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Abstract
Recent works have empirically shown that there
exist adversarial examples that can be hidden from
neural network interpretability (namely, making
network interpretation maps visually similar), or
interpretability is itself susceptible to adversarial
attacks. In this paper, we theoretically show that
with a proper measurement of interpretation, it
is actually difficult to prevent prediction-evasion
adversarial attacks from causing interpretation dis-
crepancy, as confirmed by experiments on MNIST,
CIFAR-10 and Restricted ImageNet. Spurred by
that, we develop an interpretability-aware defen-
sive scheme built only on promoting robust in-
terpretation (without the need for resorting to ad-
versarial loss minimization). We show that our
defense achieves both robust classification and
robust interpretation, outperforming state-of-the-
art adversarial training methods against attacks of
large perturbation in particular.

1. Introduction
It has become widely known that convolutional neural
networks (CNNs) are vulnerable to adversarial examples,
namely, perturbed inputs with the intention to mislead net-
works’ prediction (Szegedy et al., 2014; Goodfellow et al.,
2015; Papernot et al., 2016a; Carlini & Wagner, 2017; Chen
et al., 2018; Su et al., 2018). The vulnerability of CNNs has
spurred extensive research on adversarial attack and defense.
To design adversarial attacks, most works have focused on
creating either imperceptible input perturbations (Goodfel-
low et al., 2015; Papernot et al., 2016a; Carlini & Wagner,
2017; Chen et al., 2018) or adversarial patches robust to the
physical environment (Eykholt et al., 2018; Brown et al.,
2017; Athalye et al., 2017). Many defense methods have
also been developed to prevent CNNs from misclassifica-
tion when facing adversarial attacks. Examples include

1Massachusetts Institute of Technology 2MIT-IBM Watson AI
Lab, IBM Research. Correspondence to: Akhilan Boopathy, Sijia
Liu <akhilan@mit.edu, lsjxjtu@gmail.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

defensive distillation (Papernot et al., 2016b), training with
adversarial examples (Goodfellow et al., 2015), input gradi-
ent or curvature regularization (Ross & Doshi-Velez, 2018;
Moosavi-Dezfooli et al., 2019), adversarial training via ro-
bust optimization (Madry et al., 2018), and TRADES to
trade adversarial robustness off against accuracy (Zhang
et al., 2019). Different from the aforementioned works, this
paper attempts to understand the adversarial robustness of
CNNs from the network interpretability perspective, and
provides novel insights on when and how interpretability
could help robust classification.

Having a prediction might not be enough for many real-
world machine learning applications. It is crucial to demys-
tify why they make certain decisions. Thus, the problem of
network interpretation arises. Various methods have been
proposed to understand the mechanism of decision making
by CNNs. One category of methods justify a prediction
decision by assigning importance values to reflect the influ-
ence of individual pixels or image sub-regions on the final
classification. Examples include pixel-space sensitivity map
methods (Simonyan et al., 2013; Zeiler & Fergus, 2014;
Springenberg et al., 2014; Smilkov et al., 2017; Sundarara-
jan et al., 2017) and class-discriminative localization meth-
ods (Zhou et al., 2016; Selvaraju et al., 2017; Chattopadhay
et al., 2018; Petsiuk et al., 2018), where the former evaluates
the sensitivity of a network classification decision to pixel
variations at the input, and the latter localizes which parts of
an input image were looked at by the network for making a
classification decision. We refer readers to Sec. 2 for some
representative interpretation methods. Besides interpreting
CNNs via feature importance maps, some methods peek
into the internal response of neural networks. Examples
include network dissection (Bau et al., 2017), and learn-
ing perceptually-aligned representations from adversarial
training (Engstrom et al., 2019).

Some recent works (Xu et al., 2019b;a; Zhang et al., 2018;
Subramanya et al., 2018; Ghorbani et al., 2019; Dombrowski
et al., 2019; Chen et al., 2019) began to study adversarial
robustness by exploring the spectrum between classification
accuracy and network interpretability. It was shown in (Xu
et al., 2019b;a) that an imperceptible adversarial perturba-
tion to fool classifiers can lead to a significant change in
a class-specific network interpretation map. Thus, it was
argued that such an interpretation discrepancy can be used
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as a helpful metric to differentiate adversarial examples
from benign inputs. Nevertheless, the work (Zhang et al.,
2018; Subramanya et al., 2018) showed that under certain
conditions, generating an attack (which we call an inter-
pretability sneaking attack, ISA) that fools the classifier
while keeping it stealthy from the coupled interpreter is not
significantly more difficult than generating an adversarial in-
put that deceives the classifier only. Here stealthiness refers
to keeping the interpretation map of an adversarial example
highly similar to that of the corresponding benign example.
The existing work had no agreement on the relationship
between robust classification and network interpretability.
In this work, we will revisit the validity of ISA and propose
a solution to improve the adversarial robustness of CNNs
by leveraging robust interpretation in a proper way.

The most relevant work to ours is (Chen et al., 2019), which
proposed a robust attribution training method with the aid
of integrated gradient (IG), an axiomatic attribution map.
It showed that the robust attribution training provides a
generalization of several commonly-used robust training
methods to defend adversarial attacks.

Different from the previous work, our paper contains the
following contributions.

1. By revisiting the validity of ISA, we show that enforc-
ing stealthiness of adversarial examples to a network
interpreter could be challenging. Its difficulty relies
on how one measures the interpretation discrepancy
caused by input perturbations.

2. We propose an `1-norm 2-class interpretation discrep-
ancy measure and theoretically show that constraining
it helps adversarial robustness. Spurred by that, we
develop a principled interpretability-aware robust train-
ing method, which provides a means to achieve robust
classification by robust interpretation directly.

3. We empirically show that interpretability alone can be
used to defend adversarial attacks for both misclassifca-
tion and misinterpretation. Compared to the IG-based
robust attribution training (Chen et al., 2019), our ap-
proach is lighter in computation and provides better
robustness even when facing a strong adversary.

2. Preliminaries and Motivation
In this section, we provide a brief background on inter-
pretation methods of CNNs for justifying a classification
decision, and motivate the phenomenon of interpretation
discrepancy caused by adversarial examples.

To explain what and why CNNs predict, we consider two
types of network interpretation methods: a) class activation
map (CAM) (Zhou et al., 2016; Selvaraju et al., 2017; Chat-
topadhay et al., 2018) and b) pixel sensitivity map (PSM)

(Simonyan et al., 2013; Springenberg et al., 2014; Smilkov
et al., 2017; Sundararajan et al., 2017; Yeh et al., 2019). Let
f(x) ∈ RC denote a CNN-based predictor that maps an
input x ∈ Rd to a probability vector of C classes. Here
fc(x), the cth element of f(x), denotes the classification
score (given by logit before the softmax) for class c. Let
I(x, c) denote an interpreter (CAM or PSM) that reflects
where in x contributes to the classifier’s decision on c.

CAM-type methods. CAM (Zhou et al., 2016) produces
a class-discriminative localization map for CNNs, which
performs global averaging pooling over convolutional fea-
ture maps prior to the softmax. Let the penultimate layer
outputK feature maps, each of which is denoted by a vector
representation Ak ∈ Ru for channel k ∈ [K]. Here [K]
represents the integer set {1, 2, . . . ,K}. The ith entry of
CAM ICAM(x, c) is given by

[ICAM(x, c)]i = (1/u)
∑
k∈[K]

wckAk,i, i ∈ [u], (1)

where wck is the linear classification weight that associates
the channel k with the class c, and Ak,i denotes the ith
element of Ak. The rationale behind (1) is that the classi-
fication score fc(x) can be written as the average of CAM
values (Zhou et al., 2016), fc(x) =

∑u
i=1[ICAM(x, c)]i.

For visual explanation, ICAM(x, c) is often up-sampled to
the input dimension d using bi-linear interpolation.

