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Supplement

6. Extension of the salient feature preference model to k-wise comparisons
We describe how to extend the salient feature preference model of Equation (2) from pairwise comparisons to k-wise
comparisons when k > 2. We base our generalization on the Placket-Luce model (Plackett, 1975; Luce, 1959), which is a
generalization of the BTL model from pairwise comparisons to k-wise comparisons.

Let the domain of the selection function τ be [n]k instead of [n]× [n], i.e. τ : [n]k → P([d]). Then for T` = (t1, . . . , tk)
where ti ∈ [n] are items, the probability of picking the ranking t1 >B · · · >B tk is

P(t1 >B · · · >B tk) =

k∏
`=1

exp
(
〈Uτ(T`)

t`
, w∗〉

)
∑
j∈[k]\[`−1] exp

(
〈Uτ(T`)

tj , w∗〉
) , (5)

where “t1 >B · · · >B tk” means item t1 is preferred to item t2 and so on and so forth.

We explain Equation (5): Given items T` = (t1, . . . , tk), first project each item’s features Uti onto the coordinate subspace
spanned by the coordinates given by τ(T`). Then the utility of item ti in the presence of the other items in T is given by the
inner product of its projected features with w∗: 〈(Uti)τ(T`), w∗〉. The higher the utility an item has, the more likely the item
will be ranked higher among the items in T`. Now imagine a bag of balls where each ball corresponds to one of the items in
T`. We select balls from this bag without replacement where the probability of picking a ball is the ratio of its utility to the
sum of the utilities of all the remaining balls. The order in which we select balls results in a ranking of the k items. This
process is what Equation (5) represents.

In the pairwise comparison case (k = 2) for two items T` = (i, j), Equation (5) reduces to Equation (2), which is the salient
preference model. We can also extend the top-t selection function naturally to accommodate k-wise comparisons.

7. Negative log-likelihood derivation
Lemma 2. Under the set-up of Section 2, the negative log-likelihood of w ∈ Rd is

Lm(w;U, Sm, τ) =

m∑
`=1

log
(

1 + exp
(
〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
))
− y`〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉. (6)

Proof. Let Pw(Sm) be the joint distribution of the m samples Sm with respect to the judgement vector w. Then

Lm(w;U, Sm, τ) (7)
= − logPw(Sm) (8)

= − log

(
m∏
`=1

(P(y` = 1)y`P(y` = 0)1−y`)

)
by independence and since y` ∈ {0, 1} (9)

= −
m∑
i=1

y` log(P(y` = 1)) + (1− y`) log(1− P(y` = 1)) (10)

= −
m∑
i=1

y` log

 exp
(
〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
)

1 + exp
(
〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
)
 (11)

+ (1− y`) log

 1

1 + exp
(
〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
)


=

m∑
i=1

log
(

1 + exp
(
〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉
))
− y`〈Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
, w〉 (12)
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8. Proof of Proposition 1
Proposition 3 (Restatement of Proposition 1). Given item features U ∈ Rd×n, the salient feature preference model with
selection function τ is identifiable if and only if span{Uτ(i,j)

i − Uτ(i,j)
j : (i, j) ∈ P} = Rd.

Proof. Let w ∈ Rd. Then for any (i, j) ∈ P ,

P(i >B j;w) = P(i >B j;w∗) (13)

⇐⇒
exp

(
〈Uτ(i,j)

i − Uτ(i,j)
j , w〉

)
1 + exp

(
〈Uτ(i,j)

i − Uτ(i,j)
j , w〉

) =
exp

(
〈Uτ(i,j)

i − Uτ(i,j)
j , w∗〉

)
1 + exp

(
〈Uτ(i,j)

i − Uτ(i,j)
j , w∗〉

) (14)

⇐⇒ exp
(
〈Uτ(i,j)

i − Uτ(i,j)
j , w〉

)
= exp

(
〈Uτ(i,j)

i − Uτ(i,j)
j , w∗〉

)
(15)

⇐⇒ 〈Uτ(i,j)
i − Uτ(i,j)

j , w〉 = 〈Uτ(i,j)
i − Uτ(i,j)

j , w∗〉 (16)

⇐⇒ 〈Uτ(i,j)
i − Uτ(i,j)

j , w∗ − w〉 = 0. (17)

⇒ Assume identifiability. By contradiction, if span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P} 6= Rd, then there is some vector x 6= 0

that is orthogonal to span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P}. Consider w∗ − x. Then, for any (i, j) ∈ P

〈Uτ(i,j)
i − Uτ(i,j)

j , w∗ − (w∗ − x)〉 = 〈Uτ(i,j)
i − Uτ(i,j)

j , x〉 (18)

= 0. (19)

Therefore, with w = w∗ − x, Equation (17) is true and implies Equation (13) meaning

P(i > j;w∗ − x) = P(i > j;w∗),

contradicting identifiability since w∗ − x 6= w∗ because x 6= 0.

⇐ Now assume span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P} = Rd. We want to prove identifiability so suppose there exists w such

that Equation (13) holds. We will show w = w∗. Let x ∈ Rd where x =
∑

(i,j)∈P αi,j(U
τ(i,j)
i − Uτ(i,j)

j ) for αi,j ∈ R.
Then by Equation (17), 〈 ∑

(i,j)∈P

αi,j

(
U
τ(i,j)
i − Uτ(i,j)

j

)
, w∗ − w

〉
= 0.

