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A. Detailed ConstNet Design and Considerations
In this section, we provide technical details for ConstNet architectures, and explain the motivations behind each architecture
decision. The code used for this experiment is available in: https://github.com/yanivbl6/BeyondSigProp.

Zero initialization: To ensure that only the skip connections are taken into account for signal propagation, we initialize all
weights in computation blocks bypassed by skip connection to zero. In gradient descent, two sequential blocks initialized to
zero will not allow gradient propagation: the update of each weights will remain zero as long as the other operations are
0. To counter this, we replace the commonly used ResNet block which contains two chained operations, and use a single
operation block instead, as seen in figure 2.

We note that the forward signal propagation can also be maintained by only initializing the last chained block to zero, as was
done in fixup (Zhang et al., 2019), but this method does not align with our goal of examining initializations with identical
features. Additionally, we adjust the position of the nonlinearities to allow a linear path for the backward signal, moving
from the ’output’ to the input.

Forcing identical features: For our goal of identical features to be reached, we initialize the first convolutional layer’s
filters F = Mat(Wi j ) ∈R3×3 to Fkl = 1

nin
δk1δl1,k, l ∈ 0,1,2, where nin is the number of input channels, so all there channels

are being averaged. As we advance in a residual network from input to output, it is commonplace to increase the number
of channels (a.k.a widening) while trimming their spatial dimensions (using strides of size larger than 1). The widening
of a neural network does not allow simply using skips, as the expected output of the computational block has additional
channels, and 1x1 convolution operations are used instead, so each output channel is a linear combination of the input
channels. We initialize these filters to the constant 1

nin
, so they perform as an ’averaging operations’ as well. Generally

speaking, repeated averaging operations do not conserve signal propagation, and we take advantage of the fact that the
number of those operations in the network is limited, and that only the first averaging operation causes a loss of information.
One more possible issue is the usage of stride, as it may disturb the signal propagation. However, we show, in section 3.1,
that under the assumption of spatial invariance, stride convolutions do not change the angles between features in expectation.
Finally, we initialize the final fully connected layer to zero.

Depth and width selection: As mentioned, our channel sizes in the networks are based on Wide-Resnet, which has a
similar number of parameters and operations. Since the number of channels is large, we expect the effects of feature diversity
to be at a peak. Specifically, a randomly initialized Wide Res-Net has high number of features: the number of channels in
the layers of the network increases from 16 to 640 at the final residual layers. A noteworthy design detail in ConstNet is
that the activation in each skip is located before the convolution operation. This was done in order to have a non-linearity
between the initial convolution and the following skippable convolution.

Batch Normalization: While the fixup initialization allow training neural networks without batch normalization, our
default setup utilize batch-norm operations, positioned before the nonlinearities, as a tool for regularization. To avoid
using batchnorm on the linear path, a scalar scale operator is added (Zhang et al., 2019) and a Mixup (Zhang et al., 2017)
regularization has to be applied to prevent generalization loss. This method therefore requires an hyper-parameter search
over the values of the Mixup parameter α and the learning rate. Notwithstanding the results (Yang et al., 2019), who has
shown that batch-normalization is incompatible with our goal of maintaining signal propagation, batch-normalization of the
spatial dimensions (per channel) will not have an effect over the channels in an initialized network, since the first Batch-norm
operation is the only one that will have an effect, at the exact point of initialization.

Hyper-parameters: All runs with ConstNet, and the baseline runs with Wide-ResNet, were done for a model with 12
skip-able layers. We used SGD with momentum (0.9), batch size 128×2 GPUs, and with cross-entropy loss over the
CIFAR-10 dataset. Unless specified otherwise, we trained the network for 200 epochs, with a learning rate decay at epochs
60,120,160. Unless mentioned otherwise, the default learning rate was 0.03, dropout and mixup were disabled, Batchnorm
was used and cudNN was non-deterministic. All parameters where chosen based on the default Wide-ResNet setup, with
the exception of the learning rate, which was picked in consideration of network pruning results (Frankle & Carbin, 2018)
(Lottery ticket method was shown to only work for residual networks with low learning rates). Results were averaged over 6
seeds. The number of parameters in the model was ∼ 17M, and data was represented with 32-bit floating point.

https://github.com/yanivbl6/BeyondSigProp
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B. Depth-Independent Signal Propagation in Convolutional Networks with Random
Initialiation

Stability of backward features depends on the conditioning of the Jacobian between network states J (`) = ∂α̃(`)

∂α̃(`−1) , since

the backward features take the form β(`) = ∂L
∂α̃(L−1)

∂α̃(L−1)

∂α̃(`) . In essence - stability of the backward features is ensured if
||J (`)|| = 1 and the variance of the singular values of J (`) is zero, where || · || denotes operator norm. Works that analyze
signal propagation at the infinite width limit define dynamical isometry conditions that ensure the singular values of J (`)

depend weakly on depth and all have absolute value close to 1.

