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Abstract
Highly overparametrized neural networks can dis-
play curiously strong generalization performance –
a phenomenon that has recently garnered a wealth
of theoretical and empirical research in order to
better understand it. In contrast to most previous
work, which typically considers the performance
as a function of the model size, in this paper we
empirically study the generalization performance
as the size of the training set varies over multiple
orders of magnitude. These systematic experi-
ments lead to some interesting and potentially
very useful observations; perhaps most notably
that training on smaller subsets of the data can
lead to more reliable model selection decisions
whilst simultaneously enjoying smaller computa-
tional overheads. Our experiments furthermore al-
low us to estimate Minimum Description Lengths
for common datasets given modern neural net-
work architectures, thereby paving the way for
principled model selection taking into account
Occams-razor.

1. Introduction
According to classical statistical learning theory, achieving
an optimal generalisation loss requires selecting a model
capacity that strikes the best balance between underfitting
and overfitting, i.e., between not having enough capacity
to model the training data accurately and having too much,
and thus prone to adapt too closely to the training data at
the expense of generalisation. Under this theory, the final
generalisation loss plotted against model capacity should
behave as a U-shaped curve – initially decreasing as the ca-
pacity increases (underfitting) to reach a minimum (optimal
model size) and then finally increase again (overfitting).

Contrary to these results, it has long been observed that
neural networks show a curiously good generalization per-
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formance (in terms of error) when applied to classification
problems, even though the generalization cross-entropy ex-
hibits all the characteristics of overfitting. There has recently
been renewed interest in studying this phenomenon, both
theoretically and empirically (Advani & Saxe, 2017; Spigler
et al., 2018). Belkin et al. (2019) for example argue that
beside the classical underfitting and overfitting regimes, a
third one for massively overparameterised models exists.
The transition into this regime is called the interpolation
threshold and is characterized by a peak in generalization
error, followed by a phase of further decrease. The pecu-
liar shape of the generalization-error over model-size curve
lends the term double-descent to this phenomenon. Work by
Nakkiran et al. (2019) has sharpened this picture and shown
that this behaviour can be observed when training modern
neural network architectures on established, challenging
datasets. Most of the work studying generalization of neural
networks focuses on the relationship between generalization
performance and model size. Instead we present an empiri-
cal study that investigates the generalization performance
as a function of the training set size.

In the rest of the Introduction we outline the main contribu-
tions of our work.

1.1. Performance analysis

One of our key contributions is to gather performance curves
as a function of the training set size for a wide range of archi-
tectures on ImageNet, CIFAR10, MNIST and EMNIST. We
also perform an extensive sweep over a wide range of archi-
tectures, model sizes, optimizers and, crucially, we vary the
size of the training sets over multiple orders of magnitude,
starting from the full dataset down to only few examples per
class. Our study covers even extreme cases – for example
the training of oversized ResNet architectures with 10 or
less examples per class. This is, to the best of our knowl-
edge, the most extensive empirical analysis conducted on
generalization for massively overparameterized models, and
strengthens the emerging understanding of training regimes
for modern deep learning.

1.2. A ranking-hypothesis

One salient observation we have made has not been de-
scribed in the literature: overparameterized model archi-
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Figure 1.Learning curves for ResNet-101 on subsets of the ImageNet dataset using a RMSProp with a cosine learning-rate schedule. Left:
the uncalibrated generalization cross-entropy shows a strong over�tting signature (dashed line), the calibrated cross-entropy does not.

Figure 2.Post-convergence generalization error vs. generalization
cross-entropy without early-stopping for a range of model archi-
tectures and training set sizes. The colours represent the different
model architectures. We observe that the calibrated cross entropy
is strongly correlated with the generalization error rate.

tectures seem to maintain their relative ranking in terms
of generalization performance, when trained on arbitrarily
small subsets of the training set.

This observation prompts us to hypothesize that: when (i)
two suf�ciently large neural network architectures A and
B are trained with a well tuned optimizer on datasets of
size N; and (ii) we observe that, in expectation, A performs
better than B; then (iii) A will also perform better than B
in expectation for all differently sized datasets drawn from
the same underlying distribution, as long as we remain well
beyond the interpolation threshold.

Unfortunately this is only an hypothesis, but if this con-
jecture is true it would have profound practical implica-
tions. Namely, it would mean that, for suf�ciently large
models, it would be possible to perform model selection
or architecture-search using small subsets of the data, and
expect that the decision regarding which model to prefer
remains valid when applied to much larger datasets. Indeed,
our experiments show that training on small or medium
sized subsets of the training data leads in many cases not
only to faster convergence, but also to a more robust signal
for model selection than training on big datasets, and is
therefore often preferable.

