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Abstract
This paper introduces the Boomerang Sampler as
a novel class of continuous-time non-reversible
Markov chain Monte Carlo algorithms. The
methodology begins by representing the target
density as a density, e−U , with respect to a
prescribed (usually) Gaussian measure and con-
structs a continuous trajectory consisting of a
piecewise elliptical path. The method moves
from one elliptical orbit to another according to
a rate function which can be written in terms of
U . We demonstrate that the method is easy to im-
plement and demonstrate empirically that it can
out-perform existing benchmark piecewise deter-
ministic Markov processes such as the bouncy
particle sampler and the Zig-Zag. In the Bayesian
statistics context, these competitor algorithms are
of substantial interest in the large data context due
to the fact that they can adopt data subsampling
techniques which are exact (ie induce no error
in the stationary distribution). We demonstrate
theoretically and empirically that we can also con-
struct a control-variate subsampling boomerang
sampler which is also exact, and which possesses
remarkable scaling properties in the large data
limit. We furthermore illustrate a factorised ver-
sion on the simulation of diffusion bridges.

1. Introduction
Markov chain Monte Carlo remains the gold standard for
asymptotically exact (ie bias-free) Bayesian inference for
complex problems in Statistics and Machine Learning; see
for example (Brooks et al., 2011). Yet a major impediment
to its routine implementation for large data sets is the need
to evaluate the target density (and possibly other related
functionals) at each algorithm iteration.
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Partly motivated by this, in recent years there has been a
surge in the development of innovative piecewise determinis-
tic Monte Carlo methods (PDMC, most notably the Bouncy
Particle Sampler (BPS) (Bouchard-Côté et al., 2017) and
the Zig-Zag Sampler (ZZ) (Bierkens et al., 2019)), as a com-
petitor for classical MCMC algorithms such as Metropolis-
Hastings and Gibbs sampling. We refer to (Fearnhead et al.,
2018) for an accessible introduction to the PDMC setting.
The primary benefits of these methods are the possibility of
exact subsampling and non-reversibility. Exact subsampling
refers to the possibility of using only a subset of the full
data set (or even just a single observation) at each iteration
of the algorithm, without introducing bias in the output of
the algorithm (Fearnhead et al., 2018). Non-reversibility
is a property of MCMC algorithms related to a notion of
direction of the algorithm, reducing the number of back-
tracking steps, thus reducing the diffusivity of the algorithm
and reducing the asymptotic variance; as analyzed e.g. in
(Diaconis et al., 2000; Andrieu & Livingstone, 2019).

The current key proponents BPS and ZZ of the PDMC
paradigm share the following description of their dynam-
ics. The process moves continuously in time according to a
constant velocity over random time intervals, which are sep-
arated by ‘switching events’. These switching events occur
at stochastic times at which the velocity, or a component of
it, is either reflected, or randomly refreshed. The direction
of a reflection, and the random time at which it occurs, is
influenced by the target probability distribution.

In this paper we explore the effect of modifying the prop-
erty of constant velocity. By doing so we introduce the
Boomerang Sampler which has dynamics of the simple
form dx

dt = v, dv
dt = −x. Similar ideas were introduced

in (Vanetti et al., 2017) and termed Hamiltonian-BPS, a
method which can be seen as a special case of our approach.
We generalise the Hamiltonian-BPS algorithm in three im-
portant ways.

1. We relax a condition which restricts the covari-
ance function of the auxiliary velocity process to be
isotropic. This generalisation is crucial to ensure good
convergence properties of the algorithm.

2. Furthermore we extend the Boomerang Sampler to
allow for exact subsampling (as introduced above),
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thus permitting its application efficiently for large data
sets.

3. We also introduce a factorised extension of the sampler
which has important computational advantages in the
common situation where the statistical model exhibits
suitable conditional dependence structure.

Our method also has echoes of the elliptical slice sampler
(Murray et al., 2010) which has been a successful discrete-
time MCMC method especially within machine learning ap-
plications. Both methods are strongly motivated by Hamil-
tonian dynamics although there are also major differences in
the two approaches. Finally we mention some other PDMP
methods with non-linear dynamics such as Randomized
HMC (Bou-Rabee & Sanz-Serna, 2017; Deligiannidis et al.,
2018), and others (Markovic & Sepehri, 2018; Terenin &
Thorngren, 2018).

