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Abstract

The choice of approximate posterior distributions
plays a central role in stochastic variational infer-
ence (SVI). One effective solution is the use of
normalizing flows to construct flexible posterior
distributions. However, a key limitation of exist-
ing normalizing flows is that they are restricted
to Euclidean space and are ill-equipped to model
data with an underlying hierarchical structure. To
address this fundamental limitation, we present
the first extension of normalizing flows to hyper-
bolic spaces. We first elevate normalizing flows
to hyperbolic spaces using coupling transforms
defined on the tangent bundle, termed Tangent
Coupling (7C). We further introduce Wrapped
Hyperboloid Coupling (WHC), a fully invertible
and learnable transformation that explicitly uti-
lizes the geometric structure of hyperbolic spaces,
allowing for expressive posteriors while being effi-
cient to sample from. We demonstrate the efficacy
of our novel normalizing flow over hyperbolic
VAESs and Euclidean normalizing flows. Our ap-
proach achieves improved performance on density
estimation, as well as reconstruction of real-world
graph data, which exhibit a hierarchical structure.
Finally, we show that our approach can be used to
power a generative model over hierarchical data
using hyperbolic latent variables.

1. Introduction

Stochastic variational inference (SVI) methods provide an
appealing way of scaling probabilistic modeling to large
scale data. These methods transform the problem of com-
puting an intractable posterior distribution to finding the
best approximation within a class of tractable probability
distributions (Hoffman et al., 2013). Using tractable classes
of approximate distributions, e.g., mean-field, and Bethe
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Figure 1. The shortest path between a given pair of node embed-
dings in R? and hyperbolic space as modelled by the Lorentz
model H% and Poincaré disk P%. Unlike Euclidean space, dis-
tances between points grow exponentially as you move away from
the origin in hyperbolic space, and thus the shortest paths between
points in hyperbolic space go through a common parent node (i.e.,
the origin), giving rise to hierarchical and tree-like structure.

approximations, facilitates efficient inference, at the cost of
limiting the expressiveness of the learned posterior.

In recent years, the power of these SVI methods has been
further improved by employing normalizing flows, which
greatly increase the flexibility of the approximate poste-
rior distribution. Normalizing flows involve learning a se-
ries of invertible transformations, which are used to trans-
form a sample from a simple base distribution to a sample
from a richer distribution (Rezende & Mohamed, 2015).
Indeed, flow-based posteriors enjoy many advantages such
as efficient sampling, exact likelihood estimation, and low-
variance gradient estimates when the base distribution is
reparametrizable, making them ideal for modern machine
learning problems. There have been numerous advances in
normalizing flow construction in Euclidean spaces, such as
RealNVP (Dinh et al., 2017), B-NAF (Huang et al., 2018;
De Cao et al., 2019), and FFJORD (Grathwohl et al., 2018),
to name a few.

However, current normalizing flows are restricted to Eu-
clidean space, and as a result, these approaches are ill-
equipped to model data with an underlying hierarchi-
cal structure. Many real-world datasets—such as ontolo-
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gies, social networks, sentences in natural language, and
evolutionary relationships between biological entities in
phylogenetics—exhibit rich hierarchical or tree-like struc-
ture. Hierarchical data of this kind can be naturally repre-
sented in hyperbolic spaces, i.e., non-Euclidean spaces with
constant negative curvature (Figure 1). But Euclidean nor-
malizing flows fail to incorporate these structural inductive
biases, since Euclidean space cannot embed deep hierar-
chies without suffering from high distortion (Sarkar, 2011).
Furthermore, sampling from densities defined on Euclidean
space will inevitability generate points that do not lie on the
underlying hyperbolic space.

Present work. To address this fundamental limitation, we
present the first extension of normalizing flows to hyperbolic
spaces. Prior works have considered learning models with
hyperbolic parameters (Liu et al., 2019b; Nickel & Kiela,
2018) as well as variational inference with hyperbolic latent
variables (Nagano et al., 2019; Mathieu et al., 2019), but our
work represents the first approach to allow flexible density
estimation in hyperbolic space.

To define our normalizing flows we leverage the Lorentz
model of hyperbolic geometry and introduce two new forms
of coupling, Tangent Coupling (T C) and Wrapped Hyper-
boloid Coupling (WHC). These define flexible and invert-
ible transformations capable of transforming sampled points
in the hyperbolic space. We derive the change of volume
associated with these transformations and show that it can
be computed efficiently with O(n) cost, where 7 is the di-
mension of the hyperbolic space. We empirically validate
our proposed normalizing flows on structured density esti-
mation, reconstruction, and generation tasks on hierarchical
data, highlighting the utility of our proposed approach.

