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Abstract
Recent works have empirically shown that there
exist adversarial examples that can be hidden from
neural network interpretability (namely, making
network interpretation maps visually similar), or
interpretability is itself susceptible to adversarial
attacks. In this paper, we theoretically show that
with a proper measurement of interpretation, it
is actually difficult to prevent prediction-evasion
adversarial attacks from causing interpretation dis-
crepancy, as confirmed by experiments on MNIST,
CIFAR-10 and Restricted ImageNet. Spurred by
that, we develop an interpretability-aware defen-
sive scheme built only on promoting robust in-
terpretation (without the need for resorting to ad-
versarial loss minimization). We show that our
defense achieves both robust classification and
robust interpretation, outperforming state-of-the-
art adversarial training methods against attacks of
large perturbation in particular.

1. Introduction
It has become widely known that convolutional neural
networks (CNNs) are vulnerable to adversarial examples,
namely, perturbed inputs with the intention to mislead net-
works’ prediction (Szegedy et al., 2014; Goodfellow et al.,
2015; Papernot et al., 2016a; Carlini & Wagner, 2017; Chen
et al., 2018; Su et al., 2018). The vulnerability of CNNs has
spurred extensive research on adversarial attack and defense.
To design adversarial attacks, most works have focused on
creating either imperceptible input perturbations (Goodfel-
low et al., 2015; Papernot et al., 2016a; Carlini & Wagner,
2017; Chen et al., 2018) or adversarial patches robust to the
physical environment (Eykholt et al., 2018; Brown et al.,
2017; Athalye et al., 2017). Many defense methods have
also been developed to prevent CNNs from misclassifica-
tion when facing adversarial attacks. Examples include
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defensive distillation (Papernot et al., 2016b), training with
adversarial examples (Goodfellow et al., 2015), input gradi-
ent or curvature regularization (Ross & Doshi-Velez, 2018;
Moosavi-Dezfooli et al., 2019), adversarial training via ro-
bust optimization (Madry et al., 2018), and TRADES to
trade adversarial robustness off against accuracy (Zhang
et al., 2019). Different from the aforementioned works, this
paper attempts to understand the adversarial robustness of
CNNs from the network interpretability perspective, and
provides novel insights on when and how interpretability
could help robust classification.

Having a prediction might not be enough for many real-
world machine learning applications. It is crucial to demys-
tify why they make certain decisions. Thus, the problem of
network interpretation arises. Various methods have been
proposed to understand the mechanism of decision making
by CNNs. One category of methods justify a prediction
decision by assigning importance values to reflect the influ-
ence of individual pixels or image sub-regions on the final
classification. Examples include pixel-space sensitivity map
methods (Simonyan et al., 2013; Zeiler & Fergus, 2014;
Springenberg et al., 2014; Smilkov et al., 2017; Sundarara-
jan et al., 2017) and class-discriminative localization meth-
ods (Zhou et al., 2016; Selvaraju et al., 2017; Chattopadhay
et al., 2018; Petsiuk et al., 2018), where the former evaluates
the sensitivity of a network classification decision to pixel
variations at the input, and the latter localizes which parts of
an input image were looked at by the network for making a
classification decision. We refer readers to Sec. 2 for some
representative interpretation methods. Besides interpreting
CNNs via feature importance maps, some methods peek
into the internal response of neural networks. Examples
include network dissection (Bau et al., 2017), and learn-
ing perceptually-aligned representations from adversarial
training (Engstrom et al., 2019).