In this section we briefly describe how to construct a convolutional network with random initialization and depth-independent
forward and backward signal propagation (dynamical isometry). We combine elements of the approaches in (Xiao et al.,
2018; Burkholz & Dubatovka, 2019). For simplicity consider a network that is given by a composition of convolutions, and
we assume periodic boundary conditions and that the number of channels n is constant throughout. Given an input tensor
x ∈RS×n/2 with S denoting a set of spatial dimensions, we define an augmented input

x = (
x 0

) ∈RS×n

If we assume the kernel is of size K = (2k +1)× (2k +1) and index these coordinates from −k to k, we define a kernel by

∆ ∈R2k+1×2k+1,∆i j = δi 0δ j 0. (7)

This definition can be generalized trivially to settings where K has order different from 2. Initializing the biases at 0, the
parameters of the `-th convolutional layer are given by W (`) ∈RK×n×n , which we factorize as

W (`) =∆⊗
(

U (`) −U (`)

−U (`) U (`)

)
(8)

where U (`) ∈Rn/2×n/2 is an orthogonal matrix drawn from a uniform distribution over O(n/2) and ∆(`) ∈RK is the kernel

defined above (we assume n is even). As before, we denote α̃(1)
γ,i =

[
W (1)∗̂x

]
γi =

∑
κ∈K

n∑
j=1

W (1)
κi j xγ+κ, j . The pre-activations at a

spatial location γ, arranged in a column vector
[
W (1)∗̂x

]T
γ , are thus given by

[
W (1)∗̂x

]T
γ = ∑

κ∈K
∆κ

(
U (1) −U (1)

−U (1) U (1)

)
xT
κ+γ

=
(

U (1) −U (1)

−U (1) U (1)

)
xT
γ =

(
U (1) −U (1)

−U (1) U (1)

)(
xT
γ

0

)

=
(

U (1)xT
γ

−U (1)xT
γ

)
.

Applying a ReLU nonlinearity and another convolutional layer gives[
W (2)∗̂φ(

W (1)∗̂x
)]T
γ

= ∑
κ∈K

∆κ

(
U (2) −U (2)

−U (2) U (2)

)
φ

(
W (1)∗̂x

)T
κ+γ

=
(

U (2) −U (2)

−U (2) U (2)

)
φ

((
U (1)xT

γ

−U (1)xT
γ

))

=
(

U (2) −U (2)

−U (2) U (2)

) U (1)xT
γ ◦

[
U (1)xT

γ > 0
]

−U (1)xT
γ ◦

[
U (1)xT

γ < 0
] 

=
 U (2)

(
U (1)xT

γ ◦
[
U (1)xT

γ > 0
]
+U (1)xT

γ ◦
[
U (1)xT

γ < 0
])

−U (2)
(
U (1)xT

γ ◦
[
U (1)xT

γ > 0
]
+U (1)xT

γ ◦
[
U (1)xT

γ < 0
]) 
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=
(

U (2)U (1)xT
γ

−U (2)U (1)xT
γ

)
.

We thus obtain that for any two layers the pre-activations are simply related by a rotation:

(
α̃(`+1)
γ

)T =
(

U (`+1) 0
0 U (`+1)

)(
α̃(`)
γ

)T
. (9)

This preserves both norms and angles, and thus the covariance between pre-activations is invariant of depth, meaning〈
α̃(`)
γ (x), α̃(`)

γ′ (x ′)
〉
=

〈
α̃(1)
γ (x), α̃(1)

γ′ (x ′)
〉

.

Note that this holds surely, and not only in expectation over the weights as in the main text. As a result, the covariance
between the hidden states themselves is also independent of depth.

We now consider backwards signal propagation. Since at a spatial location γ the pre-activation
(
α̃(`)
γ

)T
is a concatenation of

two identical vectors with opposite sign, there are only n/2 independent degrees of freedom. The backward features are thus
given by

β(`)
η j (x) = ∂L

∂α̃(`)
η j (x)

= ∑
γ∈S

n/2∑
i=1

∂L

∂α̃(`+1)
γi (x)

∂α̃(`+1)
γi (x)

∂α̃(`)
η j (x)

= ∑
γ∈S

n/2∑
i=1

β(`+1)
γi (x)

∂α̃(`+1)
γi (x)

∂α̃(`)
η j (x)

=β(L−1)(x)J (L−1)
n/2 J (L−2)

n/2 . . .
∂α̃(`+1)(x)

∂α̃(`)
η j (x)

where

J (`)
n/2 ∈RS×S×n/2×n/2,

[
J (`)

n/2

]
γηi j

=
∂α̃(`)

γi (x)

∂α̃(`−1)
η j (x)