2. Background on Hyperbolic Geometry

Within the Riemannian geometry framework, hyperbolic
spaces are manifolds with constant negative curvature K
and are of particular interest for embedding hierarchical
structures. There are multiple models of n-dimensional hy-
perbolic space, such as the hyperboloid H%., also known
as the Lorentz model, or the Poincaré ball P%.. Figure 1
illustrates some key properties of H2, and P2, highlight-
ing how distances grow exponentially as you move away
from the origin and how the shortest paths between distant
points tend to go through a common parent (i.e., the ori-
gin), giving rise to a hierarchical or tree-like structure. In
the next section, we briefly review the Lorentz model of
hyperbolic geometry. We are not assuming a background
in Riemannian geometry, though Appendix A and Ratcliffe
(1994) are of use to the interested reader. Henceforth, for
notational clarity, we use boldface font to denote points on
the hyperboloid manifold.

2.1. Lorentz Model of Hyperbolic Geometry

An n-dimensional hyperbolic space, H, is the unique, com-
plete, simply-connected n-dimensional Riemannian mani-
fold of constant negative curvature, K. For our purposes,
the Lorentz model is the most convenient representation of
hyperbolic space, since it is equipped with relatively simple
explicit formulas and useful numerical stability properties
(Nickel & Kiela, 2018). We choose the 2D Poincaré disk ]P’%
to visualize hyperbolic space because of its conformal map-
ping to the unit disk. The Lorentz model embeds hyperbolic
space H, within the n + 1 -dimensional Minkowski space,
defined as the manifold R"*! equipped with the following
inner product:

(X,¥)z = —xoyo + Ty + -+ Tyyn, (1)

which has the type (-,-), : R™1 x R"™1 — R, Itis
common to denote this space as R*" to emphasize the dis-
tinct role of the zeroth coordinate. In the Lorentz model,
we model hyperbolic space as the (upper sheet of) the hy-
perboloid embedded in Minkowski space. It is a remark-
able fact that though the Lorentzian metric (Eq. 1) is in-
definite, the induced Riemannian metric gy on the unit
hyperboloid is positive definite (Ratcliffe, 1994). The n-
Hyperbolic space with constant negative curvature K with
origin o = (1/K,0,...,0), is a Riemannian manifold
(H%, gx) where

HY = {z € R"™ : (xx); =1/K, 20 >0, K < 0}.

Equipped with this, the induced distance between two points
(x,y) in HY, is given by

1
d(x,y)c = \/jarccosh(—mx,m). 2

The tangent space to the hyperboloid at the point p € H}
can also be described as an embedded subspace of R,
It is given by the set of points satisfying the orthogonality
relation with respect to the Minkowski inner product,’

ToHy = {u: (u,p)c =0} 3)

Of special interest are vectors in the tangent space at the
origin of H’% whose norm under the Minkowski inner
product is equivalent to the conventional Euclidean norm.
That is v € T,H}% is a vector such that vo = O and
[Iv||z := \/{v,V)z = ||V||2. Thus at the origin the partial
derivatives with respect to the ambient coordinates, R+
define the covariant derivative.

Projections. Starting from the extrinsic view by which we
consider R"*1 > H, we may project any vector x € R"*1

'Tt is also equivalently known as the Lorentz inner product.
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on to the hyperboloid using the shortest Euclidean distance:

projyy (z) = 75[;% )

Furthermore, by definition a point on the hyperboloid sat-
isfies (x,x), = 1 /K and thus when provided with n co-
ordinates £ = (x1,...,x,) we can always determine the
missing coordinate to get a point on H%:

1
ro=\/IIIB+ = )

Exponential Map. The exponential map takes a vector, v,
in the tangent space of a point x € HY% to a point on the
manifold—i.e., y = expX(v) : _H% — H% by moving
a unit length along the geodesic, v (straightest parametric
curve), uniquely defined by v(0) = x with direction +/(0) =

v. The closed form expression for the exponential map is
then given by

expf(v) = cosh <||1;|%|L)X+Sinh (Hzgﬁ) |f|i|)£7 (6)

where we used the generalized radius R = 1 /v/—K in
place of the curvature.

Logarithmic Map. As the inverse of the exponential map,
the logarithmic map takes a point, y, on the manifold back
to the tangent space of another point x also on the manifold.
In the Lorentz model this is defined as

arccoshg)

m (y - OéX), (7)

logy y =

where o = K(X,y)r.

