
Appendix
Time Series Deconfounder: Estimating Treatment Effects over Time in the

Presence of Hidden Confounders

Ioana Bica 1 2 Ahmed M. Alaa 3 Mihaela van der Schaar 2 3 4

A. Proof for Theorem 1
Before proving Theorem 1, we introduce several definitions and lemmas that will aid with the proof. Note that the these are
extended from the static setting in Wang & Blei (2019a). Remember that at each timestep t, the random variable Zt ∈ Zt is
constructed as a function of the history until timestep t: Zt = g(H̄t−1), where H̄t−1 = (Z̄t−1, X̄t−1, Āt−1) takes values in
H̄t−1 = Z̄t−1 × X̄t−1 × Āt−1 and g : H̄t−1 → Z . In order to obtain sequential ignorable treatment assignment using
the substitutes for the hidden confounders Zt, the following property needs to hold:

Y(ā≥t) ⊥⊥ (At1, . . . , Atk) | X̄t, Āt−1, Z̄t, (1)

∀ā≥t and ∀t ∈ {0, . . . , T}.
Definition 1. Sequential Kallenberg construction
At timestep t, we say that the distribution of assigned causes (At1, . . . Atk) admits a sequential Kallenberg construction
from the random variables Zt = g(H̄t−1) and Xt if there exist measurable functions ftj : Zt × Xt × [0, 1] → Aj and
random variables Ujt ∈ [0, 1], with j = 1, . . . , k such that:

Atj = ftj(Zt,Xt, Utj), (2)

where Utj marginally follow Uniform[0, 1] and jointly satisfy:

(Ut1, . . . Utk) ⊥⊥ Y(ā≥t) | Zt,Xt, H̄t−1, (3)

for all ā≥t.

Lemma 1. Sequential Kallenberg construction at each timestep t⇒ Sequential strong ignorability. If at every timestep
t, the distribution of assigned causes (At1, . . . Atk) admits a Kallenberg construction from Zt = g(H̄t−1) and Xt then we
obtain sequential strong ignorability.

Proof. Assume thatAj for j = 1, . . . , k are Borel spaces. For any t ∈ {1, . . . , T} assume Zt and Xt are measurable spaces
and assume that Atj = ftj(Zt,Xt, Utj), where ftj are measurable and

(Ut1, . . . Utk) ⊥⊥ Y(ā≥t) | Zt,Xt, H̄t−1, (4)

for all ā≥t. This implies that:
(Zt,Xt, Ut1, . . . Utk) ⊥⊥ Y(ā≥t) | Zt,Xt, H̄t−1. (5)

Since theAtj’s are measurable functions of (Zt,Xt, Ut1, . . . Utk) and H̄t−1 = (Z̄t−1, X̄t−1, Āt−1), we have that sequential
strong ignorability holds:

(At1, . . . Atk) ⊥⊥ Y(ā≥t) | X̄t, Āt−1, Z̄t, (6)

∀ā≥t and ∀t ∈ {0, . . . , T}.
1University of Oxford, Oxford, United Kingdom 2The Alan Turing Institute, London, United Kingdom 3UCLA, Los Angeles, USA

4University of Cambridge, Cambridge, United Kingdom. Correspondence to: Ioana Bica <ioana.bica@eng.ox.ac.uk>.

Proceedings of the 37 th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

Appendix: Time Series Deconfounder

Lemma 2. Factor models for the assigned causes⇒ Sequential Kallenberg construction at each timestep t. Under weak
regularity conditions, if the distribution of assigned causes p(āT) can be written as the factor model p(θ1:k, x̄T , z̄T , āT)
then we obtain a sequential Kallenberg construction for each timestep.

Regularity condition: The domains of the causes Aj for j = 1, . . . , k are Borel subsets of compact intervals. Without loss of
generality, assume Aj = [0, 1] for j = 1, . . . , k.