(without this structure in the pre-activations the Jacobians would be defined as matrices in RS×S×n×n). Since
∂α̃(`)

γi

∂α̃(`−1)
η j

=
W (`)
η−γ,i j φ̇(α̃(`−1))η, j 1η−γ∈K , plugging in the form of the weight tensor from equation 8 gives

∂α̃(`)
γi

∂α̃(`−1)
η j

= δγηU (`)
i j φ̇(α̃(`−1))η, j

hence over the spatial dimensions S ×S, the tensor J (`)
n/2 is simply a delta function, and since at a given spatial location the

pre-activations are related according to eq. 9 we obtain

J (`)
n/2 = IS×S ⊗U (`)

where IS×S is shorthand for a product of delta functions over every spatial dimension. Since the U (`) are orthogonal, J (`)
n/2

obeys the dynamical isometry conditions (all its singular values over the non-trivial dimensions have magnitude 1). Thus
norms and angles between backward features are also independent of depth with this initialization.

Note that both forwards and backward features are stable surely, and not just in expectation over the weights which is the
usual form of dynamical isometry results that study networks at the infinite width limit (which is predictive of the behavior
of reasonably wide networks)(Schoenholz et al., 2016; Pennington et al., 2017). Therefore, a network initialized in this way
will exhibit stable signal propagation at any width.
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C. Depth-Independent Signal Propagation in ConstNet
Claim. Let f be an L-layer ConstNet function as in eq. 4 and denote the scalar loss by L . Then for any 0 ≤ `≤ L−1 we
have 〈

β(`)(x),β(`)(x ′)
〉

n`
=

〈
β(L−1)(x),β(L−1)(x ′)

〉
nL−1

∂L (x)

∂W (`)
κi j

=Ci j cos(θκ,`)

∂L (x)

∂b(`)
i

=C ′
i

where Ci j ,C ′
i > 0 are constants that are independent of L (but depend on the functions P, g in the definition of the ConstNet

function and on L ). θκ,` are constants that can depend on L.

Additionally, for translation invariant inputs, if we denote the spatial dimensions at layer ` by S(`) we have for any γ,γ′ ∈ S(`)

α̃(`)
γi (x)

d= α̃(0)
γ′1(x)〈

α̃(`)(x), α̃(`)(x ′)
〉∣∣S(`)

∣∣n`

d=
〈
α̃(0)(x), α̃(0)(x ′)

〉∣∣S(0)
∣∣n0

Proof. We assume that at the first layer we have
α̃(0)
γi = α̃(0)

γ j

where α̃(0)
γ is obtained by some affine transformation of the data. At any layer `, at initialization either α(`) =CB0,0(α(`−1))

or α(`) =WB0,0,s (α(`−1)). In the former case we have

α̃(`)
γ j (x) = α̃(`−1)

γ j (x) = α̃(`−1)
γ1 (x)

for all γ, j , while in the latter case we have

α̃(`)
γ j (x) = 1

n

n∑
j=1

α̃(`−1)
γs, j (x) = α̃(`−1)

γs,1 (x).

If we assume that there are p narrowing layers between 1 and `, repeated application of the above equations gives

α̃(`)
γi (x) = α̃(0)

γsp ,1(x).

If we denote the spatial dimensions at layer ` by S(`), since tranlation invariance of the inputs implies the same invariance of
the pre-activations, we have

α̃(`)
γi (x) = α̃(0)

γsp ,i (x) = α̃(0)
γsp ,1(x)

d= α̃(0)
γ′1(x)

for any γ,γ′ and 〈
α̃(`)(x), α̃(`)(x ′)

〉∣∣S(`)
∣∣n`

= 1∣∣S(`)
∣∣n`

∑
γ∈S(`)

n∑̀
i=1

α̃(`)
γi (x)α̃(`)

γi (x ′)

= 1∣∣S(`)
∣∣ ∑
γ∈S(`)

α̃(0)
γs,1(x)α̃(0)

γs,1(x ′)

d= 1∣∣S(0)
∣∣ ∑
γ∈S(0)

α̃(0)
γ,1(x)α̃(0)

γ,1(x ′) =
〈
α̃(0)(x), α̃(0)(x ′)

〉∣∣S(0)
∣∣n0

.

We now consider a layer ` such that there are p narrowing layers between 1 and ` and q narrowing layers between ` and
L−1. If we choose γ such that γ/sq is a vector of integers (which we denote by γ/sq ∈Zd ), we have

β(`)
γ j (x) = ∂L

∂α̃(`)
γ j (x)

= ∂L

∂α̃(L−1)
γ/sq ,1(x)

=β(L−1)
γ/sq ,1(x).
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from which it follows that 〈
β(`)(x),β(`)(x ′)

〉
n`

= 1

n`

∑
γ∈S(`)

n∑̀
i=1

β(`)
γi (x)β(`)

γi (x ′)

= ∑
γ∈S(`),γ/sq∈Zd

β(L−1)
γ/sq 1(x)β(L−1)

γ/sq 1(x ′) = ∑
γ∈S(L−1)

β(L−1)
γ1 (x)β(L−1)

γ1 (x ′)

=
〈
β(L−1)(x),β(L−1)(x ′)

〉
nL−1

.