Parallel Transport. The parallel transport for two points
X,y € H}% is a map that carries the vectors in v € T H}% to
corresponding vectors at v’ € TyH; along the geodesic.
That is vectors are connected between the two tangent
spaces such that the covariant derivative is unchanged.
Parallel transport is a map that preserves the metric, i.e.,
<PT,€iy(v),PT£:y(v’)>/; = (v,v'). and in the Lorentz
model is given by

(logy* (y), v)

— L K K
PTE, ()= 0 — 2 2L (0g! (3) + log [ (x)
= p+ M(H ), ®)

where « is as defined above. Another useful property is
that the inverse parallel transport simply carries the vec-
tors back along the geodesic and is simply defined as
(PTE, (v))~t = PTE (v).

X—y y—x

2.2. Probability Distributions on Hyperbolic Spaces

Probability distributions can be defined on Riemannian
manifolds, which include H7% as a special case. One
transforms the infinitesimal volume element on the man-
ifold to the corresponding volume element in R™ as de-
fined by the co-ordinate charts. In particular, given the
Riemannian manifold M(z) and its metric g,, we have
[p(z)dM(z) = [ p(z)\/]g;|dz, where dz is the Lebesgue
measure. We now briefly survey three distinct generaliza-
tions of the normal distribution to Riemannian manifolds.

Riemannian Normal. The first is the Riemannian nor-
mal (Pennec, 2006; Said et al., 2014), which is derived from
maximizing the entropy given a Fréchet mean p and a dis-
persion parameter o. Specifically, we have N (z|u, 0?) =
< exp(—da(p, 2)?/20°), where d is the induced dis-
tance and Z is the normalization constant (Said et al., 2014,
Mathieu et al., 2019).

Restricted Normal. One can also restrict sampled points
from the normal distribution in the ambient space to the
manifold. One example is the Von Mises distribution on the
unit circle and its generalized version, i.e., Von Mises-Fisher
distribution on the hypersphere (Davidson et al., 2018).

Wrapped Normal. Finally, we can define a wrapped nor-
mal distribution (Falorsi et al., 2019; Nagano et al., 2019),
which is obtained by (1) sampling from N(0, I) and then
transforming it to a point v € T,H% by concatenating O as
the zeroth coordinate; (2) parallel transporting the sample v
from the tangent space at o to the tangent space of another
point  on the manifold to obtain u; (3) mapping v from
the tangent space to the manifold using the exponential map
at . Sampling from such a distribution is straightforward
and the probability density can be obtained via the change
of variable formula,

sinh (||u
0g1(2) = 10g () ~ (n - Dlog (<01} o)
l[ull2
where p(z) is the wrapped normal distribution and p(v) is
the normal distribution in the tangent space of o.

3. Normalizing Flows on Hyperbolic Spaces

We seek to define flexible and learnable distributions on
H%, which will allow us to learn rich approximate posterior
distributions for hierarchical data. To do so, we design
a class of invertible parametric hyperbolic functions, f; :
H% — HY%. A sample from the approximate posterior
can then be obtained by first sampling from a simple base
distribution zg ~ p(z) defined on H}, and then applying
a composition of functions fjc[; from this class: z; =

fiofj—10-0 fi(zo).

In order to ensure effective and tractable learning, the class
of functions f; must satisfy three key desiderata:
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1. Each function f; must be invertible.

2. We must be able to efficiently sample from the final
distribution, z; = f; o fj_10---0 f1(Z0).

3. We must be able to efficiently compute the associated
change in volume (i.e., the Jacobian determinant) of
the overall transformation.

Given these requirements, the final transformed distribution
is given by the change of variables formula:

of; ‘

Zj—1

logp(z;) = log p(zo) — Z Iogdet‘ (10)

Functions satisfying desiderata 1-3 in Euclidean space are
often termed normalizing flows (Appendix B), and our work
extends this idea to hyperbolic spaces. In the following
sections, we describe two flows of increasing complexity:
Tangent Coupling (7 C) and Wrapped Hyperboloid Cou-
pling WHC). The first approach lifts a standard Euclidean
flow to the tangent space at the origin of the hyperboloid.
The second approach modifies the flow to explicitly utilize
hyperbolic geometry. Figure 2 illustrates synthetic densities
as learned by our approach on IP3.

3.1. Tangent Coupling

Similar to the Wrapped Normal distribution (Section 2.2),
one strategy to define a normalizing flow on the hyperboloid
is to use the tangent space at the origin. That is, we first
sample a point from our base distribution—which we define
to be a Wrapped Normal—and use the logarithmic map at
the origin to transport it to the corresponding tangent space.
Once we arrive at the tangent space we are free to apply any
Euclidean flow before finally projecting back to the man-
ifold using the exponential map. This approach leverages
the fact that the tangent bundle of a hyperbolic manifold
has a well-defined vector space structure, allowing affine
transformations and other operations that are ill-defined on
the manifold itself.