The proof for Lemma 2 uses Lemma 2.22 in Kallenberg (2006) (kernels and randomization): Let µ be a probability kernel
from a measurable space S to a Borel space T . Then there exists some measurable function f : S × [0, 1]→ T such that if
ϑ is U(0, 1), then f(s, ϑ) has distribution µ(s,)̇ for every s ∈ S.

Proof. For timestep t, consider the random variables At1 ∈ A1, . . . Atk ∈ Ak,Xt ∈ Xt,Zt = g(H̄t−1) ∈ Zt and θj ∈ Θ.
Assume sequential single strong ignorability holds. Without loss of generality, assume Aj = [0, 1] for j = 1, . . . , k.

From Lemma 2.22 in Kallenberg (1997), there exists some measurable function ftj : Zt ×Xt × [0, 1]→ [0, 1] such that
Utj ∼ Uniform[0, 1] and:

Atj = ftj(Zt,Xt, Utj) (7)

and there exists some measurable function htj : Θ× [0, 1]→ [0, 1] such that:

Utj = htj(θj , ωtj), (8)

where ωtj ∼ Uniform[0, 1] and j = 1, . . . , k.

From our definition of the factor model we have that ωtj for j = 1, . . . , k are jointly independent. Otherwise, Atj =
ftj(Zt,Xt, htj(θj , ωtj)) would not have been conditionally independent given Zt,Xt.

Since sequential single strong ignorability holds at each timestep t, we have that Atj ⊥⊥ Y(ā≥t) | Xt, H̄t−1 ∀ā ∈ Ā,
∀t ∈ {0, . . . , T} and for j = 1, . . . , k which implies:

ωtj ⊥⊥ Y(ā≥t) | Xt, H̄t−1, (9)

∀ā≥t and ∀j ∈ {1, . . . , k}. Using this, we can write:

p(Y(ā≥t), ωt1, . . . , ωtk | Xt, H̄t−1) = p(Y(ā≥t) | Xt, H̄t−1) · p(ωt1, . . . , ωtk | Y(ā≥t),Xt, H̄t−1)

= p(Y(ā≥t) | Xt, H̄t−1) ·
k∏

j=1

p(ωtj | ωt1, . . . , ωt,j−1,Y(ā≥t),Xt, H̄t−1)

= p(Y(ā≥t) | Xt, H̄t−1) ·
k∏

j=1

p(ωtj | Xt, H̄t−1)

= p(Y(ā≥t) | Xt, H̄t−1) · p(ωt1, . . . , ωtk | Xt, H̄t−1)

where the second and third steps follow form equation (9) and the fact that ωt1, . . . , ωtk are jointly independent. This gives
us:

(ωt1, . . . , ωtk) ⊥⊥ Y(ā≥t) | Xt, H̄t−1 (10)

Moreover, since the latent random variable Zt is constructed without knowledge of Y(ā≥t), but rather as a function of the
history H̄t−1 we have:

(ωt1, . . . , ωtk) ⊥⊥ Y(ā≥t) | Zt,Xt, H̄t−1. (11)

θ1:k are parameters in the factor model and can be considered point masses, so we also have that:

(θ1, . . . , θk) ⊥⊥ Y(ā≥t) | Zt,Xt, H̄t−1, (12)

Since Utj = (hij(θj , ωtj)) are measurable functions of θj and ωtj we have that:

(Ut1, . . . , Utk) ⊥⊥ Y(a≥t) | Zt,Xt, H̄t−1 (13)

We have thus obtained a sequential Kallenberg construction at timestep t.

Appendix: Time Series Deconfounder

Theorem 1. If the distribution of the assigned causes p(āT) can be written as the factor model p(θ1:k, x̄T , z̄T , āT) then we
obtain sequential ignorable treatment assignment:

Y(ā≥t) ⊥⊥ (At1, . . . , Atk) | X̄t, Z̄t, Āt−1, (14)

for all ā≥t and for all t ∈ {0, . . . , T}.