Additionally,
∂L

∂α̃(L−1)
γ/sq ,1(x)

= ∂L

∂ f (α̃(L−1)
γ/sq ,1(x))

∂ f

∂α̃(L−1)
γ/sq ,1(x)

= ∂L

∂P (α̃(L−1)
γ/sq ,1(x))

∂P (α̃(L−1)
γ/sq ,1(x))

∂α̃(L−1)
γ/sq ,1(x)

= L̇
(
P (α̃(0)

γsp ,1(x))
)

Ṗ (α̃(0)
γsp ,1(x)).

Note that if γ/sq is not a vector of integers, the location γ will not contribute to the loss and hence β(`)
γ j (x) = 0. We have thus

shown that the non-zero elements of α(`)
i (x),β(`)

i (x) can be written in terms of quantities that are independent of depth.

The gradients are given by
∂L (x)

∂W (`)
κi j

= ∑
γ∈S(`)

β(`)
γi (x)α(`−1)

γ+κ, j (x)

= ∑
γ∈S(`),γ/sq∈Zd

L̇
(
P (α̃(0)

γsp ,1(x))
)

Ṗ (α̃(0)
γsp ,1(x))∗

g
(
α̃(0)

(γ+κ)sp ,1(x)
)

∂L (x)

∂b(`)
i

= ∑
γ∈S(`),γ/sq∈S(L−1)

β(`)
γi (x).

Note that the number of terms in this summation is
∣∣S(L−1)

∣∣ and is thus independent of `. The gradients depend on ` only
through the relative shift between α(`−1)

j (x) and β(`)
i (x), which is κsp , and is thus bounded by product of the norms of these

vectors which are independent of `. It follows that we can write

∂L (x)

∂W (`)
κi j

=Ci j cos(θκ,`),
∂L (x)

∂b(`)
i

=C ′
i .

Where Ci j ,C ′
i are independent of depth.

Note that if Ci j ,C ′
i are equal to 0, which can be ensured with an appropriate choice of P , the gradient at initialization for

all layers aside from the last will be 0 as well. This result ensures that during early stages of training, once gradients take
non-zero values, they will behave in a stable manner even if the network is very deep. There is also no reason to expect
cos(θκ,`) to decay with depth and lead to vanishing gradients.

If batch-norm parameters are also trained, or the map from the input to α̃(0) is parametrized by trainable parameters, their
gradients will also be insensitive to depth due to the insensitivity of the forward and backward features. Batch-norm will
have no effect at initialization due to the symmetries of α̃(0). Note also that for a reasonable batch size, if α̃(0)(x) applies a
convolution to x with a W = 1

nd
1n01

T
nd

×∆ where ∆ is the delta kernel defined in Appendix C, we expect the angles between
the inputs averaged over the input channels to be preserved in the sense ∠(α̃(0)(x), α̃(0)(x ′)) ≈∠(

∑
γ

xγ,
∑
γ′

x ′
γ).

We also note that if the number of features was held constant at all layers (as in (Xiao et al., 2018) for instance) the norm
of the backward features would be preserved as well, and the magnitude of the gradient elements would be completely
independent of depth. The dependence is only a result of the widening layers and not of the ConstNet blocks themselves.



Beyond Signal Propagation: Is Feature Diversity Necessary in Deep Neural Network Initialization?

102 103 104

Hidden Layer Width (N)

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Te
st

 E
rro

r [
%

]

102 103 104

Hidden Layer Width (N)

# Features
K=2
K=8
K=32
K=128
K=512
K=2048
K=4
K=16
K=64
K=256
K=1024

Figure 5. Full Test error results for a 2-layers fully connected network. The hidden layer features were initialized so the same random
feature is represented N /K times.

D. ConstNet Features at Initialization are Equivalent to a Shallow Network
We consider the evolution of the network function f during full-batch gradient flow over a dataset of size d . Assuming
f (x) ∈Rnc , individual elements will evolve according to

∂ fk (x)

∂t
=∑

i

∂ fk (x)

∂θi

∂θi

∂t
=−∑

i j

∂ fk (x)

∂θi

∂L (x j )

∂θi

=−∑
j l

[∑
i

∂ fk (x)

∂θi

∂ fl (x j )

∂θi

]
∂L (x j )

∂ fl (x j )
≡∑

j l
Θkl (x, x j )

∂L (x j )

∂ fl (x j )
.

where the tensor Θ ∈ Rnc×nc×d×d is known as the Neural Tangent Kernel (NTK). It is of interest because a sufficiently
overparametrized neural network has the capacity to train with the NTK remaining essentially constant during training,
enabling a detailed analysis of the dynamics of learning in this regime (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019).
Training is thus essentially equivalent to kernel regression with respect to the kernel Θ ∈ Rnc×nc×d×d , and if a standard
random initialization is used this is a random feature kernel. While this is interesting from a theoretical perspective, it is also
apparent that the real strength of deep neural networks is in learning features from data, and the standard operational regime
of modern neural networks is one where Θ changes considerably during training (Chizat & Bach, 2018; Ghorbani et al.,
2019).