GradCAM (Selvaraju et al., 2017) generalizes CAM for
CNNs without the architecture ‘global average pooling→
softmax layer’ over the final convolutional maps. Specifi-
cally, the weight wck in (1) is given by the gradient of the
classification score fc(x) with respect to (w.r.t.) the feature
map Ak, wck = 1

u

∑u
i=1

∂fc(x)
∂Ak,i

. GradCAM++ (Chattopad-
hay et al., 2018), a generalized formulation of GradCAM,
utilizes a more involved weighted average of the (positive)
pixel-wise gradients but provides a better localization map
if an image contains multiple occurrences of the same class.
In this work, we focus on CAM since it is computation-
ally light and our models used in experiments follow the
architecture ‘global average pooling→ softmax layer’.

PSM-type methods. PSM assigns importance scores to
individual pixels toward explaining the classification de-
cision about an input. Examples of commonly-used
approaches include vanilla gradient (Simonyan et al.,
2013), guided backpropogation (Springenberg et al., 2014),
SmoothGrad (Smilkov et al., 2017), and integrated gradient
(IG) (Sundararajan et al., 2017). In particular, IG satisfies
the completeness attribution axiom that PSM ought to obey.
Specifically, it averages gradient saliency maps for interpo-
lations between an input x and a baseline image a:

[IIG(x, c)]i = (xi − ai)
∫ 1

α=0

∂fc(a+ α(x− a))

∂xi
dα

≈ (xi − ai)
m∑
i=1

∂fc(a+ i
m
(x− a))

∂xi

1

m
, i ∈ [d], (2)
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Figure 1. Interpretation (I) of benign (x) and adversarial (x′) image from Restricted ImageNet (Tsipras et al., 2019) with respect to the
true label y=‘monkey’ and the target label y′=‘fish’. Here the adversarial example is generated by 10-step PGD attack with perturbation
size 0.02 on Wide-Resnet (Madry et al., 2018), and we consider three types of interpretation maps, CAM, GradCAM++ and IG. Given an
interpretation method, the first column is I(x, y) versus I(x′, y), the second column is I(x, y′) versus I(x′, y′), and all maps under each
category are normalized w.r.t. their largest value. At the bottom of each column, we quantify the resulting interpretation discrepancy by
Kendall’s Tau order rank correlation (Selvaraju et al., 2017) between every pair of I(x, i) and I(x′, i) for i = y or y′.

where m is the number of steps in the Riemman approxima-
tion of the integral. The completeness axiom (Sundararajan
et al., 2017, Proposition 1) states that

∑d
i=1[IIG(x, c)]i =

fc(x)− fc(a), where the baseline image a is often chosen
such that fc(a) ≈ 0, e.g., the black image. Note that CAM
also satisfies the completeness axiom. PSM is able to high-
light fine-grained details in the image, but is computation-
ally intensive and not quite class-discriminative compared
to CAM (Selvaraju et al., 2017).

Interpretation discrepancy caused by adversarial per-
turbations. Let x′ = x + δ represent an adversarial ex-
ample w.r.t. x, where δ denotes an adversarial perturbation.
By replacing the input image x with x′, a CNN will be
fooled from the true label y to the target (incorrect) label y′.
It was recently shown in (Xu et al., 2019b;a) that the adver-
sary could introduce an evident interpretation discrepancy
w.r.t. both the true and the target label in terms of I(x, y) vs.
I(x′, y), and I(x, y′) vs. I(x′, y′). An illustrative example
is provided in Figure 1. We see that an adversary suppresses
the network interpretation w.r.t. the true label y but pro-
motes the interpretation w.r.t. the target label y′. We also
observe that compared to IG, CAM and GradCAM++ better
localize class-specific discriminative regions.

The example in Figure 1 provides two implications on the ro-
bustness of classification versus interpretation discrepancy.
First, an adversarial example designed for misclassifica-
tion gives rise to interpretation discrepancy. Spurred by
that, the problem of interpretability sneaking attack arises
(Zhang et al., 2018; Subramanya et al., 2018): One may
wonder whether or not it is easy to generate adversarial
examples that mistake classification but keep interpretation

intact. If such adversarial vulnerability exists, it could have
serious consequences when classification and interpretation
are jointly used in tasks like medical diagnosis (Subra-
manya et al., 2018), and call into question the faithfulness
of interpretation to network classification. It is also sug-
gested from interpretation discrepancy that an interpreter
itself could be quite sensitive to input perturbations (even
if they were not designed for misclassification). Spurred
by that, the robustness of interpretation provides a supple-
mentary robustness metric for CNNs (Ghorbani et al., 2019;
Dombrowski et al., 2019; Chen et al., 2019).

3. Robustness of Classification vs. Robustness
of Interpretation

In this section, we revisit the validity of interpretability
sneaking attack (ISA) from the perspective of interpretation
discrepancy. We show that it is in fact quite challenging to
force an adversarial example to mitigate its associated inter-
pretation discrepancy. Further, we propose a novel measure
of interpretation discrepancy, and theoretically show that
constraining it prevents the success of adversarial attacks
(for misclassification).

Previous work (Zhang et al., 2018; Subramanya et al., 2018)
showed that it is not difficult to prevent adversarial examples
from having lower interpretation discrepancy when the latter
is measured w.r.t. a single class label (either the true label
y or the target label y′). However, we see from Figure 1
that the prediction-evasion adversarial attack alters inter-
pretation maps w.r.t. both y and y′. This motivates us to
rethink whether the single-class interpretation discrepancy
measure is proper, and whether ISA is truly easy to bypass
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an interpretation discrepancy check.

We consider the generic form of `p-norm based interpreta-
tion discrepancy,

D
(
x,x′

)
= (1/|C|)

∑
i∈C

∥∥I(x, i)− I(x′, i)∥∥
p
, (3)

where recall that x and x′ are natural and adversarial ex-
amples respectively, I represents an interpreter, e.g., CAM
or IG, C denotes the set of class labels used in I , |C| is the
cardinality of C, and we consider p ∈ {1, 2} in this paper.
Clearly, a specification of (3) relies on the choice of C and p.
The specification of (3) with C = {y, y′} and p = 1 leads
to the `1 2-class interpretation discrepancy measure,

D2,`1

(
x,x′

)
= (1/2)

(∥∥I(x, y)− I(x′, y)∥∥
1

+
∥∥I(x, y′)− I(x′, y′)∥∥

1

)
. (4)

Rationale behind (4). Compared to the previous works
(Zhang et al., 2018; Subramanya et al., 2018) which used
a single class label, we choose C = {y, y′}1, motivated
by the fact that an interpretation discrepancy occurs w.r.t.
both y and y′ (Figure 1). Moreover, although Euclidean
distance (namely, `2 norm or its square) is arguably one of
the most commonly-used discrepancy metrics (Zhang et al.,
2018), we show in Proposition 1 that the proposed interpre-
tation discrepancy measure D2,`1 (x,x′) has a perturbation-
independent lower bound for any successful adversarial
attack. This provides an explanation on why it could be
difficult to mitigate the interpretation discrepancy caused
by a successful attack. As will be evident later, the use
of `1 norm also outperforms the `2 norm in evaluation of
interpretation discrepancy.