1.3. Calibration & minimum description length

Independently of the model-selection hypothesis, we also
show that it is possible to avoid some negative effects
of over�tting by simply choosing an optimal softmax-
temperature on a small held-out dataset; i.e., by calibrat-
ing the neural network (Guo et al., 2017). After calibra-
tion, the generalization cross-entropy becomes a stable and
well-behaved quantity even when model sizes and training
set sizes vary considerably. Being able to compute well-
behaved generalization cross-entropy on small training sets
allow us to compute reliable Minimum Description Length
estimates, a quantity that is of interest for principled model
selection taking into account Occam's-razor. We will dis-
cuss this more in depth in Section 5.

2. Related Work

The literature on generalization performance for learned
predictors is vast and spans seminal work on the classi-
cal bias-variance-tradeoff (Geman et al., 1992; Domingos,
2000) all the way to theoretical and empirical work inves-
tigating the still poorly understood, but often strong gener-
alization performance of neural networks. The latter has
been approached from a number of different directions: For
example pointing out that neural networks seem to perform
implicit capacity control (Zhang et al., 2016), investigating
the learning dynamics and properties of the loss landscape
(Spigler et al., 2018) and interpreting stochastic gradient de-
scent as an approximation of probabilistic inference (Mandt
et al., 2017). Finally, two lines of work recently contributed
to the understanding of generalization, the �rst studying in-
�nitely wide neural networks (Jacot et al., 2018; Allen-Zhu
et al., 2019) and the second focusing on the double-decent
phenomenon (Belkin et al., 2019; Nakkiran et al., 2019).

The vast majority of these previous studies focus on the
model-size dependency of the generalization performance.
Notable exceptions are the work by Nakkiran et al. (2019),
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who investigates the neighbourhood of the interpolation
threshold, and the work by Hestness et al. (2017), who
�rst evaluated the generalization error-rate for language
models and ResNets as a function of the training set size.
They point out that the generalization error-rate can be well
predicted by assuming a power law and interpolating from
smaller training sets to bigger ones. In a similar fashion, our
work shows that the relative model ranking trained on small
datasets is maintained when trained on bigger ones, a result
of practical importance for model selection and architecture
search.

3. Methods

3.1. Temperature calibration

Overparameterized models are typically trained by minimiz-
ing either a regression loss or a categorical cross-entropy
loss, but in contrast are then evaluated on their generaliza-
tion performance measured on the error-rate. This is be-
cause the generalization cross-entropy can over�t severely
for models that are suf�ciently big.

We show here that it is possible to avoid the negative ef-
fects of over�tting when using the categorical cross-entropy
by simply choosing an optimal softmax-temperature on a
small heldout dataset; i.e., by calibrating the neural network
in the way proposed by Guo et al. (2017). In practice we
implement temperature calibration by performing gradient
descent on the calibrated cross-entropy loss w.r.t. a single
scalar temperature parameter. We interleave the regular
model training steps with steps of gradient descent on the
calibration loss on some held-out data, that we refer to as
thecalibration dataset. This allows us to track the general-
ization cross-entropy online during learning.

This calibration procedure can prevent the generalization
cross-entropy from over�tting, even when the model size
is order of magnitudes larger than the training set size, and
without relying on early-stopping (see Figure 1 and Fig-
ure 2). Note that, just as with the post-convergence calibra-
tion proposed by Guo et al. (2017), the calibration procedure
does not modify the other parameters, directly or indirectly.

Being able to compute well-behaved generalization cross-
entropies is desirable because it is the loss we optimize for
and because it allows us to compute MDL estimates, as
explained in Section 5. That being said, we could express
all other results in this paper in terms of error-rates instead
of cross-entropies, and the observations and conclusions
would still hold (see Supplementary material).

3.2. Datasets and models

Throughout this study we present a large number of experi-
ments on subsets of different sizes of popular benchmarking

datasets. We call the total set of datapoints available for a
particular training run theavailable dataset, which is split
into atraining setand acalibration set. The former is used
to optimize the connection weights, the batch-norm param-
eters and all other parameters that are considered part of
the neural networks, while the latter to optimise the cali-
bration temperature, as explained in Section 3.1, as well as
to determine the optimal learning-rate and, potentially, to
perform early-stopping. If not mentioned otherwise, we will
use a 90%/10% training/calibration split of theavailable
dataset. To assess a model's ability to generalise beyond the
available-dataset, we then successively evaluate them on a
separate held-out orevaluation dataset. We experimented
with balanced subset sampling, i.e. ensuring that all subsets
always contain an equal number of examples per class. But
we did not observe any reliable improvements from doing
so and therefore reverted to a simple i.i.d sampling strategy.
We always pay particular attention to not to inadvertently
leak data, i.e. use datapoints that have not been properly
accounted for to select the hyperparameters.