Some recent works (Xu et al., 2019b;a; Zhang et al., 2018;
Subramanya et al., 2018; Ghorbani et al., 2019; Dombrowski
et al., 2019; Chen et al., 2019) began to study adversarial
robustness by exploring the spectrum between classification
accuracy and network interpretability. It was shown in (Xu
et al., 2019b;a) that an imperceptible adversarial perturba-
tion to fool classifiers can lead to a significant change in
a class-specific network interpretation map. Thus, it was
argued that such an interpretation discrepancy can be used
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as a helpful metric to differentiate adversarial examples
from benign inputs. Nevertheless, the work (Zhang et al.,
2018; Subramanya et al., 2018) showed that under certain
conditions, generating an attack (which we call aninter-
pretability sneaking attack, ISA) that fools the classi�er
while keeping it stealthy from the coupled interpreter isnot
signi�cantly more dif�cult than generating an adversarial in-
put that deceives the classi�er only. Herestealthinessrefers
to keeping the interpretation map of an adversarial example
highly similar to that of the corresponding benign example.
The existing work had no agreement on the relationship
between robust classi�cation and network interpretability.
In this work, we will revisit the validity of ISA and propose
a solution to improve the adversarial robustness of CNNs
by leveraging robust interpretation in a proper way.

The most relevant work to ours is (Chen et al., 2019), which
proposed a robust attribution training method with the aid
of integrated gradient (IG), an axiomatic attribution map.
It showed that the robust attribution training provides a
generalization of several commonly-used robust training
methods to defend adversarial attacks.

Different from the previous work, our paper contains the
following contributions.

1. By revisiting the validity of ISA, we show that enforc-
ing stealthiness of adversarial examples to a network
interpreter could be challenging. Its dif�culty relies
on how one measures the interpretation discrepancy
caused by input perturbations.

2. We propose aǹ1-norm 2-class interpretation discrep-
ancy measure and theoretically show that constraining
it helps adversarial robustness. Spurred by that, we
develop a principled interpretability-aware robust train-
ing method, which provides a means to achieve robust
classi�cation by robust interpretation directly.

3. We empirically show that interpretability alone can be
used to defend adversarial attacks for both misclassifca-
tion and misinterpretation. Compared to the IG-based
robust attribution training (Chen et al., 2019), our ap-
proach is lighter in computation and provides better
robustness even when facing a strong adversary.

2. Preliminaries and Motivation

In this section, we provide a brief background on inter-
pretation methods of CNNs for justifying a classi�cation
decision, and motivate the phenomenon ofinterpretation
discrepancycaused by adversarial examples.

To explain what and why CNNs predict, we consider two
types of network interpretation methods: a)class activation
map (CAM)(Zhou et al., 2016; Selvaraju et al., 2017; Chat-
topadhay et al., 2018) and b)pixel sensitivity map (PSM)

(Simonyan et al., 2013; Springenberg et al., 2014; Smilkov
et al., 2017; Sundararajan et al., 2017; Yeh et al., 2019). Let
f (x) 2 RC denote a CNN-based predictor that maps an
input x 2 Rd to a probability vector ofC classes. Here
f c(x), thecth element off (x), denotes the classi�cation
score (given by logit before the softmax) for classc. Let
I (x ; c) denote an interpreter (CAM or PSM) that re�ects
where inx contributes to the classi�er's decision onc.

CAM-type methods. CAM (Zhou et al., 2016) produces
a class-discriminative localization map for CNNs, which
performs global averaging pooling over convolutional fea-
ture maps prior to the softmax. Let the penultimate layer
outputK feature maps, each of which is denoted by a vector
representationA k 2 Ru for channelk 2 [K ]. Here[K ]
represents the integer setf 1; 2; : : : ; K g. Thei th entry of
CAM I CAM (x ; c) is given by

[I CAM (x ; c)] i = (1 =u)
X

k 2 [K ]

wc
k A k;i ; i 2 [u]; (1)

wherewc
k is the linear classi�cation weight that associates

the channelk with the classc, andAk;i denotes thei th
element ofA k . The rationale behind(1) is that the classi-
�cation scoref c(x) can be written as the average of CAM
values (Zhou et al., 2016),f c(x) =

P u
i =1 [I CAM (x ; c)] i .

For visual explanation,I CAM (x ; c) is often up-sampled to
the input dimensiond using bi-linear interpolation.