Following this idea, we build upon one of the earliest and
most well-studied flows: the ReaNVP flow (Dinh et al.,
2017). Atits core, the ReaNVP flow uses a computationally
symmetric transformation (affine coupling layer), which has
the benefit of being fast to evaluate and invert due to its lower
triangular Jacobian, whose determinant is cheap to compute.
Operationally, the coupling layer is implemented using a
binary mask, and partitions some input z into two sets,
where the first set, 21 := 1.4, is transformed elementwise
independently of other dimensions. The second set, =, :=

T4+1: n, 18 also transformed elementwise but in a way that
depends on the first set (see Appendix B.2 for more details).
Since all coupling layer operations occur at 7,H7, we term
this form of coupling as Tangent Coupling (7 C).

Thus, the overall transformation due to one layer of our 7C'

Target I C(Ours) " #C(Qurs)

Figure 2. Comparison of density estimation in hyperbolic space
for 2D wrapped Gaussian (WG) and mixture of wrapped gaussian
(MWG) on P2. Densities are visualized in the Poincaré disk.
Additional qualitative results can be found in Appendix F.

flow is a composition of a logarithmic map, affine coupling
defined on 7,H}, and an exponential map:

TC(= J7 T 7L
@ {Zz 72 @ 0(s(z1) + )

FT9x) = expl (77 (logl (x))) (11)

where = = log f (x) is a point on T H"-, and o is a pointwise
non-linearity such as the exponential function. Functions
s and t are parameterized scale and translation functions
implemented as neural nets from %H% — %H?(_d. One
important detail is that arbitrary operations on a tangent
vector v € T,H may transport the resultant vector outside
the tangent space, hampering subsequent operations. To
avoid this we can keep the first dimension fixed at vo = 0
to ensure we remain in 7,H .

Similar to the Euclidean RealNVP, we need an efficient
expression for the Jacobian determinant of f7¢.

Proposition 1. The Jacobian determinant of a single T C
layer in equation 11 is:

det(ay>' _ (Rsinh('zlgt)>n—1

Ox 2]z

< ] ols(za)

3= d+1

(Rsinh(“oggR(X)L ))1771 1)

[Ilogg ()|

where, z = [7C(2) and 7€ is as defined above.

Proof Sketch. Here we only provide a sketch of the proof
and details can be found in Appendix C. First, observe that
the overall transformation is a valid composition of func-
tions: y := expX o f7¢ o Iogf(x). Thus, the overall
determinant can be computed by chain rule and the identity,
det(3) = det( 252 - de t(af(’)) det( 2092 00,

Tackling each function in the composition individually,
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0z [12[I
et al. (2019). As the logarithmic map is the inverse of the
exponential map the Jacobian determinant is simply the in-
verse of the determinant of the exponential map, which gives

dlogk (x) .
the det —5— ) term. For the middle term, we must cal-

culate the directional derivative of 7 € in an orthonormal
basis w.r.t. the Lorentz inner product, of 7,H,. Since the
standard Euclidean basis vectors ey, ..., e, are also a basis
for 7,H", the Jacobian determinant det(%) simplifies
to that of the RealNVP flow, which is lower triangluar and
is thus efficiently computable in O(n) time.

K ; izig y\n—1
det(aexpu (z)> = (RS'”h( m )) as derived in Skopek

O

It is remarkable that the middle term in Proposition 1 is
precisely the same change in volume associated with affine
coupling in RealNVP. The change in volume due to the hy-
perbolic space only manifests itself through the exponential
and logarithmic maps, each of which can be computed in
O(n) cost. Thus, the overall cost is only slightly larger than
the regular Euclidean RealNVP, but still O(n).

3.2. Wrapped Hyperboloid Coupling

1%

v
I
I

“0 B )
ot :’t

Figure 3. Wrapped Hyperbolic Coupling. The left figure depicts
a partitioned input point 21 := %1.¢ and %2 = Tg41.n prior to
parallel transport. The right figure depicts the 2 vector after it is
transformed, parallel transported, and projected to H' .

The hyperbolic normalizing flow with 7 C layers discussed
above operates purely in the tangent space at the origin. This
simplifies the computation of the Jacobian determinant, but
anchoring the flow at the origin may hinder its expressive
power and its ability to leverage disparate regions of the
manifold. In this section, we remedy this shortcoming with
a new hyperbolic flow that performs translations between
tangent spaces via parallel transport.