Since this is true for any x ∈ Rd, w∗ − w = 0, which means w = w∗.

9. Proof of Proposition 2

Proposition 4 (Restatement of Proposition 2). Under the set-up of Section 2, λ := λmin(E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i −

U
τ(i,j)
j )T ) > 0 if and only if the salient feature preference model with selection function τ is identifiable.

Proof. For both directions, we prove the contrapositive.

⇒ Assume λmin(E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ) = 0. Recall the expectation is with respect to a uniformly at
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random chosen pair of items. Let 0 ∈ Rd be the all 0 vector. Then there exists y 6= 0 ∈ Rd that has unit norm such that

(E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0 (20)

=⇒ yT (E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0 (21)

=⇒ 1(
n
2

) ∑
(i,j)∈P

yT (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0 since (i, j) ∈ P is chosen uniformly at random

(22)

=⇒ 1(
n
2

) ∑
(i,j)∈P

‖(Uτ(i,j)
i − Uτ(i,j)

j )T y‖22 = 0 (23)

=⇒ ‖(Uτ(i,j)
i − Uτ(i,j)

j )T y‖22 = 0 ∀(i, j) ∈ P (24)

=⇒ (U
τ(i,j)
i − Uτ(i,j)

j )T y = 0 ∀(i, j) ∈ P. (25)

We now show y /∈ span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P}, which establishes the salient feature preference model is not
identifiable by Proposition 1. By contradiction, suppose there exist αi,j ∈ R such that

y =
∑

(i,j)∈P

αi,j(U
τ(i,j)
i − Uτ(i,j)

j ).

Then

1 = 〈y, y〉 (26)

=

〈 ∑
(i,j)∈P

αi,j

(
U
τ(i,j)
i − Uτ(i,j)

j

)
, y

〉
(27)

=
∑

(i,j)∈P

αi,j

〈(
U
τ(i,j)
i − Uτ(i,j)

j

)
, y
〉

(28)

= 0, (29)

a contradiction.

⇐ Now suppose that the preference model is not identifiable. By Proposition 1, span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P} 6= Rd.

In particular, there exists y ∈ Rd such that y 6= 0 and 〈y, Uτ(i,j)
i −Uτ(i,j)

j 〉 = 0 for all (i, j) ∈ P , i.e. y is in the orthogonal

complement of span{Uτ(i,j)
i − Uτ(i,j)

j : (i, j) ∈ P}. Furthermore,

1(
n
2

) ∑
(i,j)∈P

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T y = 0 (30)

=⇒ (E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )y = 0, (31)

(32)

since the expectation is with respect to a uniformly at random chosen pair of items. Therefore, λmin(E(U
τ(i,j)
i −

U
τ(i,j)
j )(U

τ(i,j)
i − Uτ(i,j)

j )T ) = 0 since all the eigenvalues of E(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T are non-negative
since it is a sum of positive semidefinite matrices, and 0 is an eigenvalue.

10. Proof of Theorem 1
Recall the set-up from the beginning of Section 2. There are n items where the features of the items are given by the columns
of U ∈ Rd×n and let w∗ ∈ Rd be the judgment vector. Let τ be the selection function. Let Sm = {(i`, j`, y`)}m`=1 be the m
samples of independent pairwise comparisons where each pair of items (i`, j`) is chosen uniformly at random from all the
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pairs of items P := {(i, j) ∈ [n]× [n] : i < j}. Furthermore, y` is 1 if the i`-th item beats the j`-th item and 0 otherwise

where y` ∼ Bernoulli
(

exp
(
〈Uτ(i`,j`)i`

−Uτ(i`,j`)j`
,w∗〉

)
1+exp

(
〈Uτ(i`,j`)i`

−Uτ(i`,j`)j`
,w∗〉

)). We will not repeat these assumptions in the following lemmas.

In this section, we present the exact lower bounds on the number of samples and upper bound on the estimation error. The
exact values of the constants that appear in the main text, i.e. C1 and C2, appear at the end of the proof.
Theorem 3 (restatement of Theorem 1: sample complexity of estimating w∗). Let U , w∗, τ , and Sm be defined as above.
Let ŵ be the maximum likelihood estimator, i.e. the minimum of Lm in Equation (3), restricted to the set W(b∗). The
following expectations are taken with respect to a uniformly chosen random pair of items from P . For (i, j) ∈ P , let

Z(i,j) := (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T

λ := λmin(EZ(i,j)),

η := σmax(E((Z(i,j) − EZ(i,j))
2)),

ζ := max
(k,`)∈P

λmax(EZ(i,j) − Z(k,`)),

where for a positive semidefinite matrix X , λmin(X) and λmax(X) are the smallest/largest eigenvalues of X , and where for
any matrix X , σmax(X) is the largest singular value of X . Let

β := max
(i,j)∈P

‖Uτ(i,j)
i − Uτ(i,j)

j ‖∞. (33)

Let δ > 0. If λ > 0 and if

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,

8 log(2d/δ)(6η + λζ)

3λ2

}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m

where the randomness is from the randomly chosen pairs and the outcomes of the pairwise comparisons.