We shall study the Boomerang Sampler and two subsam-
pling alternatives theoretically by analysing the interaction
of Bayesian posterior contraction, data size (n) and subsam-
pling schemes in the regular (smooth density) case. We shall
show that no matter the rate of posterior contraction, a suit-
ably constructed subsampled Boomerang sampler achieves
an O(n) advantage over non-subsampled algorithms.

At the same time, we show that for the (non-subsampled)
Boomerang Sampler, the number of switching events, and
thus the computational cost, can be reduced by factor
O(1/d) (where d is the number of dimensions) relative to
other piecewise deterministic methods, thanks to the deter-
ministic Hamiltonian dynamics of the Boomerang Sampler.

We illustrate these analyses with empirical investigations
in which we compare the properties of Boomerang sam-
plers against other PDMC benchmarks demonstrating the
superiority of subsampled Boomerang for sufficiently large
data size for any fixed dimension in the setting of logistic
regression. We shall also give an empirical study to compare
the Boomerang Sampler with its competitors as dimension
increases. Finally, as a potentially very useful application
we describe the simulation of diffusion bridges using the
Factorised Boomerang Sampler, demonstrating substantial
computational advantages compared to its natural alterna-
tives.

Notation

For a ∈ Rd and � a positive definite matrix in Rd×d we
write N (a, � ) for the Gaussian distribution in Rd with
mean a and covariance matrix � . Let 〈·, ·〉 denote the
Euclidean inner product in Rd. We write (a)+ := max(a, 0)
for the positive part of a ∈ R, and we write 〈·, ·〉+ :=
(〈·, ·〉)+ for the positive part of the inner product.

2. The Boomerang Sampler
The Boomerang Sampler is a continuous time, piecewise
deterministic Markov process (PDMP) with state space S =
Rd × Rd. The two copies of Rd will be referred to as the
position space and the velocity space, respectively. Our
primary interest is in sampling the position coordinate, for
which the auxiliary velocity coordinate is a useful tool for
us.

Let µ0 denote a Gaussian measure on S specified by µ0 =
N (x?, � )⊗N (0, � ), where � is a positive definite matrix
in Rd×d. Often we take x? = 0 to shorten expressions,
which can be done without loss of generality by a shift in the
position coordinate. The measure µ0 will be referred to as
the reference measure. The Boomerang Sampler is designed
in such a way that it has stationary probability distribution
µ with density exp(−U(x)) relative to µ0. Equivalently, it
has density

exp
�
−U(x)− 1

2 (x− x?)
>� −1(x− x?)− 1

2v
>� −1v

�
relative to the Lebesgue measure dx⊗ dv on Rd ×Rd. We
assume that this density has a finite integral. The marginal
distribution of µ with respect to x is denoted by Π.

The Boomerang process moves along deterministic trajecto-
ries (xt,vt) ∈ Rd × Rd which change direction at random
times. The deterministic trajectories satisfy the following
simple ordinary differential equation:

dxt
dt

= vt,
dvt
dt

= −(xt − x?), (1)

with explicit solution xt = x?+(x0−x?) cos(t)+v0 sin(t),
vt = −(x0 − x?) sin(t) + v0 cos(t). Note that (x,v) 7→
〈x − x?,Q(x − x?)〉 + 〈v,Qv〉 is invariant with respect
to the flow of (1) for any symmetric matrix Q. In particular
the flow of (1) preserves the Gaussian measure µ0 on S.

Given an initial position (x0,v0) ∈ S, the process moves
according to the motion specified by (1), resulting in a trajec-
tory (xt,vt)t≥0, until the first event occurs. The distribution
of the first reflection event time T is specified by

P(T ≥ t) = exp

�
−

Z t

0

λ(xs,vs) ds

�
,

where λ : S → [0,∞) is the event rate and is specified as

λ(x,v) = 〈v,∇U(x)〉+. (2)

For x ∈ Rd we define the contour reflection R(x) to be the
linear operator from Rd to Rd given, for (x,v) ∈ S, by

R(x)v = v − 2〈∇U(x),v〉
|� 1/2∇U(x)|2

� ∇U(x). (3)

Importantly the reflection satisfies

〈R(x)v,∇U(x)〉 = −〈v,∇U(x)〉 (4)
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and
|� −1/2R(x)v| = |� −1/2v|, (5)

which are key in establishing that the resulting Boomerang
Sampler has the correct stationary distribution.

