it is natural to question its ability to represent arbitrary
contexts P for a given input sequence X.

In the following result we establish that for a large enough
projection size an attention unit can represent any data pair
(X,P). We also show that the model cannot represent arbi-
trary context when d is smaller than n, creating a low-rank
bottleneck.
Theorem 1 (Representation Theorem). If dq = dk = d �
n, then given any full column rank matrix X 2 Rd⇥n and
an arbitrary n ⇥ n positive column stochastic matrix P,
there always exists d⇥ d projection matrices Wq and Wk

such that

Softmax


(WkX)T (WqX)p

dk

�
= P. (3)

If dq = dk = d < n, there exist X and P such that (3) does
not hold for all Wq and Wk.

This result shows that the projection dimension dq = dk =
d needs to be larger than the sequence length n for the at-
tention unit to be able to represent any desired context P.
Even though this result describes a single example sequence
case, it highlights a fundamental property of the model ar-
chitecture that decreasing the projection size below a certain
threshold introduces a bottleneck.
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Proof of Theorem 1. d � n case. To prove the first part
of the result, we present an explicit construction of Wk

and Wq which allows us to generate P from X using the
dot product attention. Since X has full column rank, there
exists a left inverse X† = (XTX)�1XT 2 Rn⇥d such that
X†X = In. Let Wk = W̃kX† and Wq = W̃qX†. Then

XTWT
k WqX = XT (X†)TW̃T

k W̃qX
†X

= In · W̃T
k W̃q · In

= W̃T
k W̃q = W̃kq. (4)

Now that the above choice of Wq and Wk has handled the
dependence on X, we will choose a W̃kq depending on P
and finish the construction. Below we express the Softmax
operation on the query and key inner products. Note that
the Softmax here is a columnwise operator computing the
attention scores for each query. By using (4), we obtain that

Softmax


(WkX)T (WqX)p

dk

�
= Softmax

"
W̃kqp
dk

#

= exp

 
W̃kqp
dk

!
·D�1

W̃kq
,

where DW̃kq
is an n⇥ n diagonal matrix such that

(DW̃kq
)ii =

nX

j=1

exp

 
(W̃kq)jip

dk

!

=

 
1T exp

 
(W̃kq)p

dk

!!

i

.

Hence, we can establish the desired result by showing that
there always exists a W̃kq that satisfies the following fixed
point equation.

exp

 
W̃kqp
dk

!
= P ·DW̃kq

. (5)

Given P, to construct such a W̃kq, we pick an arbitrary
positive diagonal matrix D0, and set

W̃kq =
p
dk · log (P ·D0) . (6)

Since P is a positive matrix, such a W̃kq always exists.
Next, we verify that this construction indeed satisfies the
fixed point equation (cf. (5)). Note that

DW̃kq
= Diag

 
1T exp

 
(W̃kq)p

dk

!!
(7)

= Diag
�
1TP ·D0

�
= D0.

The last equation follows from the fact that P is a column
stochastic matrix. Now, using (6) and (7),

exp

 
W̃kqp
dk

!
= P ·D0 = P ·DW̃kq

.

This completes the first part of the proof.

d < n case. Consider the case of d = 1 and n = 2.
Then X 2 R1⇥2 and Wq and Wk 2 R1⇥1. Let X = [1, 0].
Then

Softmax


(WkX)T (WqX)p

dk

�

= Softmax


[1, 0]TWT

k Wq[1, 0]p
dk

�

= Softmax


WkWq 0

0 0

��
.

This matrix clearly cannot be used to generate P that
have distinct elements in the second column, e.g., P =
0.5 0.75
0.5 0.25

�
.

We now extend the above example to general values of n
and d, (d < n). Let X = [1d, · · · ,1d,0d] = [1mat,0d] 2
Rd⇥n, where 0d(1d) 2 Rd denotes the all zeros (ones)
vector. We denote the d⇥ n� 1 all ones matrix compactly
with 1mat. Then,

Softmax


(WkX)T (WqX)p

dk

�

= Softmax


[1mat,0]TWT

k Wq[1mat,0]p
dk

�

= Softmax


1T

matWkWq1mat 0n�1

0n�1 0

��
.