Proof. Theorem 1 follows from Lemmas 1 and 2. In particular, using the proposed factor graph, we can obtain a sequential
Kallenberg construction at each timestep and then obtain sequential strong ignorability.

B. Implementation Details for the Factor Model
The factor model described in Section 5 was implemented in Tensorflow (Abadi et al., 2015) and trained on an NVIDIA
Tesla K80 GPU. For each synthetic dataset (simulated as described in Section 6.1), we obtained 5000 patients, out of which
4000 were used for training, 500 for validation, and 500 for testing. Using the validation set, we perform hyperparameter
optimization using 30 iterations of random search to find the optimal values for the learning rate, minibatch size (M), RNN
hidden units, multitask FC hidden units and RNN dropout probability. LSTM (Hochreiter & Schmidhuber, 1997) units are
used for the RNN implementation. The search range for each hyperparameter is described in Table 1.

The trajectories for the patients do not necessarily have to be equal. However, to be able to train the factor model, we
zero-padded them such that they all had the same length. The patient trajectories were then grouped into minibatches of size
M and the factor model was trained using the Adam optimizer (Kingma & Ba, 2014) for 100 epochs.

Table 1. Hyperparameter search range for the proposed factor model implemented using a recurrent neural network with multitask output
and variational dropout.

Hyperparameter Search range
Learning rate 0.01, 0.001, 0.0001

Minibatch size 64, 128, 256
RNN hidden units 32, 64, 128, 256

Multitask FC hidden units 32, 64, 128
RNN dropout probability 0.1, 0.2, 0.3, 0.4, 0.5

Table 2 illustrates the optimal hyperparameters obtained for the factor model under the different amounts of hidden
confounding applied (as described by the experiments in Section 6.1). Since the results for assessing the Time Series
Deconfounder are averaged across 30 different simulated datasets, we report here the optimal hyperparameters identified
through majority voting. We note that when the effect of the hidden confounders on the treatment assignments and the
outcome is large, more capacity is needed in the factor model to be able to infer them.

Table 2. Optimal hyperparameters for the factor model when different amounts of hidden confounding are applied in the synthetic dataset.
The parameter γ measures the amount of hidden confounding applied.

Hyperparameter γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 γ = 0.8

Learning rate 0.01 0.01 0.01 0.01 0.001
Minibatch size 64 64 64 64 128

RNN hidden units 32 64 64 128 128
Multitask FC hidden units 64 128 64 128 128
RNN dropout probability 0.2 0.2 0.1 0.3 0.3

Appendix: Time Series Deconfounder

✓k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers

RNN
ht�1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ht
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Xt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Xt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

At�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers
✓2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers
. . .

p(At,1 | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(At,2 | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(At,k | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Variational
dropout

(b)

✓k
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers

MLP

Xt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Xt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

At�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

✓1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers
✓2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers
. . .

p(At,1 | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(At,2 | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(At,k | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(c)

MC dropout

RNN
ht�1

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

ht
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Xt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Xt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zt
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Zt�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

At�1
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

FC Layers

. . .p(At,1 | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(At,2 | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

p(At,k | Xt,Zt)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(b)

Figure 1. (a) Proposed factor model using a recurrent neural network with multitask output and variational dropout. (b) Alternative design
without multitask output. (c) Factor model using an MLP (shared across timestep) and multitask output. This baseline does not capture
time-dependencies. MC dropout (Gal & Ghahramani, 2016) is applied in the MLP to be able to sample from the substitutes for the hidden
confounders.