Proof. We use the proof technique of Theorem 4 in (Negahban et al., 2016). We use the notation Lm(w) instead of
Lm(w;U, Sm, τ) throughout the proof since it is clear from context.

By definition Lm(ŵ) ≤ Lm(w∗). Let ∆ := ŵ − w∗. Then

Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉 (34)
≤ −〈∇Lm(w∗),∆〉 (35)
≤ ‖∇Lm(w∗)‖2‖∆‖2, (36)

by the Cauchy-Schwarz inequality.

Recall Taylor’s theorem:

Theorem 1 (Taylor’s Theorem). Let f : Rn → R. If the Hessian Hf of f exists everywhere on its domain, then for
any x,∆ ∈ Rn, there exists λ ∈ [0, 1] such that f(x+ ∆) = f(x) + 〈∇f(x),∆〉+ 1

2∆THf (x+ λ∆)∆.

Now, we lower bound Equation (34). Let HLm be the Hessian of Lm. Then by Taylor’s theorem, there exists λ ∈ [0, 1]
such that

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (37)

=
1

2m
∆THLm(w∗ + λ∆)∆ (38)

=
1

2m

m∑
`=1

h(〈w∗ + λ∆, U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)∆T (U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T∆ (39)
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where the Hessian HLm is computed in Lemma 6 and h(x) := ex

(1+ex)2 .

Note

|〈w∗ + λ∆, U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉| (40)

= |(1− λ)〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉+ λ〈ŵ, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉| (41)

≤ (1− λ)b∗ + λb∗ (42)
= b∗ (43)

where the second to last inequality is by definition of b∗ and since ŵ ∈ W(b∗). Because h(x) = ex

(1+ex)2 is symmetric and
decreases on [0,∞) by Lemma 7, for any i, j ∈ [n],

h(〈w∗ + λ∆, U
τ(i,j)
i − Uτ(i,j)

j 〉) ≥ h(b∗) =
exp(b∗)

(1 + exp(b∗))2
.

Therefore,

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (44)

≥ exp(b∗)

2m(1 + exp(b∗))2

m∑
`=1

∆T (U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T∆. (45)

By Lemma 4 and 5 and combining Equations (36) and (45), with probability at least 1− δ if

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,

8 log(2d/δ)(6η + λζ)

3λ2

}
,

(
exp(b∗)

2(1 + exp(b∗))2

)
λ

2
‖∆‖22 ≤

1

m
(Lm(w∗ + ∆)− Lm(w∗)− 〈∇Lm(w∗),∆〉) (46)

≤

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
‖∆‖2 (47)

=⇒ ‖∆‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
. (48)

In the main paper with order terms, it is easy to see the O(·) bound on the upper bound on the estimation error. Furthermore,
it is easy to see that for the constants C1 and C2 given in the main paper, we have C1 = 4/6 and C2 = 48/3.

We now present the lemmas used in the prior proof.

Lemma 4. Let δ > 0. Under the model assumptions in this section, if

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6
,

then with probability at least 1− δ
2 ,

∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

≤

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m

where β := max(i,j)∈P

∥∥∥Uτ(i,j)
i − Uτ(i,j)

j

∥∥∥
∞
.
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Proof. For ` ∈ [m], let

X` =
1

m

(
U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)( exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

1 + exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)
− y`

)
,

so 1
m∇Lm(w∗) =

∑m
`=1X` by Lemma 6.

We now show (1) E(X`) = 0 where the expectation is taken with respect to a uniformly chosen pair of items, (2) the
coordinates of X` are bounded, and (3) the coordinates of X` have bounded second moments.

First E(X`) = 0. By conditioning on each pair of items, each of which have the same probability of being chosen,

E(X`) =
1(
n
2

) ∑
(i,j)∈P

E(X`|items i, j are chosen) (49)

=
1(
n
2

) ∑
(i,j)∈P

1

m

(
U
τ(i,j)
i − Uτ(i,j)

j

)( exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

1 + exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)
− E(y(i,j))

)
(50)

=
1(
n
2

) ∑
(i,j)∈P

1

m

(
U
τ(i,j)
i − Uτ(i,j)

j

)( exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

1 + exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)
−

exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

1 + exp(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)

)
(51)

= 0, (52)

where the expectation is with respect to the random pair that is drawn and the outcome of the pairwise comparison.