We term this transformation Wrapped Hyperboloid Cou-
pling OWHC). As with the 7 C layer, it is a fully invertible
transformation fYVHC : Hy — H} with a tractable ana-
lytic form for the Jacobian determinant. To define a WHC'
layer we first use the logarithmic map at the origin to trans-

port a point to the tangent space. We employ the coupling
strategy previously discussed and partition our input vector
into two components: 1 = ¥1.4 and x2 = Tg41: 5. Let
= = log f (x) be the point on T,H, after the logarithmic
map. The remainder of the WHC layer can be defined as
follows;

21 =™
HC () =
e {zz =109 L (expt.) (PTarsiioy (1))

v =72 O o(s(z1))
FYHE(x) = expl (FYMC (log (x))) - (13)

Functions s : T,HY — ToHP @ and t : T;H{ — HY are
taken to be arbitrary neural nets, but the role of ¢ when
compared to 7 C'is vastly different. In particular, the gen-
eralization of translation on Riemannian manifolds can be
viewed as parallel transport to a different tangent space.
Consequently, in Eq. 13, the function ¢ predicts a point on
the manifold that we wish to parallel transport to. This
greatly increases the flexibility as we are no longer confined
to the tangent space at the origin. The logarithmic map
is then used to ensure that both z4 and 2o are in the same
tangent space before the final exponential map that projects
the point to the manifold.

One important consideration in the construction of ¢ is that it
should only parallel transport functions of z,. However, the
output of ¢ is a point on H}} and without care this can involve
elements in z1. To prevent such a scenario we construct the
output of t = [t0,0,...,0,t4+1,--.,t,] where elements
tq4+1: n are used to determine the value of ¢ using Eq. 5,
such that it is a point on the manifold and every remaining
index is set to zero. Such a construction ensures that only
components of any function of =, are parallel transported
as desired. Figure 3 illustrates the transformation performed
by the WHC layer.

Inverse of WHC' To invert the flow it is sufficient to show
that argument to the final exponential map at the origin
itself is invertible. Furthermore, note that 21 undergoes an
identity mapping and is trivially invertible. Thus, we need
to show that the second partition is invertible, i.e. that the
following transformation is invertible:

2‘? = Iog({( <expf((:t1) (PTOHt(ml)(/U))> . (14)

As discussed in Section 2, the parallel transport, exponential
map, and logarithmic map all have well-defined inverses
with closed forms. Thus, the overall transformation is in-
vertible in closed form:

rT =2
T2 = (PTt(zl)ﬁoGOgtI((m)(expf(zz))) ©®o(s(z))t
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Properties of WHC'. To compute the Jacobian determinant
of the full transformation in Eq. 13 we proceed by analyzing
the effect of WHC' on valid orthonormal bases w.r.t. the
Lorentz inner product for the tangent space at the origin.
We state our main result here and provide a sketch of the
proof, while the entire proof can be found in Appendix D.

Proposition 2. The Jacobian determinant of the function
FPYHC in equation 13 is:

- R sinh(llgll
det (gi)‘ = H o(s(z1)): x (M)l

AL llallz
§ (Rsinh(“"’gfflg‘””t))—l 8 (RSirm(”Zf'e'L))"_l
110g% ()|l 4]
(Rsinh(”logIgR(x)”L))l_" (15)
[ogE ()|l ’

where z = concat(zy, 22), the constantl = n —d, ois a
non-linearity, ¢ = PTo_,4(5,)(v) and § = expi<(q).

Proof Sketch. We first note that the exponential and loga-
rithmic maps applied at the beginning and end of the WHC'
can be dealt with by appealing to the chain rule and the
known Jacobian determinants for these functions as used
in Proposition 1. Thus, what remains is the following term:
|det (%) | To evaluate this term we rely on the following
Lemma.

Lemma 1. Let h : ToH} — ToHY be a function defined
as:
h(x) = z = concat(z1, 22). (16)

Now, define a function h* : ToH" =% — ToH"~% which acts
on the subspace of ToH" =% corresponding to the standard
basis elements €441 , ..., €, as

B*(w2) = log & (expfs (PTo, o, (0)),  (17)

where x5 denotes the portion of the vector = corresponding
to the standard basis elements €g41 , ..., €, and s and t are
constants (which depend on z1). In Equation equation 17,
we use 03 € H"~? to denote the vector corresponding to
only the dimensions d + 1, ...,n and similarly for t . Then
we have that

0z _ 8h*(jfcﬁl: n)
o (2| o (2ot
The proof for Lemma 1 is provided in Appendix D. Us-
ing Lemma 1, and the fact that |det(PTy—(v))| = 1
(Nagano et al., 2019) we are left with another composi-
tion of functions but on the subspace T,H"~¢. The Jaco-
bian determinant for these functions, are simply that of

the logarithmic map, exponential map and the argument
to the parallel transport which can be easily computed as

H?: a1 o(8(21)). O]

The cost of computing the change in volume for one WHC'
layer is O(n) which is the same as a 7 C layer plus the
added cost of the two new maps that operate on the lower
subspace of basis elements.