C. Baselines for Evaluating Factor Model
Figure 1 illustrates the architecture at each timestep for our proposed factor model and the baselines used for comparison.
Figure 1(a) represents our proposed architecture for the factor model consisting of a recurrent neural network with multitask
output and variational dropout. We want to ensure that the multitask constraint does not cause a decrease in the capability of
the network to capture the distribution of the assigned causes. To do so, we compare our proposed factor model with the
network in Figure 1(b) where we predict the k treatment assignments by passing Xt and Zt through a hidden layer and
having an output layer with k neurons. Moreover, to highlight the importance of learning time-dependencies to estimate the
substitutes for the hidden confounders, we also use as a baseline the factor model in Figure 1(c). In this case, a multilayer
perceptron (MLP) is shared across the timesteps and it infers the latent variable Zt using only the previous covariates and
treatments. Note that in this case there is no dependency on the entire history.

The baselines were optimised under the same set-up described for our proposed factor model in Appendix B. Tables 3 and 4
describe the search ranges used for the hyperparameters in each of the baselines.

Table 3. Hyperparameter search range for factor model without multitask (Figure 1(b)).

Hyperparameter Search range
Learning rate 0.01, 0.001, 0.0001

Minibatch size 64, 128, 256
Max gradient norm 1.0, 2.0, 4.0
RNN hidden units 32, 64, 128, 256

Multitask FC hidden units 32, 64, 128
RNN dropout probability 0.1, 0.2, 0.3, 0.4, 0.5

Table 4. Hyperparameter search range for MLP factor model. Figure 1(c))

Hyperparameter Search range
Learning rate 0.01, 0.001, 0.0001

Minibatch size 64, 128, 256
MLP hidden layer size 32, 64, 128, 256

Multitask FC hidden units 32, 64, 128
MLP dropout probability 0.1, 0.2, 0.3, 0.4, 0.5

Appendix: Time Series Deconfounder

D. Outcome Models
After inferring the substitutes for the hidden confounders using the factor model, we implement outcome models to estimate
the individualised treatment responses:

E[Yt+1(at) | Āt−1, X̄t, Z̄t] = h(Āt, X̄t, Z̄t) (15)

We train the outcome models and evaluate them on predicting the treatment responses for each timestep, i.e. one-step-ahead
predictions, for the patients in the test set. For training and tuning the outcome models, we use the same train/validation/test
splits that we have used for the factor model. This means that the substitutes for the hidden confounders estimated using the
fitted factor model on the test set are also used for testing purposes in the outcome models.

D.1. Marginal Structural Models

MSMs (Robins et al., 2000; Hernán et al., 2001) have been widely used in epidemiology to perform causal inference in
longitudinal data. MSMs use inverse probability of treatment weighting during training to construct a pseudo-population
from the observational data that resembles the one in a clinical trial and thus remove the bias introduced by time-dependent
confounders (Platt et al., 2009). The propensity scores for each timestep are computed as follows:

SWt =
f(At | Āt−1)

f(At | X̄t, Z̄t, Āt−1)
=

∏k
j=1 f(At,j | Āt−1)∏k

j=1 f(At,j | X̄t, Z̄t, Āt−1)
(16)

where f(·) is the conditional probability mass function for discrete treatments and the conditional probability density
function for continuous treatments. We adopt the implementation in Hernán et al. (2001); Howe et al. (2012) for MSMs and
estimate the propensity weights using logistic regression as follows:

f(At,k | Āt−1) = σ
(k∑

j=1

ωk(

t−1∑
i=1

At,j)
)

(17)

f(At,k | X̄t, Z̄t, Āt−1) = σ
(k∑

j=1

φk(

t−1∑
i=1

At,j) + w1Xt + w2Xt−1 + w3Zt + w4Zt−1

)
(18)

where ω?, φ? and w? are regression coefficients and σ(·) is the sigmoid function.

For predicting the outcome, the following regression model is used, where each individual patient is weighted by its
propensity score:

h(Āt, X̄t, Z̄t) =

k∑
j=1

βk(

t∑
i=1

At,j) + l1Xt + l2Xt−1 + l3Zt + l4Zt−1 (19)

where β? and l? are regression coefficients. Since MSMs do not require hyperparameter tuning, we train them on the patients
from both the train and validation sets.