Second, |X(k)
` | ≤

β
m where X(k)

` is the k-th coordinate of X`. Then for k ∈ [d]

|X(k)
` | (53)

=

∣∣∣∣∣ 1

m

(
(U

τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k)
)( exp(〈w∗, Uτ(i`,j`)

i`
− Uτ(i`,j`)

j`
〉)

1 + exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)
− y`

)∣∣∣∣∣ (54)

≤ 1

m

∣∣∣((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k)
)∣∣∣ since

exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

1 + exp(〈w∗, Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)
, y` ∈ [0, 1] (55)

≤ 1

m
max

(i,j)∈P
‖Uτ(i,j)

i − Uτ(i,j)
j ‖∞ (56)

=
β

m
, (57)

by definition of β.
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Third, E((X
(k)
` )2) ≤ β2

m2 . Let p(x) = ex

1+ex . For k ∈ [d],

E((X
(k)
` )2) (58)

=
1(
n
2

) ∑
(i,j)∈P

E((X
(k)
` )2|items i, j are chosen) (59)

=
1(
n
2

) ∑
(i,j)∈P

1

m2

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

E
((

p(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉)− y(i,j)

)2
)

(60)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

(61)

(
p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)2 − 2E(y(i,j))p(〈w∗, U

τ(i,j)
i − Uτ(i,j)

j 〉) + E((y(i,j))
2)
)

(62)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2
(
−
(
p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)

)2

+ E((y(i,j))
2)

)
(63)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2 (
−p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)2 + E(y(i,j))

)
since y(i,j) ∈ {0, 1} (64)

=
1

m2
(
n
2

) ∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2 (
p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)− p(〈w∗, Uτ(i,j)

i − Uτ(i,j)
j 〉)2

)
(65)

≤ β2

4m2
(66)

by definition of β and since p(〈w∗, Uτ(i,j)
i − Uτ(i,j)

j 〉) ∈ [0, 1] and x− x2 ≤ 1
4 for x ∈ [0, 1].

Therefore, 1
m∇Lm(w∗) =

∑m
`=1X` is a sum of i.i.d. mean zero random variables. Hence, each coordinate is also a sum of

i.i.d. random variables with mean zero, so Bernstein’s inequality applies. Recall Bernstein’s inequality:

Theorem 2 (Bernstein’s inequality). Let Xi be i.i.d. random variables such that E(Xi) = 0 and |Xi| ≤M . Then for
any t > 0,

P

(
m∑
i=1

Xi > t

)
≤ exp

(
−

1
2 t

2∑
EX2

i + 1
3Mt

)
.

We apply Bernstein’s inequality to the k-th coordinate of 1
m∇Lm(w∗):

P
(∣∣∣∣ 1

m
∇Lm(w∗)(k)

∣∣∣∣ > t

)
≤ 2 exp

(
−

1
2 t

2

β2

4m + βt
3m

)
(67)

since
∑m
`=1 E((X

(k)
` )2) ≤ β2

4m and |X(k)
` | ≤

β
m .
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Since ‖x‖2 ≤
√
d‖x‖∞ for any x ∈ Rd,

P
(∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

> t

)
(68)

≤ P

(√
d

m
‖∇Lm(w∗)‖∞ > t

)
(69)

= P
(∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
∞
>

t√
d

)
(70)

≤ 2d exp

− 1
2
t2

d

β2

4m +
β t√

d

3m

 by union bound and inequality (67) (71)

= 2d exp

(
− t2

dβ2

2m + 2βt
√
d

3m

)
(72)

= 2d exp

(
− 6mt2

3dβ2 + 4βt
√
d

)
. (73)

In other words, for t > 0, with probability at least 1− 2d exp
(
− 6mt2

3dβ2+4βt
√
d

)
, ‖ 1

m∇Lm(w∗)‖2 ≤ t.

Let

α := 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ).

Set

t =

√
α

6m
.

If

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6
=
α

6
,

then

2d exp

(
− 6mt2

3dβ2 + 4βt
√
d

)
≤ δ

2
,

which we establish below.
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If

m ≥ α

6
(74)

=⇒ m ≥ α(4β log (4d/δ))2d

6(4β log (4d/δ))2d
(75)

=⇒ m ≥ α(4β log (4d/δ))2d

6(α− 3β2 log (4d/δ)d)2
(76)

=⇒ m ≥ αd

6
(
α−3β2 log (4d/δ)d

4β log (4d/δ)

)2 (77)

=⇒
(
α− 3β2 log (4d/δ)d

4β log (4d/δ)

)2

≥ αd

6m
(78)

=⇒
α

log (4d/δ) − 3β2d

4β
≥
√
αd

6m
(79)

=⇒ α

log (4d/δ)
≥ 4β

√
αd

6m
+ 3β2d (80)

=⇒ α

4β
√

αd
6m + 3β2d

≥ log (4d/δ) (81)

=⇒ t26m

4βt
√
d+ 3β2d

≥ log (4d/δ) (82)

=⇒ 2d exp

(
− 6mt2

4βt
√
d+ 3β2d

)
≤ δ

2
(83)

(84)

Therefore, if

m ≥ 3β2 log (4d/δ)d+ 4
√
dβ log (4d/δ)

6

with probability at least 1− δ
2 ,

∥∥∥∥ 1

m
∇Lm(w∗)

∥∥∥∥
2

<

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
.

Lemma 5. For (i, j) ∈ P , let Z(i,j) = (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T . Let

λ := λmin(EZ(i,j))

where for a square matrix U , λmin(U) is the smallest eigenvalue of U . Let

η := σmax(E((Z(i,j) − EZ(i,j))
2))

where σmax(X) is the largest singular value of a matrix X . Let

ζ := max
(i,j)∈P

λmax(EZ(i,j) − Z(i,j)),

where λmax(X) is the largest eigenvalue of X . The expectation in λ, η, and ζ is taken with respect to a uniformly chosen
random pair of items.