4. Experiments

We evaluate our 7 C-flow and WHC-flow on three tasks:
structured density estimation, graph reconstruction, and
graph generation.> Throughout our experiments, we rely
on three main baselines. In Euclidean space, we use Gaus-
sian latent variables and affine coupling flows (Dinh et al.,
2017), denoted N and N'C, respectively. In the Lorentz
model, we use Wrapped Normal latent variables, H-VAE,
as an analogous baseline (Nagano et al., 2019). Since all
model parameters are defined on Euclidean tangent spaces,
models can be trained with conventional optimizers like
Adam (Kingma & Ba, 2014). Following previous work, we
also consider the curvature K as a learnable parameter with
a warmup of 10 epochs, and we clamp the max norm of
vectors to 40 before any logarithmic or exponential map
(Skopek et al., 2019). Appendix E contains details on model
architectures and implementation details.

4.1. Structured Density Estimation

We first consider structured density estimation in a canoni-
cal VAE setting (Kingma & Welling, 2013), where we seek
to learn rich approximate posteriors using normalizing flows
and evaluate the marginal log-likelihood of test data. Fol-
lowing work on hyperbolic VAEs, we test the approaches
on a branching diffusion process (BDP) and dynamically bi-
narized MNIST (Mathieu et al., 2019; Skopek et al., 2019).

To estimate the log likelihood we perform importance sam-
pling using 500 samples from the test set (Burda et al., 2015).
Our results are shown in Tables 1 and 2. On both datasets we
observe our hyperbolic flows provide improvements when
using latent spaces of low dimension. This result matches
theoretical expectations—e.g., that trees can be perfectly
embedded in H3—and dovetails with previous work on
graph embedding (Nickel & Kiela, 2017), thus highlighting
the benefit of leveraging hyperbolic space is most prominent
in small dimensions. However, as we increase the latent di-
mension, the Euclidean approaches can compensate for this
intrinsic geometric limitation. In the case of BDP we note
that the data is indeed a noisy binary tree, which theoreti-
cally can be represented in a 2-D hyperbolic space and thus
moving to higher dimensional latent space is not beneficial.

2https://github.com/joeybose/HyperbolicNF
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Model BDP-2 BDP-4 BDP-6

N -VAE 554 .2 552 o3 56.1 ¢.2
H-VAE 549 o3 554 g2 58.0 o.2
NC 554 o4 547 o1 -55.2 o3
TC -54.9 0.1 554 o.1 575 ¢.2
WHC -55.1 0.4 55.2 0.2 56.9 0.4

Table 1. Test Log Likelihood on Binary Diffusion Process versus
latent dimension. All normalizing flows use 2-coupling layers.

MNIST MNIST MNIST
Model 2 4 6
N-VAE 1395 1.0 1156 0.2 1000 0.02
H-VAE 1137 o9 99.8 o.2
NC 1392 ¢4 1152 o6 -98.70.3
TC -112.5 o2 99.3 o.2
WHC -136.5 2.1 -112.8 o5 99.4 4.2

Table 2. Test Log Likelihood on MNIST averaged over 5 runs
verus latent dimension. * indicates numerically unstable settings.

4.2. Graph Reconstruction

We evaluate the utility of our hyperbolic flows by conduct-
ing experiments on the task of link prediction using graph
neural networks (GNNSs) (Scarselli et al., 2008) as an infer-
ence model. Given a simple graph G = (V, A, X), defined
by a set of nodes V, an adjacency matrix A € Z/VI*VI and
node feature matrix X € RIVI*" we learn a VGAE (Kipf &
Welling, 2016) model whose inference network, g4, defines
a distribution over node embeddings ¢,4(Z|A, X). To score
the likelihood of an edge existing between pairs of nodes
we use an inner product decoder: p(A,, = 1|z, 2,) =
o(2I'z,), with dot products computed in T,H%- when nec-
essary. Given these components, the inference GNNs are
trained to maximize the variational lower bound on a train-
ing set of edges.