At the random time T at which a switch occurs, we put
vT := R(xT−)vT−, where we use the notation yt− :=
lims↑t ys. The process then starts afresh according to the
dynamics (1) from the new position (xT ,vT ). Additionally,
at random times generated by a homogeneous Poisson pro-
cess with rate λrefr > 0 the velocity is refreshed, i.e. at such
a random time T we independently draw vT ∼ N (0, � ).
This additional input of randomness guarantees that the
Boomerang Sampler can visit the full state space and is
therefore ergodic, as is the case for e.g. BPS (Bouchard-
Côté et al., 2017).

In Section 1 of the Supplement we define the generator of
the Boomerang Sampler, which can in particular be used to
prove that µ is a stationary distribution for the Boomerang
process, and which can be used in subsequent studies to
understand its probabilistic properties.
Remark 2.1 (On the choice of the reference measure).
In principle we can express any probability distribution
Π(dx) ∝ exp(−E(x)) dx as a density relative to µ0 by
defining

U(x) = E(x)− 1
2 (x− x?)

>� −1(x− x?). (6)

As mentioned before we can take µ0 to be identical to a
Gaussian prior measure in the Bayesian setting. Alterna-
tively, and this is an approach which we will adopt in this
paper, we may choose µ0 to be a Gaussian approximation
of the measure Π which may be obtained at relatively small
computational cost in a preconditioning step.

2.1. Factorised Boomerang Sampler

As a variation to the Boomerang Sampler introduced above
we introduce the Factorised Boomerang Sampler (FBS),
which is designed to perform well in situations where the
conditional dependencies in the target distribution are sparse.
For simplicity we restrict to the case with a diagonal refer-
ence covariance � = diag(σ2

1 , . . . , σ
2
d).

The deterministic dynamics of the FBS are identical to those
of the standard Boomerang Sampler, and given by (1). The
difference is that every component of the velocity has its
own switching intensity. This is fully analogous with the
difference between BPS and ZZ, where the latter can be seen
as a factorised Bouncy Particle Sampler. In the current case,
this means that as switching intensity for the i-th component
of the velocity we take

λi(x,v) = (vi∂iU(x))+,

and once an event occurs, the velocity changes according to
the operator Fi(v) given by

Fi(v) =
�
v1, . . . , vi−1,−vi, vi+1, . . . , vd

� >
.

Also, the velocity of each component is refreshed according
to vi ∼ N (0, σ2

i ) at rate λrefr,i > 0.

Note that the computation of the reflections has a compu-
tational cost of O(1), compared to the reflections in (3)
being at least of O(d), depending upon the sparsity of � .
The sparse conditional dependence structure implies that
the individual switching intensities λi(x) are in fact func-
tions of a subset of the components of x, contributing to
a fast computation. This feature can be exploited by an
efficient ‘local’ implementation of the FBS algorithm which
reduces the number of Poisson times simulated by the algo-
rithm (similar in spirit to the local Bouncy Particle Sampler
(Bouchard-Côté et al., 2017) and the local Zig-Zag sampler
in (Bierkens et al., 2020)). In Section 3.2 we will briefly
comment on the dimensional scaling of FBS. As an illustra-
tion of a realistic use, FBS will be applied to the simulation
of diffusion bridges in Section 4.2.

2.2. Subsampling with control variates

Let E(x) be the energy function, i.e., negative log density
of Π with respect to the Lebesgue measure. Consider the
setting where E(x) = 1

n

P n
i=1E

i(x), as is often the case
in e.g. Bayesian statistics or computational physics. (Let us
stress that n represents a quantity such as the number of in-
teractions or the size of the data, and not the dimensionality
of x, which is instead denoted by d.) Using this structure,
we introduce a subsampling method using the Gaussian ref-
erence measure as a tool for the efficient construction of the
Monte Carlo method.

Relative to a Gaussian reference measure with covariance �
centred at x?, the negative log density is given by (6). Let
us assume

� = [∇2E(x?)]
−1 (7)

for a reference point x?. In words, the curvature of the
reference measure will agree around x? with the curvature
of the target distribution. We can think of x? as the mean or
mode of an appropriate Gaussian approximation used for the
Boomerang Sampler. Note however that we shall not require
that ∇E(x?) = 0 for the sampler and its subsampling
alternatives to work well, although some restrictions will
be imposed in Section 3.1. In this setting it is possible to
employ a subsampling method which is exact, in the sense
that it targets the correct stationary distribution. This is an
extension of methodology used for subsampling in other
piecewise deterministic methods, see e.g. (Fearnhead et al.,
2018) for an overview.