Let δ > 0. Under the model assumptions in this section, if λ > 0 and if

m ≥ 8 log(2/δ)(6η + λζ)

3λ2
,
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then with probability at least 1− δ
2 ,

1

m

m∑
`=1

∆T (U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T∆ ≥ ‖∆‖22
λ

2

where

∆ = ŵ − w∗.

Proof. Let

X` =
1

m
(U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T − 1

m
E((U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )).

Notice that 1
m

∑m
`=1(U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T is a sum of random matrices where the randomness is
from the random pairs of items that are chosen in the samples. Therefore, bounding the smallest eigenvalue of this random
matrix is sufficient to get the desired lower bound as we show.

Since EX` = 0 by construction and X` is self-adjoint since it is symmetric and real, we apply the following concentration
bound to

∑m
`=1X`:

Theorem 3 (Theorem 1.4 in (Tropp, 2012)). Consider a finite sequence {Xk} of independent, random, self-adjoint
matrices with dimension d. Assume that each random matrix satisfies EXk = 0 and λmax(Xk) ≤ R almost surely.
Then for all t ≥ 0

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d exp

(
−t2/2

σ2 +Rt/3

)
, (85)

where

σ2 := σmax

(∑
k

E
(
X2
k

))
.

Notice

σmax

(
m∑
`=1

E
(
X2
`

))
= mσmax(E

(
X2

1

)
) since each X` is distributed the same (86)

=
m

m2
η (87)

=
1

m
η. (88)

Then applying the above theorem, for t ≥ 0,

P

(
λmax

(
m∑
`=1

−X`

)
≥ t

)
≤ d exp

(
−t2/2

η/m+ ζt/(3m)

)
(89)

≤ d exp

(
−3mt2

6η + 2ζt

)
. (90)
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In other words, for all t ≥ 0, with probability at least 1− d exp
(
−3mt2

6η+2ζt

)
,

λmax

(
m∑
`=1

−X`

)
≤ t (91)

=⇒ ∆T

‖∆‖2

(
m∑
`=1

−X`

)
∆

‖∆‖2
≤ t (92)

=⇒ ∆T (E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ))−

1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T )∆ ≤ t‖∆‖22 (93)

=⇒ ∆T
(
E((U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ))
)

∆− t‖∆‖22

≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆ (94)

=⇒ ‖∆‖22
∆T

‖∆‖2

(
E((U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ))
) ∆

‖∆‖2
− t‖∆‖22

≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆ (95)

=⇒ (λ− t)‖∆‖22 ≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆ (96)

since λ := λmin(E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )).

Set t = λ
2 . Since λ > 0 by assumption, Equation (96) becomes

λ

2
‖∆‖22 ≤ ∆T

(
1

m

m∑
`=1

(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T

)
∆

and holds with probability at least 1− δ
2 if

m ≥ 8 log(2d/δ)(6η + λζ)

3λ2

since

d exp

(
−3mλ2

4

6η + 2λ2 ζt

)
≤ δ

2
(97)

=⇒
−3mλ2

4

6η + 2λ2 ζt
≤ − log(2d/δ) (98)

=⇒
3mλ2

4

6η + 2λ2 ζt
≥ 2 log(2d/δ) (99)

=⇒ m ≥ 8 log(2d/δ)(6η + λζ)

3λ2
. (100)

(101)
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Lemma 6 (Gradient and Hessian of Equation (3)). Given samples Sm, features of the n items U ∈ Rd×n, and w ∈ Rd,

1

m
∇Lm(w;U, Sm, τ) (102)

=
1

m

m∑
`=1

exp(〈w,Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

1 + exp(〈w,Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

(
U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)
− y`

(
U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)
(103)

and

1

m
HLm(w;U, Sm, τ) (104)

=
1

m

m∑
`=1

exp(〈w,Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

(1 + exp(〈w,Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉))2
(U

τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)T (105)

Proof. Gradient: Let f(x) := log(1 + ex) for x ∈ R and g(w; y) := 〈w, y〉 for w, y ∈ Rd, so

1

m
Lm(w;U, Sm, τ) =

1

m

m∑
`=1

(f ◦ g)(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

) + y`g(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

).

Note

f ′(x) =
ex

1 + ex

and ∇wg(w; y) = y.

We arrive at the desired result by the chain rule:

1

m
Lm(w;U, Sm, τ) = (106)

1

m

m∑
`=1

f ′(g(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

))∇wg(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)− y`∇wg(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

). (107)

Hessian: Note

f ′′(x) =
ex(1 + ex)− e2x

(1 + ex)2
=

ex

(1 + ex)2
.

Let [HLm(w;U, Sm)]k be the kth row of the Hessian and ∇Lm(w;U, Sm)(k) be the kth entry of the gradient. Then by the
chain rule again,

[HLm(w;U, Sm)]Tk

= ∇w(∇Lm(w;U, Sm)(k))

=

m∑
`=1

((U
τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k))f ′′(g(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

))∇wg(w;U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

)

=

m∑
`=1

exp(〈w,Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉)

(1 + exp(〈w,Uτ(i`,j`)
i`

− Uτ(i`,j`)
j`

〉))2
((U

τ(i`,j`)
i`

)(k) − (U
τ(i`,j`)
j`

)(k))(U
τ(i`,j`)
i`

− Uτ(i`,j`)
j`

),

which proves the claim.