We use two different disease datasets taken from (Chami
et al., 2019) and (Mathieu et al., 2019)? for evaluation pur-
poses. Our chosen datasets reflect important real world use
cases where the data is known to contain hierarchies. One
such measure to determine how tree-like a given graph is
known to be Gromov’s d-hyperbolicity and traditional link
prediction datasets such as Cora and Pubmed (Yang et al.,
2016) were found to lack such a property and are not suit-
able candidates to evaluate our proposed approach (Chami
etal., 2019). The first dataset Diseases-I is composed of a
network of disorders and disease genes linked by the known
disorder—gene associations (Goh et al., 2007). In the second
dataset Diseases-II, we build tree networks of a SIR disease
spreading model (Anderson et al., 1992), where node fea-
tures determine the susceptibility to the disease. In Table
3 we report the AUC and average precision (AP) on the
test set. We observe consistent improvements when using

3We uncovered issues with the two remaining datasets in (Math-
ieu et al., 2019) and thus omit them (Appendix G).

hyperbolic WHC' flow. Similar to the structured density
estimation setting, the performance gains of WHC' are best
observed in low-dimensional latent spaces.

Dis-1 Dis-I Dis-II Dis-1I
Model AUC AP AUC AP
N-VAE 090 001 092 901 092 901 091 ¢.01
H-VAE  0.91 5.3 092 5.3 092 43 091 g.01
NC 0.92 901 093 g01 0.95 43 0.93 g.01
TC 0.93 0.01 093 0.01 0.96 0.01 095 0.01
WHC 093 001 094 g01 096 001 0.96 .01

Table 3. Test AUC and Test AP on Graph Embeddings where Dis-I
has latent dimesion 6 and Dis-II has latent dimension 2.

4.3. Graph Generation

Finally, we explore the utility of our hyperbolic flows for
generating hierarchical structures. As a synthetic testbed,
we construct datasets containing uniformly random trees as
well as uniformly random lobster graphs (Golomb, 1996),
where each graph contains between 20 to 100 nodes. Unlike
prior work on graph generation—i.e., (Liu et al., 2019a)—
our datasets are designed to have explicit hierarchies, thus
enabling us to test the utility of hyperbolic generative mod-
els. We then train a generative model to learn the distribution
of these graphs. We expect the hyperbolic flows to provide
a significant benefit for generating valid random trees, as
well as learning the distribution of lobster graphs, which are
a special subset of trees.

We follow the two-stage training procedure outlined in
Graph Normalizing Flows (Liu et al., 2019a) in that we
first train an autoencoder to give node-level latents on which
we train an normalizing flow for density estimation. Em-
pirically, we find that using GRevNets (Liu et al., 2019a)
and defining edge probabilities using a distance-based de-
coder consistently leads to better generation performance.
Thus, we define edge probabilities as p(Ay, ., = 1|2y, 2y) =
o((—dg(u,v) — b)/7) where b and T are learned edge spe-
cific bias and temperature parameters. At inference time,
we first sample the number of nodes to generate from the
empirical distribution of the dataset. We then independently
sample node latents from our prior, beginning with a fully
connected graph, and then push these samples through our
learned flow to give refined edge probabilities.

To evaluate the various approaches, we construct 100train-
ing graphs for each dataset to train our model. Figure 4
shows representative samples generated by the various ap-
proaches. We see that hyperbolic normalizing flows learn to
generate tree-like graphs and also match the specific proper-
ties of the lobster graph distribution, whereas the Euclidean
flow model tends to generate densely connected graphs with
many cycles (or else disconnected graphs). To quantify
these intuitions, Table 4 contains statistics on how often
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Figure 4. Selected qualitative results on graph generation for lobster and random tree graph.

Model Accuracy Avg. Clust. Avg. GC.
NC 56.6155 4091427 0.3440.10
TC 321119 983.g95 0.2540.12
WHC 62.1i10.9 21-1i13.4 0-13i0.07

Table 4. Generation statistics on random trees over 5 runs.
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Figure 5. MMD scores for graph generation on Lobster graphs.
Note, that N C' achieves 0% accuracy.

the different models generate valid trees (denoted by “ac-
curacy”), as well as the average number of triangles and
the average global clustering coefficients for the generated
graphs. Since the target data is random trees, a perfect
model would achieve 100% accuracy, with no triangles, and
a global clustering of O for all graphs. As a representative
Euclidean baseline we employ Graph Normalizing Flows
(GNFs) which is denoted as AN'C in Table 4 and Figure
5. We see that the hyperbolic models generate valid trees
more often, and they generate graphs with fewer triangles
and lower clustering on average. Finally, to evaluate how
well the models match the specific properties of the lob-
ster graphs, we follow Liao et al. (2019) and report the
MMD distance between the generated graphs and a test
set for various graph statistics (Figure 5). Again, we see
that the hyperbolic approaches significantly outperform the
Euclidean normalizing flow.