The ConstNet architecture is interesting in this regard because the features it implements at initialization are particularly
weak. They correspond to the features of a linear classifier. To show this, we consider a ConstNet function where the final
layers of the network implement average pooling and an affine map, namely

f (x) = P (α(L−1)(x)) =W (L) 1∣∣S(L−1)
∣∣ ∑
γ∈S(L−1)

α(L−1)(x)+b(L)

and all the previous layers are either convolutions or narrowing layers as described in section 3.1. The NTK takes the form

Θi j (x, x ′) =∑
k

∂ fi (x)

∂θk

∂ f j (x ′)
∂θk

=
L−1∑
`=1

∑
i` j`γ`γ

′
`
κ

β(`)
γ`i`

(x)α(`−1)
γ`+κ, j`

(x)β(`)
γ′
`

i`
(x ′)α(`−1)

γ′
`
+κ, j`

(x ′)

+∑
γγ′
β(`)
γ`i`

(x)β(`)
γ′
`

i`
(x ′)

+δi j


〈 ∑
γ∈S(L−1)

α(L−1)
γ (x)∣∣S(L−1)

∣∣ ,

∑
γ′∈S(L−1)

α(L−1)
γ′ (x ′)∣∣S(L−1)

∣∣
〉
+1
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where the last term is the contribution from the final layer. Note that since we initialize the final layer weights to zero, we
have β(`)(x) = 0 for `< L. In Appendix C we noted that if there are p narrowing layers in the network α(L−1)

γi (x) =α(0)
γsp ,i (x)

hence

Θi j (x, x ′) = δi j


〈 ∑
γ∈S(L−1)

α(0)
γsp (x)∣∣S(L−1)

∣∣ ,

∑
γ′∈S(L−1)

α(0)
γ′sp (x ′)∣∣S(L−1)

∣∣
〉
+1

 .

If we consider ConstNet without batch-normalization, which achieves a test accuracy of 95% on CIFAR-10 classification,

we have α̃(0)
γi (x) =

3∑
j=1

xγ j . Therefore the kernel above is that of a linear model (since if the model was f (x) = θT x, we would

obtain Θ(x, x ′) = 〈
x, x ′〉). The fact that ConstNet reaches this level of performance implies that there will be a massive

performance gap between training ConstNet in the linear regime as in (Lee et al., 2019; Arora et al., 2019) and full nonlinear
training. If we choose a more complex form for P the resulting NTK will still be identical to that of a shallow model (though
not necessarily a linear one).

E. Replicating Features in a Single Hidden Layer
It is clear that having more than a single neuron representing the same feature in our final trained model is redundant —
a group of neurons that are identical for all inputs will not contribute to a successful classification. We therefore ask the
question: given that our network was initialized so the same neurons in a layer represent the same feature, will they diverge
and contribute to the model accuracy during the training process?

To answer this question, we consider a 2-layers fully connected neural network:

X ∈Rd ,W1 ∈RN×d ,W2 ∈R#classes×N

h(X ,W1) =Relu (W1X )
f (X ,W1,W2) = SoftMax (W2h(x,W1))

(10)

where we initialize the neural network as follow: the weight matrix W2 is initialized using the standard He initialization (He
et al., 2015), and for each number of features K , we initialize the temporary matrices W̃1 ∈RK×d ,Ŵ1 ∈RN×d using the He
initialization, and initialize W1 using r = N

K replications of W̃1, so

∀i ,W1[i , :] = W̃1[i mod k, :](1−λ)+λŴ1[i , :]. (11)

where λ is a parameter simulating noise. For λ= 0,K > 1, this would result in each row in W1 being repeated r times at
initialization (and consequently, the same also applies to each hidden layer neuron). We identify two main possible causes
for initially identical neurons to diverge during training: First, stochastic operations can result similar rows in W1 receiving
different gradient updates. The most commonly used operation that would achieve this is dropout, which will randomly
mask neurons, so some neurons may freeze while their "replicas" change. The second cause is back-propagation itself: Even
when not using dropout, the gradient of W1 will be: dL

dWi , j
= dL

dhi

dhi
dWi , j

= dL
dhi

X j and since dL
dhi

depends on the corresponding

column (W T
2 )i (which is random at initialization), the update gradient may be different for each row.