GradCAM (Selvaraju et al., 2017) generalizes CAM for
CNNs without the architecture `global average pooling!
softmax layer' over the �nal convolutional maps. Speci�-
cally, the weightwc

k in (1) is given by the gradient of the
classi�cation scoref c(x) with respect to (w.r.t.) the feature
mapA k , wc

k = 1
u

P u
i =1

@fc (x )
@Ak;i

. GradCAM++ (Chattopad-
hay et al., 2018), a generalized formulation of GradCAM,
utilizes a more involved weighted average of the (positive)
pixel-wise gradients but provides a better localization map
if an image contains multiple occurrences of the same class.
In this work, we focus on CAM since it is computation-
ally light and our models used in experiments follow the
architecture `global average pooling! softmax layer'.

PSM-type methods. PSM assigns importance scores to
individual pixels toward explaining the classi�cation de-
cision about an input. Examples of commonly-used
approaches include vanilla gradient (Simonyan et al.,
2013), guided backpropogation (Springenberg et al., 2014),
SmoothGrad (Smilkov et al., 2017), and integrated gradient
(IG) (Sundararajan et al., 2017). In particular, IG satis�es
thecompletenessattribution axiom that PSM ought to obey.
Speci�cally, it averages gradient saliency maps for interpo-
lations between an inputx and a baseline imagea:

[I IG (x ; c)] i = ( x i � ai )
Z 1

� =0

@fc(a + � (x � a))
@xi

d�

� (x i � ai )
mX

i =1

@fc(a + i
m (x � a))

@xi
1
m

; i 2 [d]; (2)



Proper Network Interpretability Helps Adversarial Robustness in Classi�cation

Input image CAM GradCAM++ IG

O
rig

in
al

ex
am

pl
e

x
A

dv
er

sa
ria

le
xa

m
pl

e
x

0

I (�; t) I (�; y0)

correlation: 0.4782 correlation: 0.5039

I (�; t) I (�; y0)

correlation: 0.5018 correlation: 0.5472

I (�; t) I (�; y0)

correlation: 0.4040 correlation: 0.3911

Figure 1. Interpretation (I ) of benign (x ) and adversarial (x 0) image from Restricted ImageNet (Tsipras et al., 2019) with respect to the
true labely=`monkey' and the target labely0=`�sh'. Here the adversarial example is generated by 10-step PGD attack with perturbation
size0:02 on Wide-Resnet (Madry et al., 2018), and we consider three types of interpretation maps, CAM, GradCAM++ and IG. Given an
interpretation method, the �rst column isI (x ; y) versusI (x 0; y), the second column isI (x ; y0) versusI (x 0; y0), and all maps under each
category are normalized w.r.t. their largest value. At the bottom of each column, we quantify the resulting interpretation discrepancy by
Kendall's Tau order rank correlation (Selvaraju et al., 2017) between every pair ofI (x ; i ) andI (x 0; i ) for i = y or y0.

wherem is the number of steps in the Riemman approxima-
tion of the integral. Thecompletenessaxiom (Sundararajan
et al., 2017, Proposition 1) states that

P d
i =1 [I IG (x ; c)] i =

f c(x) � f c(a), where the baseline imagea is often chosen
such thatf c(a) � 0, e.g., the black image. Note that CAM
also satis�es thecompletenessaxiom. PSM is able to high-
light �ne-grained details in the image, but is computation-
ally intensive and not quite class-discriminative compared
to CAM (Selvaraju et al., 2017).

Interpretation discrepancy caused by adversarial per-
turbations. Let x0 = x + � represent anadversarial ex-
amplew.r.t. x , where� denotes anadversarial perturbation.
By replacing the input imagex with x0, a CNN will be
fooled from thetrue labely to thetarget (incorrect) labely0.
It was recently shown in (Xu et al., 2019b;a) that the adver-
sary could introduce an evidentinterpretation discrepancy
w.r.t. boththe true and the target label in terms ofI (x ; y) vs.
I (x0; y), andI (x ; y0) vs. I (x0; y0). An illustrative example
is provided in Figure 1. We see that an adversarysuppresses
the network interpretation w.r.t. the true labely but pro-
motesthe interpretation w.r.t. the target labely0. We also
observe that compared to IG, CAM and GradCAM++ better
localize class-speci�c discriminative regions.