Lemma 7. Let h(x) = ex

(1+ex)2 . Then h(x) is symmetric and decreases on [0,∞).
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Proof. Symmetry:

h(−x) =
e−x

(1 + e−x)2
(108)

=
e−x

e−2x(ex + 1)2
(109)

=
ex

(ex + 1)2
(110)

= h(x). (111)

Decreasing on [0,∞):

Note

h′(x) =
ex(1 + ex)2 − e2x2(1 + ex)

(1 + ex)4
(112)

=
ex(1 + ex)− e2x2

(1 + ex)3
(113)

=
ex(1− ex)

(1 + ex)3
(114)

≤ 0 (115)

for x ∈ [0,∞) since on this interval, 1− ex ≤ 0 but ex, (1 + ex)3 ≥ 0. Thus h(x) is decreasing on [0,∞).

11. Specific Selection Functions: Proofs of Corollaries 1.1 and 1.2
In this section, we present the full lower bounds on the number of samples and upper bound on the estimation error. The
definitions of the constants that appear in the main text, i.e. C3 and C4, appear at the end of the applicable proofs.

11.1. Proof of Corollary 1.1

The following lemma is a straight forward generalization from (Negahban et al., 2016), but we include the proof for
completeness. We need this lemma to prove Corollary 1.1.

Lemma 8. Let U ∈ Rd×n. Assume that the columns of U sum to 0:
∑n
i=1 Ui = 0. Then

E((Ui − Uj)(Ui − Uj)T ) =
n(
n
2

)UUT

where the expectation is with respect to a uniformly at randomly chosen pair of items.

Proof. Let ei ∈ Rn denote the i-th standard basis vector, In×n denote the n× n identity matrix, and 1 ∈ Rn be the vector
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of all ones. Since the expectation is over a uniformly chosen pair of items (i, j) ∈ P ,

E((Ui − Uj)(Ui − Uj)T ) (116)

= E(U(ei − ej)(ei − ej)TUT ) (117)

=
1(
n
2

)U
 ∑

(i,j)∈P

eie
T
i − eieTj − ejeTi + eje

T
j

UT (118)

=
1(
n
2

)U
(n− 1)

n∑
i=1

eie
T
i −

∑
(i,j)∈P

eie
T
j + eje

T
i

UT since each item is in n− 1 comparisons (119)

=
1(
n
2

)U
(n− 1)In×n −

∑
(i,j)∈P

eie
T
j + eje

T
i

UT (120)

=
1(
n
2

)U ((n− 1)In×n −
(
11

T − In×n
))
UT explained below (121)

=
1(
n
2

)U (nIn×n − 11T )UT (122)

=
1(
n
2

) (nUUT − U11TUT ) (123)

=
n(
n
2

)UUT since U1 =

n∑
i=1

Ui = 0 by assumption. (124)

Equation (121) is because eieTj is the matrix with a 1 in the i-th row and j-th column and 0 elsewhere and we are summing
over all (i, j) ∈ [n]× [n] where i < j. Thus, the sum equals 11T − In×n, which is the matrix with ones everywhere except
for the diagonal.

Corollary 8.1 (Restatement of Corollary 1.1). Assume the set-up stated in the beginning of Section 2. For the selection
function τ , suppose τ(i, j) = [d] for any (i, j) ∈ P . In other words, all the features are used in each pairwise comparison.
Assume n > d. Let ν := max{max(i,j)∈P ‖Ui−Uj‖22, 1}. Without loss of generality, assume the columns of U sum to zero:∑n

i=1 Ui = 0. Then,

λ =
nλmin(UUT )(

n
2

) ,

ζ ≤ ν +
nλmax(UUT )(

n
2

) ,

and

η ≤ νnλmax(UUT )(
n
2

) +
n2λmax(UUT )2(

n
2

)2 .

Let

m1 =
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
.

Let δ > 0. Hence, if

m ≥ max

{
m1,

48 log(2d/δ)
(
n
2

)2
3n2λmin(UUT )2

(
νnλmax(UUT )(

n
2

) +
n2λmax(UUT )2(

n
2

)2
)

+
8 log(2d/δ)

(
n
2

)
3nλmin(UUT )

(
ν +

nλmax(UUT )(
n
2

) )}
,

then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

(
n
2

)
exp(b∗)nλmin(UUT )

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
. (125)
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Proof. Throughout this proof, we use Ui instead of Uτ(i,j)
i for any items i, j since τ(i, j) selects all coordinates.

If
∑n
i=1 Ui 6= 0, simply subtract the column mean, Ū := 1

n

∑n
i=1 Ui, from each column. This operation does not affect the

underlying pairwise probabilities since

P(item i beats item j) =
1

1 + exp(−〈w∗, Ui − Uj〉)
(126)

=
1

1 + exp(−〈w∗, (Ui − Ū)− (Uj − Ū)〉)
. (127)

Let Ũ = U(I − 1
n11

T ) be the centered version of U , i.e. where we subtract Ū from each column of U . Since n > d and by
Proposition 9, if λmin(U) > 0, then λmin(Ũ) > 0 generically. Therefore, WLOG, we may assume

∑n
i=1 Ui = 0.