Proposition 1. Given a classifier f(x) ∈ RC and its inter-
preter I(x, c) for c ∈ [C], suppose that the interpreter satis-
fies the completeness axiom, namely,

∑
i[I(x, c)]i = fc(x)

for a possible scaling factor a. For a natural example x
and an adversarial example x′ with prediction y and y′
( 6= y) respectively, D2,`1 (x,x′) in (4) has the perturbation-
independent lower bound,

D2,`1

(
x,x′

)
≥ (1/2) (fy(x)− fy′(x)) . (5)

Proof: See proof and a generalization in Appendix A. �

Proposition 1 connects D2,`1 (x,x′) with the classification
margin fy(x) − fy′(x). Thus, if a classifier has a large
classification margin on the natural example x, it will be
difficult to find a successful adversarial attack with small
interpretation discrepancy. In other words, constraining the
interpretation discrepancy prevents misclassification of a
perturbed input since making its attack successful becomes
infeasible under D2,`1 (x,x′) < 1

2 (fy(x)− fy′(x)). Also,
the completeness condition of I suggests specifying (4)

1In addition to the 2-class case, our experiments will also cover
the all-class case C = [C].

with CAM (1) or IG (2). Indeed, the robust attribution reg-
ularization proposed in (Chen et al., 2019) adopted IG. In
this paper, we focus on CAM due to its light computation.
In Appendix A, we further extend Proposition 1 to inter-
preters satisfying a more general completeness axiom of the
form

∑
i[I(x, c)]i = g(fc(x)), where g is a monotonically

increasing function. In Appendix E, we demonstrate the
empirical tightness of (5).

Attempt in generating ISA with minimum `1 2-class in-
terpretation discrepancy. Next, we examine how the ro-
bustness of classification is coupled with the robustness of
interpretation through the lens of ISA. We pose the follow-
ing optimization problem for design of ISA, which not only
fools a classifier’s decision but also minimizes the resulting
interpretation discrepancy,

minimize
δ

λmax{maxj 6=y′ fj(x+ δ)− fy′(x+ δ),−τ}
+D2,`1 (x,x+ δ)

subject to ‖δ‖∞ ≤ ε.
(6)

In (6), the first term corresponds to a C&W-type attack loss
(Carlini & Wagner, 2017), which reaches −τ if the attack
succeeds in misclassification, τ > 0 (e.g., 0.1 used in the
paper) is a tolerance on the classification margin of a suc-
cessful attack between the target label y′ and the non-target
top-1 prediction label, D2,`1 was defined by (4), λ > 0 is a
regularization parameter that strikes a balance between the
success of an attack and its resulting interpretation discrep-
ancy, and ε > 0 is a (pixel-level) perturbation size.

To approach ISA (6) with minimum interpretation discrep-
ancy, we perform a bisection on λ until there exists no suc-
cessful attack that can be found when λ further decreases.
We call an attack a successful ISA if the value of the attack
loss stays at −τ (namely, a valid adversarial example) and
the minimum λ is achieved (namely, the largest penaliza-
tion on interpretation discrepancy). We solve problem (6)
by projected gradient descent (PGD), with sub-gradients
taken at non-differentiable points. We consider only tar-
geted attacks to better evaluate the effect on interpretability
of target classes, although this approach can be extended to
an untargeted setting (e.g., by target label-free interpretation
discrepancy measure introduced in the next section).

Successful ISA is accompanied by non-trivial `1 2-class
interpretation discrepancy. We then empirically justify
that how the choice of interpretation discrepancy measure
plays a crucial role on drawing the relationship between
robustness of classification and robustness of interpretation.
We generate successful ISAs by solving problem (6) un-
der different values of the perturbation size ε and different
specifications of the interpretation discrepancy measure (3),
including `1/`2 1-class (true class y), `2 2-class, and `1/`2
all-class measure. In Figure 2-(a) and (b), we present the in-
terpretation discrepancy induced by successful ISAs versus
the perturbation strength ε. One may expect that a stronger
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ISA (with larger ε) could more easily suppress the interpre-
tation discrepancy. However, we observe that compared to
`1/`2 1-class, `2 2-class, and `1/`2 all-class cases, it is quite
difficult to mitigate the `1 2-class interpretation discrepancy
(4) even as the attack power goes up. This is verified by a)
its high interpretation discrepancy score and b) its flat slope
of discrepancy score against ε.

Furthermore, Figure 2-(c) shows CAMs of adversarial exam-
ples w.r.t. the true label y and the target label y′ generated by
`1 1/2/all-class ISAs. We observe that the 1-class measure
could give a false sense of ease of preventing adversarial
perturbations from interpretation discrepancy. Specifically,
although the interpretation discrepancy w.r.t. y of the `1
1-class ISA is minimized, the discrepancy w.r.t. y′ remains
large, supported by the observation that the resulting correla-
tion between I(x′, y′) and I(x, y′) is even smaller than that
of PGD attack; see the 4th column of Figure 2-(c). Thus,
the vulnerability of an image classifier (against adversarial
perturbations) is accompanied by interpretation discrepancy
only if the latter is properly measured. We refer readers to
Appendix B for more comprehensive experimental results
on the evaluation of interpretation discrepancy through the
lens of ISA.

4. Interpretability-Aware Robust Training
We recall from Sec. 3 that adversarial examples that intend
to fool a classifier could find it difficult to evade the `1
2-class interpretation discrepancy. Thus, constraining the
interpretation discrepancy helps to prevent misclassification.
Spurred by that, we introduce an interpretability based de-
fense method that penalizes interpretation discrepancy to
achieve high classification robustness.

Target label-free interpretation discrepancy. Different
from attack generation, the `1 2-class discrepancy measure
(4) cannot directly be used by a defender since the target
label y′ specified by the adversary is not known a priori. To
circumvent this issue, we propose to approximate the inter-
pretation discrepancy w.r.t. the target label by weighting
discrepancies from all non-true classes according to their
importance in prediction. This modifies (4) to

D̃
(
x,x′

)
=(1/2)

∥∥I(x, y)− I(x′, y)∥∥
1

+ (1/2)
∑
i 6=t

ef(x
′)i∑

i′ e
f(x′)i′

||I(x, i)− I(x′, i)||1, (7)

where the softmax function ef(x′)i∑
i e
f(x′)i

adjusts the impor-
tance of non-true labels according to their classification
confidence. Clearly, when x′ succeeds in misclassification,
the top-1 predicted class of x′ becomes the target label and
the resulting interpretation discrepancy is most penalized.

Interpretability-aware robust training. We propose to
train a classifier against the worst-case interpretation dis-

(a) (b)

I
(·,
t)

I
(·,
y
′ )

original image x 10-step PGD attack x′ `1 2-class ISA x′ `1 1-class ISA x′ `1 all-class ISA x′

correlation: 0.4782 correlation: 0.5213 correlation: 0.7107 correlation: 0.5342

correlation: 0.5039 correlation: 0.5416 correlation: 0.4129 correlation: 0.5561

(c)

Figure 2. Interpretation discrepancy induced by successful ISAs.
Here the same image as Figure 1 is considered. (a) ISAs using
CAM-based `1 1/2/all-class discrepancy measure versus perturba-
tion size ε, (b) ISAs using CAM-based `2 1/2/all-class discrepancy
measure versus ε, (c) CAM interpretation of example in Figure 1
and its adversarial counterparts from PGD attack and ISAs. All
interpretation maps are normalized w.r.t. the common largest value.
At the bottom of each interpretation map I(x′, ·), we quantify the
interpretation discrepancy by Kendall’s Tau order rank correlation
between I(x′, i) and I(x, i) for i ∈ {y, y′}, where x′ is obtained
from PGD attack or each specification of ISA.

crepancy (7), yielding the min-max optimization problem

minimize
θ

E(x,t)∼Dtrain

[
ftrain(θ;x, y) + γD̃worst(x,x

′)
]
, (8)

where θ denotes the model parameters to be learnt. In
(8), Dtrain denotes the training dataset, ftrain is the train-
ing loss (e.g., cross-entropy loss), D̃worst(x,x

′) denotes a
measure of the worst-case interpretation discrepancy2 be-
tween the benign and the perturbed inputs x and x′, and
the regularization parameter γ > 0 controls the tradeoff
between clean accuracy and robustness of network inter-
pretability. Note that the commonly-used adversarial train-
ing method (Madry et al., 2018) adopts the adversarial loss
maximize‖δ‖∞≤ε ftrain(θ,x + δ;x, y) rather than the stan-
dard training loss in (8). Our experiments will show that the
promotion of robust interpretation via (8) is able to achieve
robustness in classification.