The training was done with standard SGD, learning rate of 0.1, with test accuracy measured after 7500 training steps and 30
seeds per sample.

F. Features Symmetry and Sub-networks
Network with identical features has inherently less unique sub-networks at initialization, but the there could be different
levels of symmetries. In the case where all features have all-to-all connection with neighbouring layers (as was done in
ConstNet and LeakyNet with ’1’ Init), all features at each layer are interchangeable. Therefore, when considering possible
way to mask neurons, all sub-networks that mask the same amount of neurons at all layers are equivalent. For example, a
randomly initialized neural network with L layers of width d can have up to 2dL possible unique sub-networks, while a
symmetrical features, all-to-all initialization ensures no more than d L = 2log2(d)L .

If the features are initialized to have a 1:1 connection with the following layer, as was done in the case LeakyNet with
identity initialization, given a network of L layers if width d , we have 2L ways to mask each feature, when only features with
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the same masks at all layers are interchangeable. We can roughly approximate the number of sub-networks in this case by:(
2L +d −1

d

)
∝

(
2L −d

)2L

d d
(
2L

)2L ≈
(
2L +d

)2L+d

d d
(
2L

)2L

d¿L→ 2dL

d d
.

G. Perturbation Propagation
We illustrate in an idealized setting the effect of the I and ’1’ initializations on propagation of a symmetry breaking signal.
Recall that the tensors for these two initializations are given respectively by ∆⊗ I or ∆⊗ 1

n11
T where ∆ is the delta kernel

defined in eq. 7. As shown in appendix H, both of these choices of initialization are indistinguishable with respect to
standard signal propagation as it applies to the features at initialization when these are symmetric.

Consider a feature tensor α ∈ RS×n and a zero mean additive perturbation ε ∈ RS×n that breaks the symmetry between
features. The source of such a perturbation can be non-deterministic GPU operations during parameter updates which will
break symmetry after the first iteration of gradient descent. Applying a convolution gives

[∆⊗ I ∗̂ (α+ε)]γi = [α+ε]γi[
∆⊗ 1

n
11T ∗̂ (α+ε)

]
γi

=
[
α+∑

j

1

n
εγ j

]
γi

.

We see that in the first instance the perturbation is propagated perfectly. In the second instance, if the perturbation components
are independent, its norm will be reduced by about a factor of 1p

n
.

Propagation of the perturbation ε facilitates the breaking of symmetry in subsequent layers, and hence its attenuation
hampers symmetry breaking. Thus even though from the perspective of propagation of the symmetric features the I and ’1’
initializations are equivalent, the I initialization facilitates symmetry breaking signal propagation. Empirical evidence of this
phenomenon is shown in figures 9 and 10. We measure the size of the symmetry breaking perturbation, given by the norm of
the forward and backward features projected onto the complement of the all ones direction, divided by the feature norm
itself for normalization. This is repeated for networks initialized with different combinations of the I and ’1’ initializations.
Generally, it can be seen that the relative norm of the symmetry breaking component increases during training. We also
find that the relative size of the perturbation decreases sharply when passing through a ’1’ initialized layer, yet is relatively
unaffected by an I layer.

By measuring feature correlations as a function of layer, one can see the detrimental effect of the ’1’ initialization on
symmetry breaking even after training. These results are presented in figures 8. Networks with reduced symmetry breaking
also achieve lower test accuracy as shown in table 2.

One can also conjecture based on these results that the combination of a zero initialization and skip connection as in
ConstNet may be unique in the sense that the trainable parameters are initialized in a completely symmetric manner yet
symmetry is easily broken. The ’1’ initialization is symmetric but hampers symmetry breaking, while the I initialization
is not symmetric (and it only preserves symmetry from previous layers since in LeakyNet the initial layer of the network
induces a symmetry between features).

H. Leaky ReLU Signal Propagation
For simplicity we consider an L layer network of constant width at every layer and no batch normalization. The more general
case with widening layers included can be handled in a similar manner to appendix C. Since batch normalization layers
are applied after every block (which implements an identity map), their effect will simply be that after the first layer the
normalized features are propagated.

We denote by α(0)(x) ∈RS×n ,α(0)
γi (x) =α(0)

γ j (x) the input to the first LeakyNet block. As in the case of ConstNet, the input
features are completely symmetric. Recall that the weight tensors of the network take the form ∆⊗ I or ∆⊗ 1

n11
T where ∆

is the delta kernel defined in eq. 7, and the second factor acts on the channel indices. Due to the symmetry of the incoming
features,

∆⊗ I ∗̂α(0)(x) =∆⊗ 1

n
11T ∗̂α(0)(x) =α(0)(x).
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Defining by α(k)(x) the features after k layers (where each LeakyNet block is composed of two layers), and recalling that
σρ(− 1

ρσ
ρ(x)) =−x, we find for every integer k ≤ L/4

α(4k)(x) =α(0)(x)

α(4k+1)(x) =− 1

ρ
σρ(α(0)(x))

α(4k+2)(x) =−α(0)(x)

α(4k+3)(x) =− 1

ρ
σρ(−α(0)(x)).