First, we simplify λ. By Lemma 8,

λ = λmin(E((Ui − Uj)(Ui − Uj)T )) =
nλmin(UUT )(

n
2

) .

Second, we upper bound ζ. Let (k, `) ∈ P , then

λmax

(
E(Ui − Uj)(Ui − Uj)T − (Uk − U`)(Uk − U`)T

)
(128)

= λmax

(
n(
n
2

)UUT − (Uk − U`)(Uk − U`)T
)

by Lemma 8 (129)

≤ λmax

(
n(
n
2

)UUT)+ λmax

(
(Uk − U`)(Uk − U`)T

)
(130)

= λmax

(
n(
n
2

)UUT)+ ‖(Uk − U`)‖22 (131)

≤ λmax

(
n(
n
2

)UUT)+ ν, (132)

(133)

where the second to last line is since the largest eigenvalue of a rank one matrix xxT is ‖x‖22 and the last line is by definition
of ν.

Third, we upper bound η. Let ei ∈ Rn denote the i-th standard basis vector. For any random variable X , we have

E(X − E(X))2 = E(X2)− E(X)2. (134)

Furthermore, since η is the largest singular value of a symmetric matrix squared, the largest eigenvalue of that matrix is also
equal to η. Therefore, η = λmax

(
E((Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T )− E((Ui − Uj)(Ui − Uj)T )2

)
. Most

steps are explained below after the equations. Because the expectation is with respect to a uniformly at random pair of items
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(i, j) ∈ P and by Lemma 8,

λmax

(
E((Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T )− E((Ui − Uj)(Ui − Uj)T )2

)
(135)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(Ui − Uj)(Ui − Uj)T (Ui − Uj)(Ui − Uj)T −
n2(
n
2

)2UUTUUT
 (136)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
(Ui − Uj)(Ui − Uj)T −

n2(
n
2

)2UUTUUT
 (137)

= λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT −

n2(
n
2

)2UUTUUT
 (138)

≤ λmax

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT

+ λmax

(
n2(
n
2

)2UUTUUT
)

(139)

= max
x

xT

‖x‖

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

)
U(ei − ej)(ei − ej)TUT

 x

‖x‖
+ λmax

(
n2(
n
2

)2UUTUUT
)

(140)

= max
x

 1(
n
2

) ∑
(i,j)∈P

(
(Ui − Uj)T (Ui − Uj)

) xT
‖x‖

U(ei − ej)(ei − ej)TUT
x

‖x‖

+ λmax

(
n2(
n
2

)2UUTUUT
)

(141)

≤ max
x

 ν(
n
2

) ∑
(i,j)∈P

xT

‖x‖
U(ei − ej)(ei − ej)TUT

x

‖x‖

+ λmax

(
n2(
n
2

)2UUTUUT
)

(142)

= λmax

 ν(
n
2

) ∑
(i,j)∈P

U(ei − ej)(ei − ej)TUT
+ λmax

(
n2(
n
2

)2UUTUUT
)

(143)

=
νn(
n
2

)λmax

(
UUT

)
+

n2(
n
2

)2λmax

(
UUT

)2
by Lemma 8. (144)

(145)

Equation (137) is because (Ui − Uj)
T (Ui − Uj) ∈ R. Equation (142) is because (Ui − Uj)

T (Ui − Uj) ≥ 0 and
xT

‖x‖U(ei − ej)(ei − ej)TUT x
‖x‖ ≥ 0.

Now that we have bounds on η and ζ and a simplified form for λ, we apply Theorem 1, completing the proof.

Now we explain how to get from these results to those in the main paper with the order terms. The O(·) upper bound on the
estimation error is easy to see. The value of C1 is given at the end of the proof of Theorem 1. The only remaining term
to explain from the main paper is the upper bound of 8 log(2d/δ)(6η+λζ)

3λ2 , which gives us a lower bound on the number of
samples required.
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In particular,

8 log(2d/δ)(6η + λζ)

3λ2
(146)

=
48 log(2d/δ)η

3λ2
+

8 log(2d/δ)ζ

3λ
(147)

=
48 log(2d/δ)

(
n
2

)2
3n2λmin(UUT )2

(
νnλmax(UUT )(

n
2

) +
n2λmax(UUT )2(

n
2

)2
)

+
8 log(2d/δ)

(
n
2

)
3nλmin(UUT )

(
ν +

nλmax(UUT )(
n
2

) )
(148)

=
48 log(2d/δ)

3λmin(UUT )2

((
n
2

)
νλmax(UUT )

n
+ λmax(UUT )2

)
+

8 log(2d/δ)

3λmin(UUT )

((
n
2

)
ν

n
+ λmax(UUT )

)
(149)

≤ 48 log(2d/δ)

3λmin(UUT )2

((
n
2

)
νλmax(UUT )

n
+ nλmax(UUT )2

)
+

8 log(2d/δ)