Next, we introduce two types of worst-case interpretation
discrepancy measure based on our different views on input

2For ease of notation we omit the dependence on θ in D̃ (x,x′)
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perturbations. That is,

D̃worst(x,x
′) := maximize

‖δ‖∞≤ε
D̃ (x,x+ δ) , (9)

D̃worst(x,x
′) := D̃

(
x,x+ argmax

‖δ‖∞≤ε
[ftrain(θ;x+ δ, y)]

)
,

(10)

where D̃ was defined in (7). In (9) and (10), the input
perturbation δ represents the adversary shooting for misin-
terpretation and misclassification, respectively. For ease
of presentation, we call the proposed interpretability-aware
robust training methods Int and Int2 by using (9) and (10)
in (8) respectively. We will empirically show that both Int
and Int2 can achieve robustness in classification and inter-
pretation simultaneously. It is also worth noting that Int2
training is conducted by alternative optimization: The inner
maximization step w.r.t. δ generates adversarial example
x′ for misclassification, and then forms D̃worst(x,x

′); The
outer minimization step minimizes the regularized standard
training loss w.r.t. θ by fixing x′, ignoring the dependence
of x′ on θ.

Difference from (Chen et al., 2019). The recent work
(Chen et al., 2019) proposed improving adversarial robust-
ness by leveraging robust IG attributions. However, differ-
ent from (Chen et al., 2019), our approach is motivated by
the importance of the `1 2-class interpretation discrepancy
measure. We will show in Sec. 5 that the incorporation of
interpretation discrepancy w.r.t. target class labels, namely,
the second term in (7), plays an important role in boosting
classification and interpretation robustness. We will also
show that our proposed method is sufficient to improve ad-
versarial robustness even in the absence of adversarial loss.
This implies that robust interpretations alone helps robust
classification when interpretation maps are measured with
a proper metric. Furthermore, we find that the robust attri-
bution regularization method (Chen et al., 2019) becomes
less effective when the attack becomes stronger. Last but
not least, beyond IG, our proposed theory and method apply
to any network interpretation method with the completeness
axiom.

5. Experiments
In this section, we demonstrate the effectiveness of our pro-
posed methods in 5 aspects: a) classification robustness
against PGD attacks (Madry et al., 2018; Athalye et al.,
2018), b) defending against unforeseen adversarial attacks
(Kang et al., 2019), c) computation efficiency, d) interpreta-
tion robustness when facing attacks against interpretability
(Ghorbani et al., 2019), and e) visualization of perceptually-
aligned robust features (Engstrom et al., 2019). Our codes
are available at https://github.com/AkhilanB/
Proper-Interpretability

Datasets and CNN models. We evaluate networks
trained on the MNIST and CIFAR-10 datasets, and a Re-
stricted ImageNet (R-ImageNet) dataset used in (Tsipras
et al., 2019). We consider three models, Small (for MNIST
and CIFAR), Pool (for MNIST) and WResnet (for CIFAR
and R-ImageNet). Small is a small CNN architecture con-
sisting of three convolutional layers of 16, 32 and 100 filters.
Pool is a CNN architecture with two convolutional layers
of 32 and 64 filters each followed by max-pooling which
is adapted from (Madry et al., 2018). WResnet is a Wide
Resnet from (Zagoruyko & Komodakis, 2016) .

Attack models. First, to evaluate robustness of classifica-
tion, we consider conventional PGD attacks with different
steps and perturbation sizes (Madry et al., 2018; Athalye
et al., 2018) and unforeseen adversarial attacks (Kang et al.,
2019) that are not used in robust training. Second, to eval-
uate the robustness of interpretation, we consider attacks
against interpretability (AAI) (Ghorbani et al., 2019; Dom-
browski et al., 2019), which produce input perturbations to
maximize the interpretation discrepancy rather than misclas-
sification. We refer readers to Appendix C for details on the
generation of AAI. Furthermore, we consider ISA (6) under
different discrepancy measures to support our findings in
Figure 2. Details are presented in Appendix B.

Training methods. We consider 6 baselines: i) standard
training (Normal), ii) adversarial training (Adv) (Madry
et al., 2018), iii) TRADES (Zhang et al., 2019), iv) IG-
Norm that uses IG-based robust attribution regularization
(Chen et al., 2019), v) IG-Sum-Norm (namely, IG-Norm
with adversarial loss), and vi) Int using `1 1-class discrep-
ancy (Int-one-class). Additionally, we consider 4 variants
of our method: i) Int, namely, (8) plus (9), ii) Int with adver-
sarial loss (Int-Adv), iii) Int2, namely,(8) plus (10), and iv)
Int2 with adversarial loss (Int2-Adv).

Unless specified otherwise, we choose the perturbation size
ε = 0.3 on MNIST, 8/255 on CIFAR and 0.003 for R-
ImageNet for robust training under an `∞ perturbation norm.
We refer readers to Appendix D for more details. Also, we
set the regularization parameter γ as 0.01 in (8); see a justi-
fication in Appendix F. Note that when training WResnet,
the IG-based robust training methods (IG-Norm and IG-
Norm-Sum) are excluded due to the prohibitive computa-
tion cost of computing IG. For our main experiments, we
focus on the Small and WResnet architectures, but ad-
ditional results on the Pool architecture are included in
Appendix H.

5.1. Classification against prediction-evasion attacks

Robustness & training efficiency. In Figure 3, we
present the training time (left y-axis) and the adversarial
test accuracy (right y-axis) for different training methods

https://github.com/AkhilanB/Proper-Interpretability
https://github.com/AkhilanB/Proper-Interpretability
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Figure 3. Computation time per epoch and adversarial test accu-
racy for a Small MNIST model trained with different methods.

(x-axis) that are ranked in a decreasing order of computation
complexity. Training times are evaluated on a 2.60 GHz
Intel Xeon CPU. Here adversarial test accuracy (ATA) is
found by performing 200-step `∞-PGD attacks of perturba-
tion size ε = 0.3 and 0.4 on the learned MNIST model
Small over 200 random test set points. Note that all
methods that use adversarial losses (IG-Norm-Sum, Int-Adv,
Int2-Adv, TRADES and Adv) can yield robust classifica-
tion at ε = 0.3 (with ATA around 80%). However, among
interpretability-regularized defense methods (IG-Norm, Int-
one-class, Int, Int2), only the proposed Int and Int2 methods
provide competitive ATAs. As the PGD attack becomes
stronger (ε = 0.4), Int and Int2 based methods outperform
all others in ATA. This implies the benefit of robust inter-
pretation when facing stronger prediction-evasion attacks;
see more details in later results.

In Figure 3, we also find that both IG-Norm (Chen et al.,
2019) and Int-one-class are insufficient to provide satisfac-
tory ATA. The verifies the importance on penalizing the
2-class interpretation discrepancy to render robust classi-
fication. We further observe that IG-based methods make
training time (per epoch) significantly higher, e.g., ≥ 4
times more than Int.

Robustness against PGD attacks with different steps
and perturbation sizes. It was shown in (Athalye et al.,
2018; Carlini, 2019) that some defense methods cause obfus-
cated gradients, which give a false sense of security. There
exist two characteristic behaviors of obfuscated gradients:
(a) Increasing perturbation size does not increase attack
success; (b) One-step attacks perform better than iterative
attacks. Motivated by that, we evaluate our interpretability-
aware robust training methods under PGD attacks with dif-
ferent perturbation sizes and steps.