Assume for notational convenience that x? = 0. As an
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unbiased estimator for the log density gradient of U we
could simply take

∇̂U(x) = ∇EI(x)−∇2E(0)x, (8)

where I is a random variable with uniform distribution over
{1, . . . , n}. We shall see in Proposition 3.1 that this estima-
tor will lead to weights which increase with n and therefore
we shall consider a control variate alternative.

Therefore also consider the control variate gradient estima-
tor \∇U(x) = GI(x), where, for i = 1, . . . , n,

Gi(x) = ∇Ei(x)−∇2Ei(0)x−∇Ei(0)+∇E(0). (9)

Taking the expectation with respect to I ,

EI \∇U(x)

=
1

n

nX
i=1

�
∇Ei(x)−∇2Ei(0)x−∇Ei(0) +∇E(0)

	
= ∇E(x)−∇2E(0)x = ∇U(x),

so that \∇U(x) is indeed an unbiased estimator for ∇U(x).
In Section 3 we shall show that \∇U(x) has significantly

superior scaling properties for large n than ∇̂U(x).
Remark 2.2. In various situations we can find a reference
point x? such that ∇E(x?) = 0, in which case the final
term in (9) vanishes. We include the term here so that it can
accommodate the general situation in which∇E(x?) 6= 0.

Upon reflection, conditional on the random draw I , we
reflect according to

RI(x)v = v − 2〈GI(x),v〉
|� 1/2GI(x)|2

� GI(x).

The Boomerang Sampler that switches at the random rate
\λ(x,v) = 〈v, \∇U(x)〉+, and reflects according to RI will

preserve the desired target distribution in analogy to the
argument found in (Bierkens et al., 2019).

2.3. Simulation

The implementation of the Boomerang Sampler depends
crucially on the ability to simulate from a nonhomogeneous
Poisson process with a prescribed rate. In this section we
will make a few general comments on how to achieve these
tasks for the Boomerang Sampler and for the Subsampled
Boomerang Sampler.

Suppose we wish to generate the first event according to
a switching intensity λ(xt,vt) where (xt,vt) satisfy (1).
This is challenging because it is non-trivial to generate
points according to time inhomogeneous Poisson process,

but also the function λ(xt,vt) may be expensive to evalu-
ate. It is customary in simulation of PDMPs to employ the
technique of Poisson thinning to generate an event accord-
ing to a deterministic rate function λ(t) ≥ 0, referred to
as computational bound, such that λ(xt,vt) ≤ λ(t) for all
t ≥ 0. The function λ(t) should be suitable in the sense that
we can explicitly simulate T according to the law

P(T ≥ t) = exp

�
−

Z t

0

λ(s) ds

�
.

After generating T from this distribution, we accept T as
a true switching event with probability λ(xT ,vT )/λ(T ).
As a consequence of this procedure, the first time T that
gets accepted in this way is a Poisson event with associated
intensity λ(xt,vt).

In this paper we will only consider bounds λ(t) of the form
λ(t;x0,v0) = a(x0,v0) + tb(x0,v0). We will call the
bound constant if b(x,v) = 0 for all (x,v), and affine
otherwise. As a simple example, consider the situation in
which |∇U(x)| ≤ m for all x. In this case we have

λ(x,v) = 〈v,∇U(x)〉+ ≤ m|v| ≤ m
p
|x|2 + |v|2.

Since the final expression is invariant under the dynam-
ics (1), we find that

λ(xt,vt) ≤ m
p
|x0|2 + |v0|2, t ≥ 0,

which gives us a simple constant bound.

In the case of subsampling the switching intensity \λ(x,v)
is random. Still, the bound λ(t;x0,v0) needs to be an upper
bound for all random realizations of \λ(x,v). In the case we
use the unbiased gradient estimator \∇U(x) = GI of (9),
we can bound e.g.

\λ(x,v) ≤ sup
i,x
|Gi(x)||v| ≤ sup

i,x
|Gi(x)|

p
|x|2 + |v|2,

assuming all gradient estimators Gi are globally bounded.
We will introduce different bounds in detail in Section 2 of
the Supplement.