Again, the above matrix cannot be used to generate arbitrary
context P.

2.2. Multi-Head Attention

As discussed in Section 2.1, an attention unit updates the
embedding of an input token based on a weighted average of
the embeddings of all the tokens in the sequence, using the
context P (cf. (1)). Vaswani et al. (2017) proposed Multi-
Head attention mechanism that increases the representation
power of an attention layer, where multiple attention units
operate on different low dimensional projections of the input,
with each attention unit being referred to as a head. This
is followed by concatenation of the outputs from different
heads. In particular, the computation inside a Multi-Head
attention with h heads takes the following form:

head(X)i =

Wi
vX · Softmax

⇥
(Wi

kX)T (Wi
qX)/

p
d
h

⇤
2 R d

h⇥n
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MultiHead(X) =

Concat[head(X)1, · · · , head(X)h] 2 Rd⇥n.

The output of the Multi-head attention layer then becomes

Z = LN (X+Wo · MultiHead(X)) , (8)

where Wo 2 Rd⇥d. For a model with h heads, the query,
key and value projection matrices {Wi

q}, {Wi
k} and {Wi

v}
are d

h ⇥ d matrices. Therefore, each head projects the input
onto a d

h -dimensional subspace to compute the context, and
keeps the number of parameters fixed per layer. Using
MultiHead has resulted in empirically better performance
over the single head attention layer (Vaswani et al., 2017).

2.3. Low-Rank Bottleneck

While increasing the number of heads seemingly gives the
model more expressive power, at the same time we are reduc-
ing the head size, which can decrease the expressive power.
When the number of heads h is larger than d

n , the attention
unit inside each head projects onto a dimension smaller
than n, creating a low-rank bottlenck and loses its ability to
represent arbitrary context vectors (cf. Theorem 1). Inter-
estingly, this is consistent with the empirical observation in
Table 1 that increasing h beyond 8 results in performance
degradation in BERTLARGE (Devlin et al., 2018); note that
d = 1024 and n = 128 for most of the pre-training phase
of BERTLARGE.

Since the sequence length is fixed from the data/task at
hand, the only way to increase the number of heads without
introducing the low-rank bottleneck is by increasing the
embedding size d. This is a fundamental limitation of the
currently dominant head size heuristic, that we need to
increase the embedding size in order to support more heads.

Unfortunately, increasing the embedding size leads to higher
computation and memory requirements to train and store the
model. Further, since it is common to use learned embed-
dings from Transformer based models for downstream tasks
(Devlin et al., 2018), larger embedding size increases the
model size and computation required for all the downstream
tasks as well.

3. Fixed Multi-Head Attention

In this section we propose to fix the head size of the Trans-
former, which allows us to enjoy the advantage of higher
expressive power of multiple heads without requiring the
embedding size to be large. The key is to decouple the
dependency between the projection size in a head and the
embedding size of the model. The projection matrices now
project onto subspaces of a fixed dimension dp irrespec-
tive of the number of heads h. This approach where dp
is independent of d and h leads to the following attention

mechanism.

fixedhead(X)i =

Vi
vX · Softmax

⇥
(Vi

kX)T (Vi
qX)/

p
dp

⇤
2 Rdp⇥n

FixedMultiHead(X) =

Concat[fixedhead(X)1, · · · , fixedhead(X)h] 2 Rdp·h⇥n.

Note that the projection matrices used here {Vi
q}, {Vi

k} and
{Vi

v} are dp ⇥ d matrices. With Vo 2 Rd⇥h·dp , the output
of this new multi-head attention layer takes the following
form.

Z = LN (X+Vo · FixedMultiHead(X)) . (9)

This modification makes each attention head more similar
to a hidden unit in a feed forward network or a filter in a
convolutional network, and allows us to vary the number of
heads without worrying about reducing the representation
power per head. The downside is, unlike the standard Mul-
tiHead, the number of parameters per layer increases with
the number of heads. However, this modification allows us
to train a model with a smaller embedding size without a
low-rank bottleneck, ultimately allowing us to reduce the
total number of parameters in the model.