Table 1 reports ATA of interpretability-aware robust training

compared to various baselines over MNIST and CIFAR,
where 200-step PGD attacks are conducted for robustness
evaluation under different values of perturbation size ε. As
we can see, ATA decreases as ε increases, violating the
behavior (a) of obfuscated gradients. We also observe that
compared to Adv and TRADES, Int and Int2 achieve slightly
worse standard accuracy (ε = 0) and ATA on ε less than the
value used for training. However, when the ε used in the
PGD attack achieves the value used for robust training, Int
and Int2 achieve better ATA than Adv on CIFAR-10 (0.270
and 0.290 vs 0.170). Interestingly, the advantage of Int
and Int2 becomes more evident as the adversary becomes
stronger, i.e., ε > 0.3 on MNIST and ε > 8/255 on CIFAR-
10. We highlight that such a robust classification is achieved
by promoting robustness of interpretations alone (without
using adversarial loss).

It is worth mentioning that IG-Norm fails to defend PGD
attack with ε = 0.3 for the MNIST model Small. We
further note that Int-one-class performs much worse than
Int, supporting the importance of using a 2-class discrep-
ancy measure. As will be evident later, IG-Norm is also not
the best to render robustness in interpretation (Table 3). In
Table A3 of Appendix G, we further show that as the num-
ber of iterations of PGD attacks increases, the ATA of our
proposed defensive schemes decreases accordingly. This
violates the typical behavior (b) of obfuscated gradients.

Method ε = 0 0.05 0.1 0.2 0.3 0.35 0.4

MNIST, Small

Normal 1.000 0.530 0.045 0.000 0.000 0.000 0.000
Adv 0.980 0.960 0.940 0.925 0.890 0.010 0.000
TRADES 0.970 0.970 0.955 0.930 0.885 0.000 0.000
IG-Norm 0.985 0.950 0.895 0.410 0.005 0.000 0.000
IG-Norm-Sum 0.975 0.955 0.935 0.910 0.880 0.115 0.000
Int-one-class 0.975 0.635 0.330 0.140 0.125 0.115 0.080
Int 0.950 0.930 0.905 0.840 0.790 0.180 0.140
Int-Adv 0.935 0.945 0.905 0.880 0.855 0.355 0.175
Int2 0.950 0.945 0.935 0.890 0.845 0.555 0.385
Int2-Adv 0.955 0.925 0.915 0.880 0.840 0.655 0.620

ε = 0 2/255 4/255 6/255 8/255 9/255 10/255

CIFAR-10, WResnet

Normal 0.765 0.250 0.070 0.060 0.060 0.060 0.060
Adv 0.720 0.605 0.485 0.330 0.170 0.145 0.085
TRADES 0.765 0.610 0.460 0.295 0.170 0.140 0.100
Int-one-class 0.685 0.505 0.360 0.190 0.065 0.040 0.025
Int 0.735 0.630 0.485 0.365 0.270 0.240 0.210
Int-Adv 0.665 0.585 0.510 0.385 0.320 0.300 0.280
Int2 0.690 0.595 0.465 0.360 0.290 0.245 0.220
Int2-Adv 0.680 0.585 0.485 0.405 0.335 0.310 0.285

R-ImageNet, WResnet

Normal 0.770 0.070 0.035 0.030 0.040 0.030 0.030
Adv 0.790 0.455 0.230 0.100 0.070 0.060 0.050
Int 0.660 0.570 0.460 0.385 0.280 0.250 0.220
Int2 0.655 0.545 0.480 0.355 0.265 0.205 0.170

Table 1. Evaluation of 200-step PGD accuracy under different per-
turbation sizes ε. ATA with ε = 0 reduces to standard test accuracy.
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Method Gabor Snow JPEG `∞ JPEG `2 JPEG `1

CIFAR-10, Small

Normal 0.125 0.000 0.000 0.030 0.000
Adv 0.190 0.115 0.460 0.380 0.230
TRADES 0.220 0.085 0.425 0.300 0.070
IG-Norm 0.155 0.015 0.000 0.000 0.000
IG-Norm-Sum 0.185 0.110 0.480 0.375 0.215
Int 0.160 0.105 0.440 0.345 0.260
Int-Adv 0.150 0.120 0.340 0.310 0.235
Int2 0.130 0.115 0.440 0.365 0.295
Int2-Adv 0.110 0.135 0.360 0.315 0.260

Table 2. ATA on different unforeseen attacks in (Kang et al., 2019).
Best results in each column are highlighted.

Robustness against unforeseen attacks. In Table 2, we
present ATA of interpretability-aware robust training and
various baselines for defending attacks (Gabor, Snow, JPEG
`∞, JPEG `2, and JPEG `1) recently proposed in (Kang
et al., 2019). These attacks are called ‘unforeseen attacks’
since they are not met by PGD-based robust training and
often induce larger perturbations than conventional PGD
attacks. We use the same attack parameters as used in (Kang
et al., 2019) over 200 random test points. To compare with
IG-based methods, we present results on the Small archi-
tecture since computing IG on the WResnet architecture
is computationally costly. As we can see, Int and Int2 sig-
nificantly outperform IG-Norm especially under Snow and
JPEG `p attacks. Int and Int2 also yield competitive ro-
bustness compared to the robust training methods that use
the adversarial training loss (Adv, TRADES, IG-Norm-Sum,
Int-Adv, Int2-Adv).

5.2. Robustness of interpretation against AAI

Recall that attack against interpretability (AAI) attempts to
generate an adversarial interpretation map (namely, CAM
in experiments) that is far away from the benign CAM of
the original example w.r.t. the true label; see details in
Appendix C. The performance of AAI is then measured
by the Kendall’s Tau order rank correlation between the
adversarial and the benign interpretation maps (Chen et al.,
2019). The higher the correlation is, the more robust the
model is in interpretation. Reported rank correlations are
averaged over 200 random test set points.

In Table 3, we present the performance of obtained robust
models against AAI with different attack strengths (in terms
of the input perturbation size ε); see Table A7 of Appendix H
for results on additional dataset and networks. The insights
learned from Table 3 are summarized as below. First, the
normally trained model (Normal) does not automatically
offer robust interpretation, e.g., against AAI with ε ≥ 0.2 in
MNIST. Second, the interpretation robustness of networks
learned using adversarial training methods Adv and TRADES
is worse than that learnt from interpretability-regularized

training methods (except IG-Norm) as the perturbation size
ε increases (ε ≥ 0.3 for MNIST and ε ≥ 8/255 for R-
ImageNet). Third, when the adversarial training loss is not
used, our proposed methods Int and Int2 are consistently
more robust than IG-Norm, and their advantage becomes
more evident as ε increases in MNIST.

Method ε = 0.05 0.1 0.2 0.3 0.35 0.4

MNIST, Small

Normal 0.907 0.797 0.366 -0.085 -0.085 -0.085
Adv 0.978 0.955 0.910 0.857 0.467 0.136
TRADES 0.978 0.955 0.905 0.847 0.450 0.115
IG-Norm 0.958 0.894 0.662 0.278 0.098 0.094
IG-Norm-Sum 0.976 0.951 0.901 0.850 0.659 0.389
Int-one-class 0.874 0.818 0.754 0.692 0.461 0.278
Int 0.982 0.968 0.941 0.913 0.504 0.320
Int-Adv 0.980 0.965 0.936 0.912 0.527 0.348
Int2 0.982 0.967 0.941 0.918 0.612 0.351
Int2-Adv 0.982 0.971 0.950 0.931 0.709 0.503

ε = 2/255 4/255 6/255 8/255 9/255 10/255

R-ImageNet, WResnet

Normal 0.851 0.761 0.705 0.673 0.659 0.619
Adv 0.975 0.947 0.916 0.884 0.870 0.858
Int 0.988 0.974 0.960 0.946 0.939 0.932
Int2 0.989 0.977 0.965 0.952 0.946 0.939

Table 3. Performance of AAI for different values of perturbation
size ε in terms of Kendall’s Tau order rank correlation between the
original and adversarial interpretation maps. High interpretation
robustness corresponds to large correlation value.