We conduct experiments on the following datasets:
MNIST consists of 60k training and 10k test examples from
10 classes (LeCun, 1998). We train MLPs of various depth
and width, with and without dropout, as well as standard
ConvNets on this dataset. Unless otherwise noted, we use
ReLU as the nonlinearity.
EMNIST provides 112,800 training and 18,800 test data-
points from 47 classes in its balanced subset (Cohen et al.,
2017). We train the same family of model architectures we
also train on MNIST.
CIFAR10 consists of 50k training and 10k test examples
from 10 classes (Krizhevsky et al., 2009). We train a wide
range of models on this dataset, including simple archi-
tectures like MLPs and ConvNets; architectures that have
been carefully optimized for image classi�cation: ResNet-
20 (He et al., 2016) and Wide ResNets (Zagoruyko & Ko-
modakis, 2016) as well as a selection of architectures from
the NASBench-101 (Ying et al., 2019) search space. The
latter were chosen by disregarding the worst 10% and then
picking 5 equally-spaced from the remaining ones. The
Supplementary material contains the description of these
architectures. The rationale is that we want to evaluate a
range on non-optimal architectures and con�rm their rela-
tive ranking is preserved when using smaller datasets too.
ImageNetcontains 1.28M training and 50k validation exam-
ples from 1000 classes (Russakovsky et al., 2015). We train
a selection of widely known standard models like VGG-16
(Simonyan & Zisserman, 2014), ResNets (He et al., 2016)
and Inception (Szegedy et al., 2016). Additionally we con-
sider S3TA (Zoran et al., 2019), a sequential and attention
based model that takes multiple glimpses at various spacial
locations in the image before emitting a prediction. It is
composed of a ResNet-style feature extractor with a reduced



Small Data, Big Decisions: Model Selection in the Small-Data Regime

Figure 3.Cross-entropy performance pro�les for the ResNet-101 architecture on ImageNet when trained with RMSProp. We use 90% of
the available data for training, 10% for calibration and report the generalization performance on the unseen validation set. Note that even
when training with as little as� 2:3 images per class, there is no harm in using a ResNet model with 4� more channels (16� more
parameters) than the standard ResNet.

Figure 4.Performance pro�les for a fully connected MLP with 3
hidden layers on CIFAR10 as a function of the hidden layer size.
Red points mark the smallest models that approach a close to zero
training error-rate.

number of strides, to keep the spatial resolution higher, and
an LSTM equipped with a spatial attention mechanism to
ingest features. The rationale for including it in our explo-
ration is that it supposedly has a different inductive bias than
pure conventional models, which could increase the chance
of falsifying our consistent ranking hypothesis.

3.3. Training

To ensure our observations are not speci�c to a particular
optimization method, we run experiments with different
variants of gradient-descent. For each experiment we sweep
over a �xed set of possible learning rates and pick the best
one according to the calibration loss, independently for each
model architecture and training set size.

Throughout this study we use the following optimizers:
Adam (Kingma & Ba, 2014) with �xed learning rates
f 10� 4; 3 � 10� 4; 10� 3g and 50 epochs.
Momentum SGD with initial learning ratesf 10� 4; 3 �
10� 4; � � � ; 10� 1g cosine-decaying over 50 epochs down to
0 (0.9 momentum and� = 10 � 4).
RMSProp + cosine schedule(Tieleman & Hinton, 2012)
with initial learning rates off 0:03; 0:1; 0:3g and cosine-
decaying to 0 over 50 epochs. We choose the same hyperpa-
rameters used by (Ying et al., 2019) for their NASBench-101

experiments, with the exception of the number of epochs,
which we reduced from 108 to 50 (momentum=0.9,� = 1 ).

For all experiments we use a batch size of 256 examples.
The term epoch always refers to the number of gradient steps
required to go through the full-sized dataset once; i.e., on
ImageNet an epoch is always1:28M=256 = 5000gradient
steps, regardless of the size of the actual training set used.

We evaluated many more combinations than those presented
in this paper, a selection of which is contained in the Sup-
plementary material. Throughout all these control runs our
qualitative results were con�rmed, which suggests that these
results do not just emerge from the interaction of speci�c
models and optimizers; or from a particularly sensible hy-
perparameter choice.

4. Experiments

4.1. Properties of calibration

Figure 1 visualizes typical learning curves when training a
ResNet-101 model with cosine-decayed RMSProp on sub-
sets of ImageNet. Depending on the training set size the
model can memorise the training set and reach a zero train-
ing error-rate within a few thousand gradient steps. The
uncalibrated cross-entropy on held-out data shows severe
symptoms of over�tting in these cases but, as reported be-
fore, the error computed on the same set tends to instead
�atline and not to degrade signi�cantly.

This suggests that the models are not unfavourably adjust-
ing their decision boundaries as training progresses into the
over�tting regime, but are �rst and foremostly becoming
unduly con�dent in their predictions. When using cali-
bration we rectify this over-con�dence and obtain stable
cross-entropies that show the same kind of robust behaviour
as the evaluation error-rate.

Early-stopping can still have a positive effect though: We
regularly observe a small degradation in generalization per-
formance just around the point where the rapid decrease in