D.2. Recurrent Marginal Structural Networks

R-MSNs, implemented as descried in Lim et al. (2018)1, use recurrent neural networks to estimate the propensity scores and
to build the outcome model. The use of RNNs is more robust to changes in the treatment assignment policy. Moreover,
R-MSNs represent the first application of deep learning in predicting time-dependent treatment effects. The propensity
weights are estimated using recurrent neural networks as follows:

f(At,k | Āt−1) = RNN1(Āt−1) f(At,k | X̄t, Z̄t, Āt−1) = RNN2(X̄t, Z̄t, Āt−1) (20)

For predicting the outcome, the following prediction network is used:

h(Āt, X̄t, Z̄t) = RNN3(X̄t, Z̄t, Āt), (21)

1We used the publicly available immlementation from https://github.com/sjblim/rmsn_nips_2018.

https://github.com/sjblim/rmsn_nips_2018.

Appendix: Time Series Deconfounder

where in the loss function, each patient is weighted by its propensity score. Since the purpose of our method is not to
improve predictions, but rather to assess how well the R-MSNs can be deconfounded using our method, we use the optimal
hyperparameters for this model, as identified by Lim et al. (2018). R-MSNs are then trained on the combined set of patients
from the training and validation sets.

Table 5. Hyperparameters used for R-MSN.

Hyperparameter Propensity networks Prediction
networkf(At | Āt−1) f(At | H̄t)

Dropout rate 0.1 0.1 0.1
State size 6 16 16

Minibatch size 128 64 128
Learning rate 0.01 0.01 0.01

Max norm 2.0 1.0 0.5

R-MSNs (Lim et al., 2018), can also be used to forecast treatment responses for an arbitrary number of steps in the future.
In our paper we focus on one-step ahead predictions of the treatment responses. However, the Time Series Deconfounder
can also be applied to estimate the effects of a sequence of future treatments.

Appendix: Time Series Deconfounder

0.0 0.2 0.4 0.6 0.8
Confounding degree γ

3

4

5

6

7

8

9

R
M

S
E

x
10

2

(a) Marginal Structural Models

0.0 0.2 0.4 0.6 0.8
Confounding degree γ

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
M

S
E

x
10

2

(b) Recurrent Marginal Structural Networks

Confounded Deconfounded (DZ = 3) Deconfounded (DZ = 5) Deconfounded (DZ = 1) Oracle

Figure 2. Results for deconfounding one-step ahead estimation of treatment responses in two outcome models: (a) Marginal Structural
Models (MSM) and (b) Recurrent Marginal Structural Networks (R-MSN). The simulated (true) size of the hidden confounders isDZ = 3.
The average RMSE and the standard error in the results are computed for 30 dataset simulations for each different degree of confounding,
as measured by γ.

E. Additional Results
E.1. Experiments on Synthetic Data

We considered an additional experimental set-up where we have simulated hidden confounders of dimension DZ = 3. In
Figure 2 we illustrate the root mean squared error (RMSE) for one-step-ahead estimation of treatment responses for patients
in the test set without adjusting for the bias from the hidden confounders (Confounded), when using the simulated hidden
confounders (Oracle) and after applying the Time Series Deconfounder with different model specifications (Deconfounded).
We notice that the Time Series Deconfounder can still account for the bias from hidden confounders when the true size for
the hidden confounders is underestimated in the factor model and set to (DZ = 1). The performance is improved when
setting DZ to the true number of hidden confounders or when overestimating the number of hidden confounders.