3.1. MultiHead vs. FixedMultiHead Attention

Given a MultiHead layer, we can always represent it using
a FixedMultiHead layer, whenever we have the head size
dp � d/h. While this shows that increasing the number of
heads h beyond d/dp makes individual heads of the Fixed-
MultiHead as expressive as the ones in the MultiHead, it is
not obvious if FixedMultiHead is strictly more expressive.
Can the FixedMultiHead layer represent functions that the
standard MultiHead layer can not represent? In this sub-
section we show that indeed, in the multi-head regime, the
FixedMultiHead layer is strictly better than the standard
MultiHead layer in terms of expressive power.

Consider the standard multi-head attention units in (8).

fd,h
W (X) = Wo · MultiHead(X).

We denote the collection of all parameter matrices as W.
d and h represent the dimension and number of heads in
MultiHead (8), respectively. Similarly, consider the function
represented by the fixed head size attention units:

g
d,h,dp

V (X) = Vo · FixedMultiHead(X).

Let V be the collection of all these parameter matrices. Here
d, h, dp denote the parameters of FixedMultiHead (9). We
define Fd,h and Gd,h,dp to be the class of functions fd,h

W (·)
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(a) LM1B (b) LM1B

Figure 1: Performance of Transformers trained with the prevalent head size heuristic (dp = d/h) (baseline) compared with
the fixed head size (dp = 32) on a language modeling task (LM1B) on the test set. We train baseline models with embedding
sizes from 256 to 512. We train the fixed head size models with a fixed embedding size of 256 and a head size of 32, and
vary the number of heads from 4 to 70, while matching the number of parameters. The plots clearly indicate that fixing the
head size allows us to train Transformers with a smaller embedding size (plot (b)), and with a better scaling of performance
(plot (a)). Note that for perplexity lower values are better.

and g
d,h,dp

V (·), respectively. As noted above, if dp � d/h,
we have Fd,h ⇢ Gd,h,dp .

The following theorem shows that even for simple examples
in Gd,h,dp , functions in Fd,h fail to represent them; this
already shows that Fd,h is a strict subset of Gd,h,dp .
Theorem 2. Let n � 2, d � dp, and h > d/dp. Consider a
FixedMultiHead attention layer gd,h,dp

V (·) with parameters
that satisfy the following conditions:

Vo ⇥

2

64
V1

v
...

Vh
v

3

75 is full rank, and (Vi
k)

TVi
q = U

for all i = 1, . . . , h, where U is a rank-dp matrix.

Then, for any fd,h
W 2 Fd,h, there exists X 2 Rd⇥n such

that fd,h
W (X) 6= g

d,h,dp

V (X).

Because kfd,h
W (X)� g

d,h,dp

V (X)k is a continuous function
of X, existence of such an X implies that the integral of
the norm of difference (i.e., approximation error) is strictly
positive. We note that the assumptions on Vi

k and Vi
q in the

above Theorem are made to provide a simple and construc-
tive proof; in fact, failure of MultiHead (Fd,h) to represent
such simple attention layers suggests that the situation is
likely worse for more complex functions in Gd,h,dp .

Theorem 2 shows that the expressive power of the Fixed-
MultiHead attention function class is strictly superior to
the standard MultiHead attention function class. Hence the
heuristic of reducing the head size with the number of heads

is limiting the expressive power of MultiHead, whereas us-
ing the fixed head size will increase the expressive power of
the attention layers.

4. Experiments

The goal of this section is to show that setting the head
size in a principled way leads to better performance than
using the prevalent heuristic. We again note that while
this is a simple hyper-parameter change to the Transformer,
setting this to input sequence length as shown in our analysis,
allows us to train better models with a smaller embedding
size.