3. Scaling for large data sets and large
dimension

3.1. Robustness to large n

In this section, we shall investigate the variability of the rates
induced by the Boomerang Sampler and its subsampling
options. The size of these rates is related to the size of the
upper bounding rate Poisson process used to simulate them.
Moreover, the rate of the upper bounding Poisson rate is
proportional to the number of density evaluations, which
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in turn is a sensible surrogate for the computing cost of
running the algorithm.

As in Section 2.2, we describeE as a sum ofn constituent
negative log-likelihood terms:E(x ) = �

P n
i =1 ` i (x ). (In

the notation above we are just setting` i (x ) = � nE i (x ).)
Under suitable regularity conditions, the target probability
measure� satis�es posterior contraction aroundx = 0
at the rate� , that is for all� there exists� > 0 such that
�( Bn � � � (0)) > 1 � � whereB r (0) denotes the ball of
radiusr centred at0. As a result of this, we typically have
velocities of ordern� � ensuring that the dynamics in (1)
circles the state space inO(1) time.

The various algorithms will have computational times
roughly proportional to the number of likelihood evalua-
tions, which in turn depends on the event rate (and its upper
bound). Therefore we shall introduce explicitly the subsam-
pling bounce rates corresponding to the use of the unbiased
estimators in (8) and (9).

^� (x ; v) = hv; ^r U(x )i + ; \� (x ; v) = hv; \r U(x )i + :

To simplify the arguments below, we also assume that` i has
all its third derivatives uniformly bounded, implying that
all third derivative terms ofE are bounded by a constant
multiple ofn. This allows us to write down the expansion

r U(x ) = r E(0) + r 2E(0)x � � � 1x + O(njx j2)

= r E(x )

= r E(0) + O(njx j2) : (10)

Similarly we can write

\r U(x ) = nr ` I (x ) � nr 2` I (0)x � n` I (0)

+ r E(0) � � � 1x

= r E(0) + O(njx j2) : (11)

using the same Taylor series expansion.

We can now use this estimate directly to obtain bounds
on the event rates. We summarise this discussion in the
following result.

Proposition 3.1. Suppose thatx ; v 2 Bn � � � (0) for some
� , and under the assumptions described above, we have that

� (x ; v) � O
�
n� � (jr E (0)j + n1� 2� )

�
(12)

^� (x ; v) � O (jr E (0)j) + O(n)) (13)

\� (x ; v) � O
�
n� � (jr E (0)j + n1� 2� )

�
(14)

Thus the use of\r U(x ) does not result in an increased event
rate (in order of magnitude). There is therefore anO(n)
computational advantage obtained from using subsampling
due to each target density valuation beingO(n) quicker.

Proposition 3.1 shows that as long as the reference point
x � (chosen to be0 here for convenience) is chosen to be
suf�ciently close to the mode so thatjr E (0)j is at most
O(n1� 2� ), then we have that

� (x ; v) = \� (x ; v) = O
�
n1� 3� �

:

Note that this rate can go to0 when� > 1=3. In particular
in the regular case where Bernstein von-Mises theorem
holds, we have� = 1=2. In this case the rate of jumps for
the Boomerang can recede to0 at raten� 1=2 so long as
jr E (0)j is at mostO(1)).

3.2. Scaling with dimension

In this section, we will discuss how the Boomerang Sampler
has an attractive scaling property for high dimension. This
property is qualitatively similar to the preconditioned Crank-
Nicolson algorithm (Neal, 1999; Beskos et al., 2008) and
the elliptical slice sampler (Murray et al., 2010) which take
advantage of the reference Gaussian distribution.

The dimensional complexity of BPS and ZZ was studied in
(Bierkens et al., 2018; Deligiannidis et al., 2018; Andrieu
et al., 2018). For the case of an isotropic target distribution,
the rate of re�ections per unit of time is constant for BPS and
proportional tod for ZZ with unit speeds in all directions.
On the other hand, the time until convergence is of orderd
for the BPS and1 for ZZ. Therefore, the total number of
re�ections required for convergence of these two algorithms
is of the same order which grows linearly with dimension.

For the Boomerang Sampler we consider the following
setting. Consider reference measures� 0;d (dx ; dv) =
N (0; � d) 
 N (0; � d) for increasing dimensiond, where
for every d = 1 ; 2; : : : , � d is a d-dimensional positive
de�nite matrix. Relative to these reference measures we
consider a sequence of potential functionsUd(x ). Thus
relative to Lebesgue measure our target distribution� d(dx )
has densityexp(� Ed(x )) , where Ed(x ) = Ud(x ) +
1
2 hx ; � � 1

d x i . Let Ed denote expectation with respect to
� d(dx ) 
 N (0; � d)(dv). We assume that the sequence
(Ud) satis�es

sup
d=1 ;2;:::

Ed[j� 1=2
d r Ud(x )j2] < 1 ; (15)

The condition(15)arises naturally for instance in the con-
text of Gaussian regression, spatial statistics, Bayesian in-
verse problems as well as the setting of the diffusion bridge
simulation example described in detail in Section 4.2.