E.2. Model of Tumour Growth

To show the applicability of our method in a more realistic simulation, we use the pharmacokinetic-pharmacodynamic
(PK-PD) model of tumor growth under the effects of chemotherapy and radiotherapy proposed by Geng et al. (2017). The
tumor volume after t days since diagnosis is modeled as follows:

V (t) =
(

1 + ρlog(
K

V (t− 1)
)︸ ︷︷ ︸

Tumor growth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

−
(
αrd(t) + βrd(t)2

)︸ ︷︷ ︸
Radiotherapy

+ et︸︷︷︸
Noise

)
V (t− 1)

(22)

where K, ρ, βc, αr, βr, et are sampled as described in Geng et al. (2017). C(t) is the chemotherapy drug concentration and
d(t) is the dose of radiation. Chemotherapy and radiotherapy prescriptions are modeled as Bernoulli random variables that
depend on the tumor size. Full details about treatments are in Lim et al. (2018).

Table 6. Average RMSE ×102 (normalised by the maximum tumour volume) and the standard error in the results for predicting the effect
of chemotherapy and radiotherapy on the tumour volume.

Outcome model MSM R-MSN
Confounded 7.29 ± 0.14 5.31 ± 0.16

Deconfounded (DZ = 1) 6.47 ± 0.16 4.76 ± 0.17
Deconfounded (DZ = 5) 6.25 ± 0.14 4.79 ± 0.19

Deconfounded (DZ = 10) 6.31 ± 0.11 4.54 ± 0.17
Oracle 6.92 ±0.19 5.00 ± 0.15

To account for patient heterogeneity due to genetic features (Bartsch et al., 2007), the prior means for βc and αr are
adjusted according to three patient subgroups as described in Lim et al. (2018). The patient subgroup S(i) ∈ {1, 2, 3}

Appendix: Time Series Deconfounder

represents a confounder because it affects the tumor growth and subsequently the treatment assignments. We reproduced
the experimental set-up in Lim et al. (2018) and simulated datasets with 10000 patients for training, 1000 for validation,
and 1000 for testing. We simulated 30 datasets and averaged the results for testing the MSM and R-MSN outcome models
without the information about patient types (confounded), with the true simulated patient types, as well as after applying the
Time Series Deconfounder with DZ ∈ {1, 5, 10}.
The results in Table 6 indicate that our method can infer substitutes for static hidden confounders such as patient subgroups
which affect the treatment responses over time. By construction, Z̄t also captures time dependencies which help with the
prediction of outcomes. This is why the performance of the deconfounded models is slightly better than of the oracle model
which uses static patient groups.

E.3. MIMIC III

We performed an additional experiment using the dataset extracted from the MIMIC III database where we have removed 3
patient covariates from the dataset (temperature, glucose, hemoglobin). In Table 7 we report the results for estimating the
effects of antibiotics, vasopressors, and mechanical ventilator on the patient’s white blood cell count when including all
variables, after removing these 3 patient covariates (which we notice that further confound the results) and after applying the
Time Series Deconfounder with different settings for DZ .

Table 7. Average RMSE ×102 and the standard error in the results for predicting the effect of antibiotics, vasopressors, and mechanical
ventilator on white blood cell count. The results are for 10 runs.

White blood cell
Outcome model MSM R-MSN

All patient covariates 3.90± 0.00 2.91± 0.05
Removed 3 covariates 4.12± 0.00 3.11± 0.03

Deconfounded (DZ = 1) 3.98± 0.02 3.05± 0.05
Deconfounded (DZ = 3) 3.91± 0.03 2.87± 0.08
Deconfounded (DZ = 5) 3.85± 0.04 2.81± 0.03

F. Discussion
The Time Series Deconfounder firstly builds a factor model to infer substitutes for the multi-cause hidden confounders.
If Assumption 3 holds and the fitted factor model captures well the distribution of the assigned causes, which can be
assessed through predictive checks, the substitutes for the hidden confounders help us obtain sequential strong ignorability
(Theorem 1). Then, the Time Series Deconfounder uses the inferred substitutes for the hidden confounders in an outcome
model that estimates individualized treatment responses. The experimental results show the applicability of the Time Series
Deconfounder both in a controlled simulated setting and in a real dataset consisting of electronic health records from patients
in the ICU. In these settings, the Time Series Deconfounder was able to remove the bias from hidden confounders when
estimating treatment responses conditional on patient history.