In this section we present our experiments on three standard
NLP tasks, language modeling (LM1B), question answering
(SQuAD), and sentence entailment (MNLI), to demonstrate:
1) Increasing the number of heads in Transformers beyond
a certain point hurts the performance with the prevalent
head size heuristic, but always helps with the fixed head
size attention layers; 2) Decoupling the head size from
embedding size allows us to train models with a smaller
embedding size; and 3) Setting the head size appropriately
in the Transformers allows us to train models with a better
performance scaling. We first describe our experimental
setup followed by our results and ablation studies on the
proposed modifications.
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(a) SQuAD F1 (b) SQuAD EM (c) MNLI

Figure 2: Comparison of 24 layer Transformer models trained with the prevalent head size heuristic BERTLARGE (baseline)
vs. the fixed head size model on the SQuAD and MNLI dev sets. We vary the embedding size of the baseline models from
512 to 1024. We train the fixed head size models with a fixed embedding size of 512 and a head size of 128, with a varying
number of heads from 8 to 32, while matching the number of parameters. Fixing the head size allows us to train models
with a smaller embedding size of 512 and with a better performance.

(a) (b)

Figure 3: Ablation studies on LM1B: (a) We fix the embedding size of all the models to 256 and vary the capacity of
Transformers trained with the prevalent head size heuristic (baseline) by increasing the size of the feedforward layers. For
the fixed head size models we fix the head size to 32, so 8 head fixed head size model is the same as the 8 head baseline
model. We notice that again with the standard heuristic increasing the number of heads beyond 16 hurts the performance,
whereas with a fixed head size increasing the number of heads monotonically improves the performance. (b) We show the
effect of head size on the performance with different number of heads. Both plots clearly show the advantage in having an
additional way to tune the capacity of Transformers with a fixed embedding size.

4.1. Setup and Datasets

For the language modeling task we use the one billion word
benchmark dataset (LM1B) (Chelba et al., 2013). This
dataset has around 30M training examples and around 300k
examples in the test set. We use a sub-word tokenizer with
32k vocab and cap the input to 256 sequence length. We
train a 6 layer Transformer model with the ADAM optimizer
using the tensor2tensor library (Vaswani et al., 2018). The
detailed experimental setting is presented in Section C.

Multi-Genre Natural Language Inference (MNLI) is a sen-
tence level entailment task, designed to test natural language
understanding (Williams et al., 2018). Given a premise

sentence and a hypothesis sentence, the goal is to predict
whether hypothesis entails, contradicts or is neutral to the
premise. We report the classification accuracy for this task.
Stanford Question Answering Dataset (SQuAD) is a ques-
tion answering dataset, where given a paragraph and a ques-
tion, the goal is to predict the sequence of words in the para-
graph that constitute the answer to the question (Rajpurkar
et al., 2016). This is a harder word level task, compared to
the sentence classification task. We report both Exact Match
(EM) and F1 scores for this task. All results in this section
are reported on the Dev set, which has not been used in any
experimental choices in this paper.

For these latter two tasks, we follow the two stage approach



Low-Rank Bottleneck in Multi-head Attention Models

# heads 8 12 16 32
# params 168M 193M 218M 319M

SQuAD - F1 89.6±0.17 90.25±0.21 90.43±0.14 90.95±0.14
SQuAD - EM 82.73±0.21 83.18±0.24 83.59±0.06 84.4±0.29

MNLI 83.5±0.2 84.2±0.2 83.9±0.2 84.9±0.2

(A) Increasing number of heads

head size 32 64 128 256
# params 130M 142M 168M 218M

SQuAD - F1 88.53±0.06 89.51±0.15 89.6±0.17 90.33±0.23
SQuAD - EM 81.19±0.21 82.41±0.32 82.73±0.21 83.36±0.48

MNLI 82.5±0.1 83.4±0.3 83.5±0.2 83.9±0.2

(B) Increasing head size

Table 2: Ablation studies on SQuAD and MNLI: (A) 24 layer Transformer with a fixed head size of 128 and 512 embedding
size shows an improvement in the accuracy with the increasing number of heads. (B) The fixed head size model with 512
embedding size and 8 heads shows an improvement in accuracy with the increasing head size. This shows that indeed head
size is an important capacity controlling parameter in the self attention architecture.