Furthermore we assume that the following form of the
Poincaŕe inequality holds,

Ed[f d(x )2] �
1

C2 Ed[j� 1=2
d r f d(x )j2] (16)
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with constantC > 0 independent of dimension, and where
f d : Rd ! R is any mean zero differentiable function. A
suf�cient condition for (16) to hold is

C2I � � 1=2
d r 2Ed(x )� 1=2

d = � 1=2
d r 2Ud(x )� 1=2

d + I

by the classical Brascamp-Lieb inequality (Brascamp &
Lieb, 1976; Bakry et al., 2014); note that it may also hold in
the non-convex case, see e.g. (Lorenzi & Bertoldi, 2007),
Section 8.6.

Under the stated assumptions we argue that (i) the expected
number of re�ections per unit time scales asO(1) with
respect to dimension, and (ii) within a continuous time inter-
val that scales asO(1), the Boomerang Sampler mixes well.
Claims (i) and (ii) are provided with a heuristic motivation
in the Supplement. A rigorous proof for this claim remains
part of our future work.

In the ideal but non-sparse scenario, the computational cost
of the event time calculation for the Boomerang Sampler is
thus expected to be a factord smaller compared to BPS and
ZZ assuming that the cost per event is the same for these
algorithms. However, this comparison is unrealistic since in
general we can not simulate re�ections directly. In practice,
we need to use the thinning method as discussed in Section
2.3. The thinning method introduces a signi�cant amount of
shadow events (which are rejected after inspection), and the
true events usually represent a small portion relative to the
number of shadow events. As a result there can be a high
cost for calculating shadow events even when the number
of true events is small.

For the FBS, the expected number of events per unit of time
is

P d
i =1 Ed[(vi @i U(x ))+ ]. Under the hypothesis above,

this is of O(d1=2). Thus, the number of events is much
bigger than that of the Boomerang. However, as in the
case of ZZ, under a sparse model assumption, the cost
of calculation per jump is of constant order whereas it is
of the order ofd for the Boomerang Sampler. Therefore,
the Factorised Boomerang Sampler should outperform the
Boomerang Sampler for this sparse setup.

4. Applications and experiments

4.1. Logistic regression

As a suitable test bed we consider the logistic regression
inference problem. Given predictorsy (1) ; : : : ; y (n ) in Rd,
and outcomesz(1) ; : : : ; z(n ) in f 0; 1g, we de�ne the log
likelihood function as

`(x ) = �
nX

i =1

n
log(1 + ex > y ( i )

) � z( i ) x > y ( i )
o

:

Furthermore we impose a Gaussian prior distribution overx
which for simplicity we keep �xed to be a standard normal

distribution throughout these experiments. As a result we
arrive at the negative log target density

E(x ) =
nX

i =1

n
log(1 + ex > y ( i )

) � z( i ) x > y ( i )
o

+ 1
2 x > x :

As a preprocessing step when applying the Boomerang Sam-
pler, and all subsampled methods, we �nd the modex ? of
the posterior distribution and de�ne� by (7). We apply the
Boomerang Sampler, with and without subsampling. These
samplers are equipped with an af�ne computational bound
and a constant computational bound respectively, both dis-
cussed in Section 2 of the Supplement (the af�ne bound is
usually preferred over a constant bound, but a useful af�ne
bound is not available in the subsampling case).