The example in Figure 1 provides two implications on the ro-
bustness of classi�cation versus interpretation discrepancy.
First, an adversarial example designed for misclassi�ca-
tion gives rise to interpretation discrepancy. Spurred by
that, the problem of interpretability sneaking attack arises
(Zhang et al., 2018; Subramanya et al., 2018): One may
wonder whether or not it is easy to generate adversarial
examples that mistake classi�cation but keep interpretation

intact. If such adversarial vulnerability exists, it could have
serious consequences when classi�cation and interpretation
are jointly used in tasks like medical diagnosis (Subra-
manya et al., 2018), and call into question the faithfulness
of interpretation to network classi�cation. It is also sug-
gested from interpretation discrepancy that an interpreter
itself could be quite sensitive to input perturbations (even
if they were not designed for misclassi�cation). Spurred
by that, the robustness of interpretation provides a supple-
mentary robustness metric for CNNs (Ghorbani et al., 2019;
Dombrowski et al., 2019; Chen et al., 2019).

3. Robustness of Classi�cation vs. Robustness
of Interpretation

In this section, we revisit the validity of interpretability
sneaking attack (ISA) from the perspective of interpretation
discrepancy. We show that it is in fact quite challenging to
force an adversarial example to mitigate its associated inter-
pretation discrepancy. Further, we propose a novel measure
of interpretation discrepancy, and theoretically show that
constraining it prevents the success of adversarial attacks
(for misclassi�cation).

Previous work (Zhang et al., 2018; Subramanya et al., 2018)
showed that it isnot dif�cult to prevent adversarial examples
from having lower interpretation discrepancy when the latter
is measured w.r.t. asingleclass label (either the true label
y or the target labely0). However, we see from Figure 1
that the prediction-evasion adversarial attack alters inter-
pretation maps w.r.t.bothy andy0. This motivates us to
rethink whether the single-class interpretation discrepancy
measure is proper, and whether ISA is truly easy to bypass
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an interpretation discrepancy check.

We consider the generic form of`p-norm based interpreta-
tion discrepancy,

D
�
x ; x 0� = (1 =jCj)

X

i 2C




 I (x ; i ) � I (x 0; i )






p
; (3)

where recall thatx andx0 are natural and adversarial ex-
amples respectively,I represents an interpreter, e.g., CAM
or IG, Cdenotes the set of class labels used inI , jCj is the
cardinality ofC, and we considerp 2 f 1; 2g in this paper.
Clearly, a speci�cation of(3) relies on the choice ofCandp.
The speci�cation of(3) with C = f y; y0g andp = 1 leads
to the`1 2-class interpretation discrepancy measure,

D2;` 1

�
x ; x 0� = (1 =2)

� 


 I (x ; y) � I (x 0; y)






1

+



 I (x ; y0) � I (x 0; y0)






1

�
: (4)

Rationale behind(4). Compared to the previous works
(Zhang et al., 2018; Subramanya et al., 2018) which used
a single class label, we chooseC = f y; y0g1, motivated
by the fact that an interpretation discrepancy occurs w.r.t.
both y andy0 (Figure 1). Moreover, although Euclidean
distance (namely,̀2 norm or its square) is arguably one of
the most commonly-used discrepancy metrics (Zhang et al.,
2018), we show in Proposition 1 that the proposed interpre-
tation discrepancy measureD2;` 1 (x ; x0) has a perturbation-
independent lower bound for anysuccessfuladversarial
attack. This provides an explanation on why it could be
dif�cult to mitigate the interpretation discrepancy caused
by a successful attack. As will be evident later, the use
of `1 norm also outperforms thè2 norm in evaluation of
interpretation discrepancy.