of first pre-training on a language modeling task and then
fine-tuning the models on the task data. We follow the same
experimental setup for both pre-training and fine-tuning
as BERT (Devlin et al., 2018), and use their codebase1.
We first pre-train our models using the masked language
model and the next sentence prediction objectives, and then
fine tune the pre-trained model for individual tasks (Devlin
et al., 2018). For pre-training we use English Wikipedia
and BooksCorpus dataset (Zhu et al., 2015). The input to
the models is tokenized using the WordPiece representation
with 30000 tokens in the vocabulary. We present the key
experiment choices in Section C, and refer the reader to
Devlin et al. (2018) for a complete description of the setup.

Choice of the head size. Our proposed modification intro-
duces head size dp as a new model hyper-parameter. We
choose head size to be 128 for our BERT experiments, as
most of the pre-training is done with 128 sequence length
data. While we have ablation studies (cf. Table 2(B)) show-
ing bigger head size improves the performance, there is
a tradeoff between increasing the head size vs number of
heads vs layers. We found that having sufficiently large
head size, e.g., matching the pre-training sequence length,
is better than having a larger embedding size.

4.2. Results

For our first set of experiments we want to see if Transform-
ers trained with a fixed head size and a smaller embedding
size can match the performance of training with the standard
head size heuristic but with a larger embedding size. As

1https://github.com/google-research/bert

a baseline for the language modeling task, we train Trans-
formers with the embedding size increasing from 256 to
512 with different number of heads. We train the fixed head
size models with a fixed embedding size of 256 and a head
size of 32, with an increasing number of heads from 4 to
70. We notice that Transformers with a fixed head size and
an embedding size of 256 have better performance than
the baseline models with an embedding size of 512 (see
Fig. 1). We repeat the similar experiment on the other two
tasks, where for baseline we train BERTLARGE, a 24 layer,
16 head Transformer with the standard head size heuristic,
with embedding sizes from 512 to 1024. We compare it with
the fixed head size model, with an embedding size of 512
and a head size of 128, with an increasing number of heads
from 8 to 32. We again notice that the Transformers trained
with a fixed head size and 512 embedding size have better
performance than the baseline, BERTLARGE (see Fig. 2).

Note that simply trying to increase the head size of the
Transformers by decreasing the number of heads does not
improve the performance, as decreasing the number of heads
reduces the expressive power of the model (see Fig. 4 in the
Appendix). Hence, both the head size and the number of
heads needs to be set high enough for better performance.

4.3. Ablation

Increasing heads. From Table 1 and Fig. 1a we can see
that increasing the number of heads hurts the performance
of the Transformer after a certain number. We repeat the
same experiments with the fixed head size Transformer, and
present the results in Table 2(A) and Fig. 3a. The results
show that the performance of the modified model improves
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monotonically as the number of heads increase. This is
because the model capacity (a function of the head size) is
no longer reduced with the increasing number of heads.

Increasing head size. In Table 2(B) and Fig. 3b, we present
comparisons between models with different head sizes. This
shows that the gains in the performance of the fixed head
size models indeed come from adjusting the head size of the
query, key and value layers in the attention unit. The table
shows a clear trend of better performance with a larger head
size, suggesting that it indeed is an important factor in the
performance of the attention models.

5. Conclusion

In this paper we studied the representation power of the
multi-head self attention models and proved the low-rank
bottleneck that results from a small head size in the multi-
head attention. We showed that the larger embedding size
used in the current models is a consequence of this low-rank
bottleneck in multi-head attention layers. We propose to
instead use fixed head size attention units, with the head
size set to input sequence length, to avoid this bottleneck.
We showed that it allows us to increase the number of heads
without increasing the embedding size. As a consequence
we are able to train Transformers with a smaller embedding
size and fewer parameters, with better performance. In
the future, it will be interesting to experiment with varying
head sizes within an attention block and across layers. This
requires further understanding of the role of each layer in
computing the context, which is an interesting direction for
the future work.
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