We compare the Boomerang to both BPS and ZZ with and
without subsampling. In all subsampling applications we
employ appropriate control variance techniques to reduce
the variability of the random switching intensities, as dis-
cussed in Section 2.2. Furthermore in the dimension de-
pendent study we include the Metropolis adjusted Langevin
algorithm (MALA) for comparison. Throughout these ex-
periments we use Effective Sample Size (ESS) per second of
CPU time as measure of the ef�ciency of the methods used.
ESS is estimated using the Batch Means method, where we
take a �xed number of 50 batches for all our estimates. ESS
is averaged over the dimensions of the simulation and then
divided by the runtime of the algorithm to obtain “average
ESS per second” (other ESS summaries could also have
been used). The time horizon is throughout �xed at10; 000
(with 10,000 iterations for MALA). For ZZ and BPS the
magnitude of the velocities is rescaled to be comparable on
average with Boomerang, to avoid unbalanced runtimes of
the different algorithms. In Figures 1 and 2 the boxplots
are taken over 20 randomly generated experiments, where
each experiment corresponds to a logistic regression prob-
lem with a random (standard normal) parameter, based on
randomly generated data from the model.1 The refreshment
rates for BPS and the Boomerang Samplers are taken to be
0.1.

The Boomerang Sampler is seen to outperform the other
algorithms, both in terms of scaling with dimension as with
respect to an increase in the number of observations. For
a �xed dimension, the subsampling algorithms will clearly
outperform the non-subsampling algorithms as number of
observationsn grows. In particular, the ESS/sec stays �xed
for the subsampled algorithms, and decreases asO(n) for
the non-subsampled versions. In this case, we did not in-
clude the MALA algorithm since we observed its complex-
ity strongly deteriorating as the number of observations

1The code used to carry out all of the experiments of
this paper may be found online athttps://github.com/
jbierkens/ICML-boomerang .
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Figure 1.Scaling of Boomerang Sampler compared to other
PDMC methods for the logistic regression problem of Section 4.1
as a function of the number of observations. Hered = 2 .

increases. For a large number of observations (n � 10; 000,
d = 2 ) we see that the Boomerang Sampler (with and
without subsampling) accepts almost none of the proposed
switches. This means that effectively we are sampling from
the Gaussian reference measure. This observed behaviour
is in line with the scaling analysis in Section 3.1.

In the second experiment we let the dimensiond grow for a
�xed number of observations. The subsampling algorithms
currently do not scale as well as the non-subsampled ver-
sions. For practical purposes we therefore only consider
non-subsampled algorithms for the comparison with respect
to dimensional dependence. For the dimensionsd � 32
we tested the Boomerang outperforms MALA, but it seems
empirically that MALA has a better scaling behaviour with
dimension. Note that MALA needs careful tuning to exhibit
this good scaling. We remark that the bene�cial scaling prop-
erties of the underlying Boomerang Process as discussed in
Section 3.2 may be adversely affected by suboptimal com-
putational bounds. We are optimistic that the dimensional
scaling of subsampled algorithms can be further improved
by designing better computational bounds.

In all cases the necessary preprocessing steps can be done
very quickly. In particular the plots are not affected by
including (or excluding) the preprocessing time in the com-
putation of ESS/sec.

Figure 2.Scaling of Boomerang Sampler compared to other
PDMC methods and MALA for the logistic regression problem of
Section 4.1 as a function of the number of dimensions. Here the
number of observations isn = 1 ; 000.

4.2. Diffusion bridges

In (Bierkens et al., 2020) the authors introduce a frame-
work for the simulation of diffusion bridges (diffusion
processes conditioned to hit a prescribed endpoint) tak-
ing strong advantage of the use of factorised piecewise
deterministic samplers. This invites the use of the Fac-
torised Boomerang Sampler (FBS). We consider time-
homogeneous one-dimensional conditional diffusion pro-
cesses (diffusion bridges) of the form

dX t = b(X t )dt + d Wt ; X 0 = u; X T = v

whereW is a scalar Brownian motion andbsatis�es some
mild regularity conditions (see (Bierkens et al., 2020) for
details). This simulation problem is an essential building
block in Bayesian analysis of non-linear diffusion models
with low frequency observations (Roberts & Stramer, 2001).

We consider the approach of (Bierkens et al., 2020) where
the diffusion path on[0; T] is expanded with a truncated
Faber Schauder basis as

X N
t = ��� (t)u + �� (t)v +

NX

i =0

2i � 1X

j =0

� i;j (t)x i;j :

Here,

�� (t) = t=T; ��� (t) = 1 � t=T;

� 0;0(t) =
p

T
�
(t=T)1[0;T=2](t) + (1 � t=T)1(T=2;T ](t)

�
;

� i;j (t) = 2 � i= 2� 0;0(2i t � jT ) i � 0; 0 � j � 2i � 1;

are the Faber-Schauder functions andN is the truncation of
the expansion. In (Bierkens et al., 2020), ZZ is used to sam-