In the static causal inference setting, several methods have been proposed to extend the deconfounder algorithm in Wang
& Blei (2019a). For instance, Wang & Blei (2019b) augment the theory in the deconfounder algorithm in Wang & Blei
(2019a) by extending it to causal graphs and show that by using some of the causes as proxies of the shared confounder in
the outcome model one can identify the effects of the other causes. D’Amour (2019) also suggests using proxy variables to
obtain non-parametric identification of the mean potential outcomes (Miao et al., 2018). Additionally, Kong et al. (2019)
proves that identification of causal effects is possible in the multi-cause setting when the treatments are normally distributed
and the outcome is binary and follows a logistic structural equation model.

For the Time Series Deconfounder, similarly to Wang & Blei (2019a), identifiability can be assessed by computing the
uncertainty in the outcome model estimates, as described in Section 4.2. When the treatment effects are non-identifiable, the
Time Series Deconfounder estimates will have high variance. Thus, future work could explore building upon the results in
Wang & Blei (2019b) and D’Amour (2019) and using proxy variables in the outcome model to prove identifiability of causal
estimates in the multi-cause time-series setting.

Appendix: Time Series Deconfounder

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL https:
//www.tensorflow.org/. Software available from tensorflow.org.

Bartsch, H., Dally, H., Popanda, O., Risch, A., and Schmezer, P. Genetic risk profiles for cancer susceptibility and therapy
response. In Cancer Prevention, pp. 19–36. Springer, 2007.

D’Amour, A. On multi-cause approaches to causal inference with unobserved counfounding: Two cautionary failure cases
and a promising alternative. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3478–3486,
2019.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In
international conference on machine learning, pp. 1050–1059, 2016.

Geng, C., Paganetti, H., and Grassberger, C. Prediction of treatment response for combined chemo-and radiation therapy for
non-small cell lung cancer patients using a bio-mathematical model. Scientific reports, 7(1):13542, 2017.

Hernán, M. A., Brumback, B., and Robins, J. M. Marginal structural models to estimate the joint causal effect of
nonrandomized treatments. Journal of the American Statistical Association, 96(454):440–448, 2001.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural computation, 9(8):1735–1780, 1997.

Howe, C. J., Cole, S. R., Mehta, S. H., and Kirk, G. D. Estimating the effects of multiple time-varying exposures using joint
marginal structural models: alcohol consumption, injection drug use, and hiv acquisition. Epidemiology (Cambridge,
Mass.), 23(4):574, 2012.

Kallenberg, O. Foundations of modern probability. Springer Science & Business Media, 2006.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Kong, D., Yang, S., and Wang, L. Multi-cause causal inference with unmeasured confounding and binary outcome. arXiv
preprint arXiv:1907.13323, 2019.

Lim, B., Alaa, A., and van der Schaar, M. Forecasting treatment responses over time using recurrent marginal structural
networks. In Advances in Neural Information Processing Systems, pp. 7493–7503, 2018.

Miao, W., Geng, Z., and Tchetgen Tchetgen, E. J. Identifying causal effects with proxy variables of an unmeasured
confounder. Biometrika, 105(4):987–993, 2018.

Platt, R. W., Schisterman, E. F., and Cole, S. R. Time-modified confounding. American journal of epidemiology, 170(6):
687–694, 2009.

Robins, J. M., Hernan, M. A., and Brumback, B. Marginal structural models and causal inference in epidemiology, 2000.

Wang, Y. and Blei, D. M. The blessings of multiple causes. Journal of the American Statistical Association, (just-accepted):
1–71, 2019a.

Wang, Y. and Blei, D. M. Multiple causes: A causal graphical view. arXiv preprint arXiv:1905.12793, 2019b.

https://www.tensorflow.org/
https://www.tensorflow.org/