5.3. Perceptually-aligned robust features

In Figure 4, we visually examine whether or not our pro-
posed interpretability-aware training methods (Int and Int2)
are able to render perceptually-aligned robust features sim-
ilar to those found by (Engstrom et al., 2019) using Adv.
Figure 4 shows that similar texture-aligned robust features
can be acquired from networks trained using Int and Int2
regardless of the choice of input seed image. This observa-
tion is consistent with features learnt from Adv. By contrast,
the networks trained using Normal and IG-Norm fail to
yield robust features; see results learnt from IG-Norm under
CIFAR-10 Small model in Appendix I.

6. Conclusion
In this paper, we investigate the connection between net-
work interpretability and adversarial robustness. We show
theoretically and empirically that with the correct choice
of discrepancy measure, it is difficult to hide adversarial
examples from interpretation. We leverage this discrepancy
measure to develop a interpretability-aware robust training
method that displays 1) high classification robustness in a
variety of settings and 2) high robustness of interpretation.
Future work will extend our proposal to a semi-supervised
setting by incorporating unlabeled training data.
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Seed Images Normal Adv Int Int2

Figure 4. Feature visualization at neuron 3 under CIFAR-10
WResnet model trained by different methods. Column 1 contains
different seed images to maximize neuron’s activation. Columns
2-5 contain generated features w.r.t. each seed image.
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Appendix

A. Proof of Proposition 1
We first prove a generalization of Proposition 1 assuming a more general completeness axiom: ∀c ∈ [C], suppose
g(fc(x)) =

∑
i[I(x, c)]i where g is a monotonically increasing function, e.g., a positive scaling function. The standard

completeness axiom (Sundararajan et al., 2017) uses the identity function for g: g(z) = z.

Using the generalized completeness axiom, we obtain that

g(fy′(x
′))− g(fy′(x)) =

∑
i

([I(x′, y′)]i − [I(x, y′)]i)

≤
∑
i

|[I(x′, y′)]i − [I(x, y′)]i| = ‖I(x′, y′)− I(x, y′)‖1. (11)

Similarly, we have

g(fy(x))− g(fy(x′)) ≤ ‖I(x, y)− I(x′, y)‖1. (12)

Adding (11) and (12) rearranging yields

[g(fy′(x
′))− g(fy(x′))] + [g(fy(x))− g(fy′(x))] ≤ ‖I(x′, y′)− I(x, y)‖1 + ‖I(x, y)− I(x′, y)‖1. (13)

Since fy′(x′) − fy(x′) ≥ 0 and g is monotonically increasing, g(fy′(x
′)) − g(fy(x′)) ≥ 0. We then have ‖I(x′, y′) −

I(x, y′)‖1 + ‖I(x, y)− I(x′, y)‖1 ≥ g(fy(x))− g(fy′(x)), which implies:

D2,`1(x,x′) ≥ (1/2)[g(fy(x))− g(fy′(x))]. (14)

This is a generalization of the bound in Proposition 1. Taking g(z) = z yields Equation (5).
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B. Interpretability Sneaking Attack (ISA): Evaluation and Results
In what follows, we provide additional experiment results on examining the relationship between classification robustness
and interpretation robustness through the lens of ISA. We evaluate the effect of interpretation discrepancy measure on ease
of finding ISAs. Spurred by Figure 2, such an effect is quantified by calculating minimum discrepancy required in generating
ISAs against different values of perturbation size ε in (6). We conduct experiments over 4 network interpretation methods: i)
CAM, ii) GradCAM++, iii) IG, and iv) internal representation at the penultimate (pre-softmax) layer (denoted by Repr).

In order to fairly compare among different interpretation methods, we compute a normalized discrepancy score (NDS)
extended from (3): Dnorm = 1

|C|
∑
i∈C

∥∥∥ I(x,i)−I(x′,i)
maxj I(x,i)j−minj I(x,i)j

∥∥∥
p
. A larger value of NDS implies the more difficulty for

ISA to alleviate interpretation discrepancy from adversarial perturbations. To quantify the strength of ISA against the
perturbation size ε, we compute an additional quantity called normalized slope (NSL) that measures the relative change of
NDS for ε ∈ [ε̌, ε̂]: Snorm =

|D(ε̂)
norm−D

(ε̌)
norm|/D

(ε̌)
norm

(ε̂−ε̌)/ε̌ . The smaller NSL is, the more difficult it is for ISA to resist network
interpretation changes as ε increases. In our experiment, we choose ε̌ = ε∗ and ε̂ = 1.6 ε∗, where ε∗ is the minimum
perturbation size required for a successful PGD attack. Here we perform binary search over ε to find its smallest value for
misclassification. Reported NDS and NSL statistics are averaged over a test set.

In Table A1, we present NDS and NSL of ISAs generated under different realizations of interpretation discrepancy measure
(3), each of which is given by a combination of interpretation method (CAM, GradCAM++, IG or Repr), `p norm (p ∈ {1, 2})
and number of interpreted classes. Note that Repr is independent of the number of classes, and thus we report NDS and NSL
corresponding to Repr in the 2-class column of Table A1. Given an `p norm and an interpretation method, we consistently
find that the use of 2-class measure achieves the largest NDS and smallest NSL at the same time. This implies that the
2-class discrepancy measure increases the difficulty for ISA to evade a network interpretability check. Moreover, given a
class number and an interpretation method, we see that NDS under `1 norm is greater than that under `2 norm, since the
former is naturally an upper bound of the latter. Also, the use of `1 norm often yields a smaller value of NSL, implying that
the `1-norm based discrepancy measure is more resistant to ISA. Furthermore, by fixing the combination of `1 norm and 2
classes, we observe that IG is the most resistant to ISA due to its relatively high NDS and low ISA, and Repr yields the
worst performance. However, compared to CAM, the computation cost of IG increases dramatically as the input dimension,
the model size, and the number of steps in Riemman approximation increase. We find that it becomes infeasible to generate
ISA using IG for WResnet under R-ImageNet within 200 hours.

Dataset Interpretation
method

`1 norm `2 norm

1-class 2-class all-class 1-class 2-class all-class

MNIST

CAM 3.0723/0.0810 3.2672/0.0223 2.5289/0.0414 0.3061/0.1505 0.5654/0.0321 0.4320/0.0459
GradCAM++ 3.1264/0.0814 3.1867/0.0221 2.5394/0.0366 0.3308/0.1447 0.5531/0.0289 0.4392/0.0456

IG 6.3604/0.0330 6.7884/0.0233 4.3667/0.2314 0.4476/0.0082 0.5766/0.0064 0.2160/0.0337
Repr n/a 2.3668/0.0404 n/a n/a 0.4129/0.0429 n/a

CIFAR-10

CAM 1.9523/0.1450 2.5020/0.0496 1.7898/0.0774 0.1313/0.2369 0.3613/0.0668 0.2746/0.0809
GradCAM++ 1.9355/0.1439 2.4788/0.0513 1.8020/0.0745 0.1375/0.2346 0.3577/0.0676 0.2758/0.0769

IG 4.9499/0.0188 4.9794/0.0177 2.8541/0.1356 0.1230/0.0110 0.1309/0.0092 0.0878/0.0235
Repr n/a 1.7049/0.0785 n/a n/a 0.1288/0.0056 n/a

R-ImageNet

CAM 49.286/0.1005 61.975/0.0331 49.877/0.0557 1.9373/0.1526 2.6036/0.0791 2.0935/0.0863
GradCAM++ 39.761/0.1028 50.303/0.0453 42.390/0.0552 1.9185/0.1609 2.5869/0.0891 2.1151/0.0896