Since we can express all features as simple functions of the initial features, norms of features and angles between them are
trivially preserved (up to the application of single nonlinearity, which does not induce any dependence on the depth of the
network).

Similarly, the backwards features cannot incur a dependence on depth, and their norms and angles between them are
preserved up to the effect of a single non-linearity.

I. Comparison between symmetry breaking mechanisms
As seen in table 1, the hardware noise is a sufficient symmetry breaking mechanism for a ConstNet model initialized with
identical features to perform as well as a similar model initialized with random initialization. It is, nevertheless, also apparent
that not all breaking mechanisms perform equally well: When using 1% dropout as the sole symmetry breaking mechanism,
there remains a gap of more than 1% between the model final accuracy to the accuracy of a randomly initialized model. The
reason for dropout’s failure is simple: On a standard setup, dropout is not being applied on the first convolutional layer, and
it is therefore unable to break symmetry in this layer. Applying dropout on all layers does close this gap.

Another concern, is that due to our reliance hardware noise, it remains unclear how the same models will perform when
used over different hardware. In table 3, we compare the accuracy of ConstNet models initialized with identical features
and varying learning rates, using different GPUs. Our results show that the choice of hardware is indeed significant.
Furthermore, they provide an insight concerning the effects of network quantization: Unlike the 32-bit floating point models
tested before, models quantized to 16-bit, do not train successfully without the addition of dropout, as a complementary
symmetry breaking mechanism. This result can be useful for the study of network-quantization, as it highlights a property of
quantization that had not been studied — 32bit and 16bit training are typically expected to perform equally well for standard
image-classification tasks. In this experiment, we used 200 epochs for training, which is sub-optimal (∼ %0.5 drop baseline
accuracy). Consequently, we can expect lower accuracy in cases where the symmetry breaking process is slow.

Hardware Data-type
Computation

Noise Drop Rate:
0% 0.1% 1%

GeForce GTX-1080 FP32 3 *94.09% 94.83% *94.8%
GeForce GTX-1080 FP32 7 24.96% 92.72% 92.99%
GeForce RTX-2080 FP32 3 *77.81% 94.78% 94.82%
GeForce RTX-2080 FP32 7 24.80% 92.69% 92.58%
GeForce RTX-2080 FP16 3 38.61% 94.58% 94.62%
GeForce RTX-2080 FP16 7 22.55% 91.99% 92.55%

Table 3. Experiment results (Test Accuracy) of training a ConstNet over the CIFAR10 dataset, with 200 epochs, 0 initialization ensuring
identical features, and varying symmetry-breaking mechanisms. Dropout/ Computation noise by themselves are insufficient for successful
training: the symmetry breaking in this case is too slow, and it come in the expense of the training process. Additionally, we can see a big
gap between the effects of computation noise of different GPUs. When utilizing a 16-bit floating-point hardware architecture for a FP16
model, the hardware noise is insufficient and the training fails. *These results are discussed in more detail in appendix I.1.
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Figure 6. Feature symmetry in each of the layers ConstNet (’0’-init, 9 skip-able layers), on the first 3 epochs of training. The symmetry is
measured using forward correlation C f , backward correlation Cb , and total correlation Ct (Correlation between all filters), in all of the
weight tensors in the network. Skip-able operations are numbered based on their groups (shown in figure 4), and position within the group:
Tensors belong to the same groups, if the output of their respective operations is summed together (with or without passing through an
activation operator). It is apparent that the forward correlations behave in a similar manner across operations for the 3×3 convolutions,
while the residual convolutions tend to fluctuate and are less predictable. The backward correlations also behave in accordance to their
group (though its group can be different from the group of the forward correlation in the same layer). e.g, the forward correlation of
’Convolution 3-0’ is on group 3, while it’s backward correlation, matches the behaviour of correlations group 2, to which it’s input is
connected.
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Figure 7. Natural logarithm of forward correlations for ConstNet during the entire training period. Average and error margin of 6 seeds per
curve. The forward correlations of ConstNet with 0-init tend to converge to the same values measured for the same layer when ConstNet
was initialized with independent, random initialization. Dashed lines mark the epochs in which the learning rate was lowered.
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Figure 8. Natural logarithm of forward correlations in differently initialized leakyNets, at the end of training. Average and error margin of
4 seeds per curve. Unlike what we saw in ConstNet, the correlations in leakyNets initialized with mixed ’I /1’ do not converge to the same
values seen in the case of i.i.d. random He initialization (which eventually achieved higher test accuracy). Their inability to efficiently
break symmetry can be explained by tracking the propagation of the perturbations from the initial features, as discussed in appendix
G and can be seen in figures 9,10. Dashed lines mark the layers initialized with ’1’-init. Layer number 13 is the fully-connected layer,
initialized to 0 on all instances.
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Figure 9. Symmetry breaking activation perturbation decays as it propagates forward through the network, if the 1 initialization was
extensively used. The panels show the ratio between the perturbation norm