5. Related Work

Hyperbolic Geometry in Machine Learning:. The inter-
section of hyperbolic geometry and machine learning has
recently risen to prominence (Dhingra et al., 2018; Tay et al.,
2018; Law et al., 2019; Khrulkov et al., 2019; Ovinnikov,
2019). Early prior work proposed to embed data into the
Poincaré ball model (Nickel & Kiela, 2017; Chamberlain
et al., 2017). The equivalent Lorentz model was later shown
to have better numerical stability properties (Nickel & Kiela,
2018), and recent work has leveraged even more stable tiling
approaches (Yu & De Sa, 2019). In addition, there exists
a burgeoning literature of hyperbolic counterparts to con-
ventional deep learning modules on Euclidean spaces (e.g.,
matrix multiplication), enabling the construction of hyper-
bolic neural networks (HNNs) (Gulcehre et al., 2018; Ganea
et al., 2018) with further extensions to graph data using
hyperbolic GNN architectures (Liu et al., 2019a; Chami
et al., 2019). Latent variable models on hyperbolic space
have also been investigated in the context of VAEs, using
generalizations of the normal distribution (Nagano et al.,
2019; Mathieu et al., 2019). In contrast, our work learns
a flexible approximate posterior using a novel normalizing
flow designed to use the geometric structure of hyperbolic
spaces. In addition to work on hyperbolic VAEs, there are
also several works that explore other non-Euclidean spaces
(e.g., spherical VAEs) (Davidson et al., 2018; Falorsi et al.,
2019; Grattarola et al., 2019).

Learning Implicit Distributions. In contrast with exact
likelihood methods there is growing interest in learning
implicit distributions for generative modelling. Popular ap-
proaches include density ratio estimation methods using
a parametric classifiers such as GANS (Goodfellow et al.,
2014), and kernel based estimators (Shi et al., 2017). In the
context of autoencoders learning implicit latent distribution
can be seen as an adversarial game minimizing a specific
divergence (Makhzani et al., 2015) or distance (Tolstikhin
et al., 2017). Instead of adversarial formulations implicit
distributions may also be learned directly by estimating the
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gradients of log density function using the Stein gradient
estimator (Li & Turner, 2017). Finally, such gradient esti-
mators can also be used to power variational inference with
implicit posteriors enabling the use of posterior families
with intractable densities (Shi et al., 2018).

Normalizing Flows:. Normalizing flows (NFs) (Rezende
& Mohamed, 2015; Dinh et al., 2017) are a class of proba-
bilistic models which use invertible transformations to map
samples from a simple base distribution to samples from a
more complex learned distribution. While there are many
classes of normalizing flows (Papamakarios et al., 2019;
Kobyzev et al., 2019), our work largely follows normaliz-
ing flows designed with partially-ordered dependencies, as
found in affine coupling transformations (Dinh et al., 2017).
Recently, normalizing flows have also been extended to
Riemannian manifolds, such as spherical spaces in Gemici
et al. (2016). In parallel to this work, normalizing flows
have been extended to toriodal spaces (Rezende et al., 2020)
and the data manifold (Brehmer & Cranmer, 2020). Finally,
relying on affine coupling and GNNs, Liu et al. (2019a)
develop graph normalizing flows (GNFs) for generating
graphs. However, unlike our approach GNFs do not benefit
from the rich geometry of hyperbolic spaces.

6. Conclusion

In this paper, we introduce two novel normalizing flows on
hyperbolic spaces. We show that our flows are efficient to
sample from, easy to invert and require only O(n) cost to
compute the change in volume. We demonstrate the effec-
tiveness of constructing hyperbolic normalizing flows for
latent variable modeling of hierarchical data. We empiri-
cally observe improvements in structured density estimation,
graph reconstruction and also generative modeling of tree-
structured data, with large qualitative improvements in gen-
erated sample quality compared to Euclidean methods. One
important limitation is in the numerical error introduced by
clamping operations which prevent the creation of deep flow
architectures. We hypothesize that this is an inherent limi-
tation of the Lorentz model, which may be alleviated with
newer models of hyperbolic geometry that use integer-based
tiling (Yu & De Sa, 2019). In addition, while we consid-
ered hyperbolic generalizations of the coupling transforms
to define our normalizing flows, designing new classes of
invertible transformations like autoregressive and residual
flows on non-Euclidean spaces is an interesting direction
for future work.
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