Repr n/a 46.892/0.0657 n/a n/a 2.0730/0.0781 n/a

Table A1. NDS and NSL (format given by NDS/NSL) of successful ISAs generated under different specifications of interpretation
discrepancy measure (3) and datasets MNIST, CIFAR and R-ImageNet. Here a discrepancy measure with large NDS and small NSL
indicates a non-trivial challenge for ISA to mitigate interpretation discrepancy.
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C. Attack against Interpretability (AAI)
Different from ISA, AAI produces input perturbations to maximize the interpretation discrepancy while keeping the
classification decision intact. Thus, AAI provides a means to evaluate the adversarial robustness in interpretations. Since
y = arg maxi fi(x) = arg maxi fi(x

′) = y′ in AAI, the 2-class interpretation discrepancy measure (4) reduces to its
1-class version. The problem of generating AAI is then cast as

minimize
δ

λmax{maxj 6=y fj(x+ δ)− fy(x+ δ), 0} − D1 (x,x+ δ)

subject to ‖δ‖∞ ≤ ε,
(15)

where the first term is a hinge loss to enforce fy(x + δ) ≥ maxj 6=y fj(x + δ), namely, arg maxi fi(x
′) = y (unchanged

prediction under input perturbations), and D1 denotes a 1-class interpretation discrepancy measure, e.g., D1,`1 from (4), or
the top-k pixel difference between interpretation maps (Ghorbani et al., 2019). Similar to (6), the regularization parameter
λ in (15) strikes a balance between stealthiness in classification and variation in interpretations. Experiments in Sec. 5
will show that the state-of-the-art defense methods against adversarial examples do not necessarily preserve robustness in
interpretations as ε increases, although the prediction is not altered. For evaluation, AAI are found over 200 random test set
points. AAI are computed assuming an `∞ perturbation norm for different values of ε using 200 attack steps with a step size
of 0.01.
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D. Additional Experimental Details
Models The considered network models all have a global average pooling layer followed by a fully connected layer at the
end of the network. For our WResnet model, we use a Wide Residual Network (Zagoruyko & Komodakis, 2016) of scale
×1 consisting of (16, 16, 32, 64) filters in the residual units.

Robust Training During robust training of all baselines, 40 adversarial steps are used for MNIST, 10 steps for CIFAR
and 7 steps for R-ImageNet. For finding perturbed inputs for robust training methods, a step size of 0.01 is used for MNIST,
2/255 for CIFAR and 0.1 for R-ImageNet. To ensure stability of all training methods, the size of perturbation is increased
during training from 0 to a final value of 0.3 on MNIST, 8/255 on CIFAR and 0.003 on R-ImageNet. The perturbation size
schedule for all three datasets consists of regular training (ε = 0) for a certain number of training steps (MNIST: 2000,
CIFAR: 5000, R-ImageNet: 5000) followed by a linear increase in the perturbation size until the end of training. This is
done to maintain relatively high non-robust accuracy. A batch size of 50 is used for MNIST, 128 for CIFAR and 64 for
R-ImageNet. On MNIST and CIFAR, these parameters are chosen to be consistent with the implementation in (Madry et al.,
2018) including adversarial steps (MNIST: 40, CIFAR: 10), the step size (MNIST: 0.01, CIFAR: 2/255), the batch size
(MNIST: 50, CIFAR: 128), and perturbation size (MNIST: 0.3, CIFAR: 8/255). MNIST networks are trained for 100 epochs,
CIFAR networks are trained for 200 epochs, slightly fewer than the approximately 205 used in (Madry et al., 2018), and
R-ImageNet networks are trained for 35 epochs. For all methods, training is performed using Adam with an initial learning
rate of 0.0001 for MNIST and 0.001 for CIFAR and R-ImageNet, with the learning decayed by ×1/10 at training steps
40000 and 60000 for CIFAR and 8000 and 16000 for R-ImageNet. We note that some prior work including (Madry et al.,
2018) uses momentum-based SGD instead.

For robust training of IG-based methods, to reduce the relative training time to other methods, we use 5 steps in our Riemann
approximation of IG, which reduces computation time from the 10 steps used during training in (Chen et al., 2019)). In
addition, we use a regularization parameter of 1 for IG-Norm and IG-Norm-Sum to maintain consistency between both
methods. Other training parameters, including the number of epochs (100), the number of adversarial steps (40), the `∞
adversarial step size (0.01), the Adam optimizer learning rate (0.0001), the batch size (50) and the adversarial perturbation
size (0.3) are the same as used by (Chen et al., 2019) on MNIST.

In our implementation of TRADES, we use a regularization parameter (multiplying the regularization term) of 1 on all
datasets. Other training parameters are the same as used by (Zhang et al., 2019) including the number of adversarial training
steps (MNIST: 40, CIFAR: 10), the perturbation size (MNIST: 0.3, CIFAR: 8/255) and the `∞ adversarial step size (MNIST:
0.01, CIFAR: 2/255).

Evaluations For PGD evaluation, we use a maximum of 200 steps for PGD attacks, increasing from the maximum of 20
steps used in (Madry et al., 2018), since we found that accuracy can continue to drop until 200 attack steps. For top-K AAI
evaluations, we use a value of K = 8 over all datasets, which we found to be suitable for CAM interpretation maps.
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E. Empirical Tightness of Proposition 1
To evaluate the tightness of the bound in Proposition 1, we compute the values of the discrepancy (LHS) and classification
margin (RHS) in Equation (5) on Small models trained on MNIST and CIFAR-10. To show the distributions of the values
of discrepancy or classification margin over the test dataset, in each setting, we report deciles of these values (corresponding
to the inverse cumulative distribution function evaluated at 10%, 20%, ...). As observed in Table A2, we find that the gap
between discrepancy (rows 1 and 3) and classification margin (rows 2 and 4) is small, particularly compared to the variation
in these quantities within each row. This indicates that the bound in Proposition 1 is quite tight.

Decile = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MNIST, Small

Discrepancy 5.91 6.73 7.28 9.05 9.82 10.94 13.06 15.98 18.58
Classification Margin 5.23 5.92 6.49 7.51 8.11 9.41 11.40 13.39 16.60

CIFAR-10, Small

Discrepancy 0.86 2.04 2.84 3.84 4.36 5.16 6.43 7.17 10.43
Classification Margin 0.52 1.45 2.25 2.59 3.54 4.34 5.49 6.28 8.43

Table A2. Deciles of discrepancy and classification margin reported over a test set. Quantities are reported for Small models trained on
MNIST and CIFAR-10.

F. Experiments on Regularization Parameter γ

We conduct experiments for evaluating the sensitivity of the regularization parameter γ in our proposed approach (namely,
Int) under Small MNIST and CIFAR-10 models. For MNIST, adversarial test accuracy (ATA) and clean test accuracy
results are plotted in Figure A1. As illustrated, using different values of the hyperparameter γ controls the tradeoff between
clean accuracy and ATA, with smaller γ yielding higher clean accuracy, but lower ATA (a value of γ = 0 corresponds to
normal training). We note that with the model tested, ATA stops increasing at a value of γ = 0.01. Beyond this value,
clean accuracy continues to decrease while ATA slightly decreases. These results indicate that by choosing an appropriate
γ, it is possible to smoothly interpolate between normal training and maximally robust Int training. We also remark that
for all training ε, ATA increases rapidly below γ = 0.01, with a relatively small drop in clean accuracy. For instance, on
CIFAR-10, at εtrain = 6/255, when moving from γ = 0.005 to γ = 0.01, ATA increases by 13.0% with a drop of 5.5% in
clean accuracy. We choose γ = 0.01 in our experiments.

Figure A1. Clean test accuracy and adversarial test accuracy for a Small MNIST model trained with Int using different values of
regularization parameter γ.
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G. Multi-step PGD Accuracy
Table A3 shows ATA of interpretability-aware robust training against k-step PGD attacks, where k ∈ {1, 10, 100, 200}. As
we can see, ATA decreases as k increases. This again verifies that the high robust accuracy obtained from our methods is not
a result of obfuscated gradients. We also see that Int outperforms IG-Norm and Int-one-class when facing stronger PGD
attacks. Here the attack strength is characterized by the number of PGD steps.