∥∥∥∆⊗
(
I − 1

n 11
T

)
∗̂α(`)(x)

∥∥∥
F

to the total norm
∥∥∥α(`)(x)

∥∥∥
F

, for
every layer ` and different initializations of leakyNet. Each panel also shows the evolution of the ratio at the first 1000 steps of training, as
indicated by the color-map. Dashed lines mark the layers that were initialized with ’1’-init (while the other layers were initialized with I ).
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Figure 10. Symmetry breaking gradient perturbation decays as it propagates backwards through the network, due to the effect of the
1 initialization. As in figure 9, we measure the ratio of the gradient magnitude that is ’perturbed’ from the mean-gradient over all
channels. We thus measure the ratio between

∥∥∥∆⊗
(
I − 1

n 11
T

)
∗̂ ∂L (x,y)
∂α(`)(x)

∥∥∥
F

to
∥∥∥ ∂L (x,y)
∂α(`)(x)

∥∥∥
F

. The perturbation in the gradients will directly
influence the updates of the weight tensors, causing symmetry break (decrease forward correlation). In networks with symmetrical
initialization (1-init), it takes longer for the perturbation to grow– in both of the cases where the entire network was initialized with
averaging initialization, the network remained symmetrical during the 1000 steps presented in this figure. Like before, dashed lines mark
the layers that were initialized with ’1’-init (while the other layers were initialized with I ).
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Figure 11. Distribution of results (Test accuracy) for training ConstNet with 200 epochs (left panel) and 300 epochs (right panel). Training
ConstNet with hardware noise as the sole symmetry breaking mechanism is unreliable: On several instances, the symmetry breaking
process was too slow for the model to fully recover during a 200 epochs training.

I.1. Limitations of symmetry breaking during training

As we can see in table 3, the negative effects of constant initialization are further highlighted in this experiment. In particular,
we can see that the accuracy of 0 initialized ConstNet without dropout drops by more than %1.5 in comparison to its result for
300 epochs, as presented in table 1. A more thorough examination of the results shows the reason for this performance drop:
On several cases (1/3 of the seeds tested), the hardware computation mechanism managed to break symmetry eventually,
but spent too many epochs doing it. The distribution of the results for several cases can be seen in figure 11. When running
the same model with the exact same configuration on a different GPU (Nvidia RTX), the degradation in performance is
much more significant, with more than 1/2 of the experiments ending in failure (< 80%).

J. Additional results for LeakyNet
In section 5, we presented LeakyNet, and examined the effect of mixing averaging (’1’) and identity (’I ’) initializations, by
initializing arbitrary layers using different initializations. As complementary results, we were also interested to see how the
results may be affected by using a linear mixture of the different initializations — so each of the 12 layers is initialized to
γI + (1−γ)1 instead. Our results indicate that for any value of γ larger than 0, the training is equally successful, but is still
significantly worse than training with random initialization. In this case, we can see that the forward correlations for each
layer at the end of training are alternately similar/dissimilar, as can be seen in figure 12.

Data-set Test accuracy [%]

Vanilla Mixup (α= 1.0)

’0’-Init i.i.d-Init ’0’-Init i.i.d-Init

Cifar10 94.82±0.14 94.90±0.06 96.22±0.08 96.14±0.01
Cifar100 77.02±0.14 76.42±0.20 79.08±0.12 79.17±0.10
CINIC 87.37±0.02 87.50±0.01 89.09±0.05 89.21±0.01

Table 4. Generalization of the results: Comparison of ’0’ and i.i.d initializations of ConstNet, for varying data-sets. In all runs, we used
the training parameters as detailed in appendix A: specifically, we ran 2 seeds per configuration, with non- deterministic computation, and
dropout with a drop rate of 1%. For all the data-sets and for all configurations, ConstNet achieved high accuracies, independent on the
method of initialization (And thus, independent on the number of unique features at initialization).
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Figure 12. LeakyNets with layers initialized to a linear combination of 1 and ’I ’ initializations (3 seeds per configuration). The final
accuracy was similar for all runs with γ> 0. The right panel describes the final forward correlation for all layers. With layer 0 being the
initial convolution, only the odd layers have similar forward correlation values. The forward correlations of the even layers at the end of
the run are highly dependent on their values at initialization.
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Figure 13. Detailed architecture of ConstNet.