Proposition 1. Given a classi�erf (x) 2 RC and its inter-
preterI (x ; c) for c 2 [C], suppose that the interpreter satis-
�es the completeness axiom, namely,

P
i [I (x ; c)] i = f c(x)

for a possible scaling factora. For a natural examplex
and an adversarial examplex0 with predictiony and y0

(6= y) respectively,D2;` 1 (x ; x0) in (4) has the perturbation-
independent lower bound,

D2;` 1

�
x ; x 0� � (1=2) (f y (x ) � f y 0(x )) : (5)

Proof: See proof and a generalization in Appendix A.�

Proposition 1 connectsD2;` 1 (x ; x0) with the classi�cation
margin f y (x) � f y0(x). Thus, if a classi�er has a large
classi�cation margin on the natural examplex, it will be
dif�cult to �nd a successfuladversarial attack withsmall
interpretation discrepancy. In other words, constraining the
interpretation discrepancy prevents misclassi�cation of a
perturbed input since making its attack successful becomes
infeasibleunderD2;` 1 (x ; x0) < 1

2 (f y (x) � f y0(x)) . Also,
the completeness condition ofI suggests specifying(4)

1In addition to the2-classcase, our experiments will also cover
theall-classcaseC = [ C].

with CAM (1) or IG (2). Indeed, the robust attribution reg-
ularization proposed in (Chen et al., 2019) adopted IG. In
this paper, we focus on CAM due to its light computation.
In Appendix A, we further extend Proposition 1 to inter-
preters satisfying a more general completeness axiom of the
form

P
i [I (x ; c)] i = g(f c(x)) , whereg is a monotonically

increasing function. In Appendix E, we demonstrate the
empirical tightness of (5).

Attempt in generating ISA with minimum `1 2-class in-
terpretation discrepancy. Next, we examine how the ro-
bustness of classi�cation is coupled with the robustness of
interpretation through the lens of ISA. We pose the follow-
ing optimization problem for design of ISA, which not only
fools a classi�er's decision but also minimizes the resulting
interpretation discrepancy,

minimize
�

� maxf maxj 6= y 0 f j (x + � ) � f y 0(x + � ); � � g

+ D2;` 1 (x ; x + � )
subject to k� k1 � �:

(6)

In (6), the �rst term corresponds to a C&W-type attack loss
(Carlini & Wagner, 2017), which reaches� � if the attack
succeeds in misclassi�cation,� > 0 (e.g.,0:1 used in the
paper) is a tolerance on the classi�cation margin of a suc-
cessful attack between the target labely0 and the non-target
top-1 prediction label,D2;` 1 was de�ned by(4), � > 0 is a
regularization parameter that strikes a balance between the
success of an attack and its resulting interpretation discrep-
ancy, and� > 0 is a (pixel-level) perturbation size.

To approach ISA(6) with minimuminterpretation discrep-
ancy, we perform abisectionon � until there exists no suc-
cessful attack that can be found when� further decreases.
We call an attack asuccessful ISAif the value of the attack
loss stays at� � (namely, a valid adversarial example) and
the minimum� is achieved (namely, the largest penaliza-
tion on interpretation discrepancy). We solve problem(6)
by projected gradient descent (PGD), with sub-gradients
taken at non-differentiable points. We consider only tar-
geted attacks to better evaluate the effect on interpretability
of target classes, although this approach can be extended to
an untargeted setting (e.g., by target label-free interpretation
discrepancy measure introduced in the next section).

Successful ISA is accompanied by non-trivial̀ 1 2-class
interpretation discrepancy. We then empirically justify
that how the choice of interpretation discrepancy measure
plays a crucial role on drawing the relationship between
robustness of classi�cation and robustness of interpretation.
We generate successful ISAs by solving problem(6) un-
der different values of the perturbation size� and different
speci�cations of the interpretation discrepancy measure(3),
including`1/`2 1-class (true classy), `2 2-class, and̀1/`2

all-class measure. In Figure 2-(a) and (b), we present the in-
terpretation discrepancy induced by successful ISAs versus
the perturbation strength� . One may expect that a stronger