Method Steps= 1 10 100 200

MNIST, Small, ε = 0.3

Normal 0.990 0.070 0.000 0.000
Adv 0.975 0.945 0.890 0.890
TRADES 0.970 0.955 0.885 0.885
IG-Norm 0.970 0.905 0.005 0.005
IG-Norm-Sum 0.970 0.940 0.880 0.880
Int-one-class 0.950 0.365 0.125 0.125
Int 0.935 0.910 0.790 0.790
Int-Adv 0.950 0.905 0.855 0.855
Int2 0.950 0.935 0.845 0.845
Int2-Adv 0.945 0.915 0.840 0.840

CIFAR-10, WResnet, ε = 8/255

Normal 0.470 0.075 0.060 0.060
Adv 0.590 0.205 0.185 0.185
TRADES 0.590 0.180 0.165 0.165
Int-one-class 0.505 0.100 0.060 0.060
Int 0.620 0.310 0.275 0.275
Int-Adv 0.580 0.345 0.335 0.335
Int2 0.585 0.320 0.300 0.290
Int2-Adv 0.585 0.360 0.335 0.335

Table A3. Multi-step PGD accuracy.
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H. Additional Tables

Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.990 0.435 0.070 0.000 0.000
Adv 0.930 0.885 0.835 0.695 0.535
TRADES 0.955 0.910 0.870 0.720 0.455
IG-Norm 0.980 0.940 0.660 0.050 0.000
IG-Norm-Sum 0.920 0.885 0.840 0.700 0.540
Int-one-class 0.975 0.885 0.720 0.200 0.130
Int 0.950 0.930 0.875 0.680 0.390
Int-Adv 0.870 0.840 0.810 0.755 0.690
Int2 0.955 0.915 0.885 0.730 0.510
Int2-Adv 0.865 0.830 0.805 0.760 0.705

ε = 0 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.650 0.015 0.000 0.000 0.000
Adv 0.505 0.470 0.380 0.330 0.285
TRADES 0.630 0.465 0.355 0.235 0.140
IG-Norm 0.525 0.435 0.360 0.295 0.230
IG-Norm-Sum 0.390 0.365 0.325 0.310 0.285
Int-one-class 0.515 0.450 0.380 0.315 0.265
Int 0.530 0.450 0.345 0.290 0.215
Int-Adv 0.675 0.145 0.005 0.000 0.000
Int2 0.470 0.430 0.360 0.330 0.260
Int2-Adv 0.395 0.365 0.345 0.310 0.295

Table A4. 200 steps PGD accuracy, additional results.
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Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.990 0.435 0.070 0.000 0.000
Adv 0.930 0.885 0.835 0.695 0.535
TRADES 0.955 0.910 0.870 0.720 0.460
IG-Norm 0.980 0.945 0.660 0.060 0.000
IG-Norm-Sum 0.920 0.885 0.840 0.700 0.540
Int-one-class 0.975 0.885 0.720 0.200 0.130
Int 0.950 0.930 0.875 0.680 0.385
Int-Adv 0.870 0.840 0.810 0.755 0.700
Int2 0.955 0.915 0.885 0.730 0.510
Int2-Adv 0.865 0.830 0.805 0.760 0.705

ε = 0 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.650 0.015 0.000 0.000 0.000
Adv 0.505 0.470 0.380 0.330 0.285
TRADES 0.630 0.465 0.355 0.235 0.140
IG-Norm 0.525 0.435 0.360 0.295 0.230
IG-Norm-Sum 0.390 0.365 0.325 0.310 0.285
Int-one-class 0.515 0.450 0.380 0.315 0.265
Int 0.530 0.450 0.345 0.290 0.215
Int-Adv 0.675 0.145 0.005 0.000 0.000
Int2 0.470 0.430 0.360 0.330 0.260
Int2-Adv 0.395 0.365 0.345 0.310 0.295

Table A5. 100 step PGD accuracy, additional results.
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Method ε = 0 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.990 0.470 0.135 0.135 0.135
Adv 0.930 0.885 0.845 0.845 0.845
TRADES 0.955 0.910 0.870 0.870 0.870
IG-Norm 0.980 0.945 0.705 0.705 0.705
IG-Norm-Sum 0.920 0.885 0.850 0.850 0.850
Int-one-class 0.975 0.885 0.750 0.750 0.750
Int 0.950 0.930 0.885 0.885 0.885
Int-Adv 0.870 0.840 0.810 0.810 0.810
Int2 0.955 0.915 0.885 0.885 0.885
Int2-Adv 0.865 0.830 0.805 0.805 0.805

ε = 0 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.650 0.015 0.000 0.000 0.000
Adv 0.505 0.470 0.380 0.325 0.280
TRADES 0.630 0.465 0.360 0.240 0.145
IG-Norm 0.675 0.145 0.005 0.000 0.000
IG-Norm-Sum 0.515 0.450 0.380 0.315 0.265
Int-one-class 0.530 0.450 0.345 0.290 0.220
Int 0.525 0.435 0.360 0.295 0.235
Int-Adv 0.390 0.365 0.325 0.310 0.285
Int2 0.470 0.430 0.360 0.330 0.265
Int2-Adv 0.395 0.365 0.345 0.315 0.295

Table A6. 10 step PGD accuracy, additional results.
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Method ε = 0.05 0.1 0.2 0.3

MNIST, Pool

Normal 0.934 0.876 0.719 0.482
Adv 0.976 0.951 0.896 0.824
TRADES 0.976 0.952 0.891 0.815
IG-Norm 0.942 0.872 0.648 0.341
IG-Norm-Sum 0.976 0.951 0.895 0.824
Int-one-class 0.930 0.871 0.779 0.704
Int 0.964 0.928 0.852 0.771
Int-Adv 0.977 0.957 0.921 0.891
Int2 0.969 0.941 0.885 0.832
Int2-Adv 0.977 0.956 0.921 0.889

ε = 2/255 4/255 6/255 8/255

CIFAR-10, Small

Normal 0.694 0.350 0.116 -0.031
Adv 0.958 0.907 0.849 0.783
TRADES 0.940 0.867 0.781 0.689
IG-Norm 0.810 0.552 0.308 0.131
IG-Norm-Sum 0.958 0.907 0.847 0.779
Int-one-class 0.961 0.918 0.871 0.820
Int 0.965 0.926 0.883 0.840
Int-Adv 0.979 0.956 0.931 0.904
Int2 0.971 0.941 0.908 0.875
Int2-Adv 0.980 0.959 0.938 0.914

CIFAR-10, WResnet

Normal 0.595 0.159 0.067 -0.069
Adv 0.912 0.816 0.724 0.629
TRADES 0.918 0.832 0.747 0.652
Int 0.859 0.763 0.746 0.682
Int-Adv 0.885 0.803 0.751 0.696
Int2 0.868 0.779 0.708 0.674
Int2-Adv 0.889 0.788 0.721 0.672

Table A7. Kendall rank correlation coefficients of Top-k CAM attacks against interpretability found using 200 steps of PGD, additional
results.
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I. Additional Results on Robust Features

Seed Images Normal IG-Norm Adv Int Int2

Figure A2. Feature visualization at neuron 28 under CIFAR-10 Small model trained by different methods.

Seed Images Normal IG-Norm Adv Int Int2

Figure A3. Feature visualization at neuron 55 under CIFAR-10 Small model trained by different methods.
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Seed Images Normal Adv Int Int2

Figure A4. Feature visualization at neuron 42 under CIFAR-10 WResnet model trained by different methods.

Seed Images Normal Adv Int Int2

Figure A5. Feature visualization at neuron 3 under CIFAR-10 WResnet model trained by different methods.