3λmin(UUT )

((
n
2

)
ν

n
+ nλmax(UUT )

)
(150)

≤ 48 log(2d/δ)

3λmin(UUT )2

(
nνλmax(UUT ) + nλmax(UUT )2

)
+

48 log(2d/δ)

3λmin(UUT )

(
nν + nλmax(UUT )

)
(151)

≤ 48 log(2d/δ)nν

3

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )
+
λmax(UUT )

λmin(UUT )

)
since ν ≥ 1 (152)

≤ 2 ∗ 48 log(2d/δ)nν

3

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )

)
since

λmax(UUT )

λmin(UUT )
≥ 1 (153)

= C3 log(2d/δ)nν

(
λmax(UUT )

λmin(UUT )2
+
λmax(UUT )2

λmin(UUT )2
+

1

λmin(UUT )

)
(154)

where C3 = 2 ∗ 48/3. We remark that the assumption that ν ≥ 1 was made to simplify the upper bound and is not
required.

As we mentioned, we can assume U is centered without loss of generality, because we can subtract the mean column from
all columns if they are not centered. However one may wonder then what happens to λmin(UUT ) =

√
σmin(U) once U is

centered. Since we assume n > d, it will generically be non-zero, as we make precise in the following proposition.

Proposition 9. Given an arbitrary rank-d, d× n matrix Ũ , let U be its centered version, i.e. U = Ũ(I − 1
n11

T ). Then
σmin(U) = 0 if and only if the all-ones vector is in the row space of Ũ .

Proof. Suppose Ũ contains the all-ones vector in its row space, and therefore let v be such that ŨT v = 1. Let Q =
(I − 1

n11
T ). Then

UT v = QŨT v = 0

since the all-ones vector is in the nullspace of Q, implying that σmin(U) = 0. For the other direction suppose σmin(U) = 0.
Then there exists a vector v 6= 0 such that

0 = UT v = QŨT v.

This implies either that ŨT v = 0 or ŨT v is in the nullspace of Q. Since we assumed that Ũ has full row rank, then it must
be that ŨT v = 1, the only vector in the nullspace of Q.

11.2. Discussion of Corollary 1.1 as compared to related work

While our sample complexity theorem for MLE of the parameters of FBTL is novel to the best of our knowledge, there
are some related results that merit a comparison. First, there is a result in (Saha and Rajkumar, 2018) that gives sample
complexity results for a different estimator of FBTL parameters under a substantially different sampling model. In particular,
they only allow pairs to be sampled from a graph, and then for each sampled pair they observe a fixed number of pairwise
comparisons. In their results one can see that as the number of pairs sampled increases, their error upper bound increases
and the probability of their resulting bound also decreases. In contrast, our analysis shows that our error bound decreases as
m increases, and the probability of our resulting bound remains constant.



Preference Modeling with Context-Dependent Salient Features

Second, we can also attempt a comparison to the bounds for BTL without features in (Negahban et al., 2012), despite the
fact that with standard basis features, our bound does not apply because λ = 0. Assuming that exp(b∗)/λ is a constant in
our bound and that νλ̄ is a constant, we roughly have an error bound of O(1) given m = Θ(n2(β2 +β)d log(d/δ)) samples.
The result in (Negahban et al., 2012) instead has that m = Θ(d2 log d) gives an error bound of O(1) with probability 1− 2

d ,
recalling that in their setting d = n. So if we can tighten bounds that require β in our proof, our results may compare
favorably.

Recall the definition of β in Equation (4): β := max(i,j)∈P ‖U
τ(i,j)
i − Uτ(i,j)

j ‖∞. In our proof, we use this to bound

differences between feature vectors at Equation (66). In particular, we bound 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤

β2. If we instead directly made the assumption that

β̃2 :=
1(
n
2

) max
k∈[d]

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

,

we could replace β with β̃ directly in our bounds. Assume β̃ ≤ 1/n2. Then our sample complexity would reduce to
m = Θ(d log(d/δ)) = Θ(d log(2d2)) = Θ(d log(d)) where recall δ = 2

d , beating the complexity in (Negahban et al.,
2012). However, it is not clear in general what impact the assumption that β̃ ≤ 1/n2 would have on the minimum eigenvalue
of UUT . Indeed, the standard basis vectors are a special case where β̃ ≤ 1/n, and as we pointed out, for this special case
λ = 0.

Third, although there are crucial differences between our model and the model in (Shah and Wainwright, 2017) that make a
direct comparison impossible, we attempt to roughly compare results. The first difference is that they assume the feature
vectors of the items are standard basis vectors, which means our bounds do not apply just as in the comparison with
(Negahban et al., 2012). The second difference, perhaps the most crucial, is that we make different assumptions about how
the intransitive pairwise comparisons are related to the ranking. In (Shah and Wainwright, 2017), the items are ranked
based on the probability that one items beats any other item chosen uniformly at random. There are scenarios where the
true ranking in our model is not the same as the true ranking in (Shah and Wainwright, 2017). The third difference is that
we assume that pairs are drawn uniformly at random, whereas they assume each pair (i, j) ∈ P is drawn xi,j times where
xi,j ∼ Binom(r, p) for r, p > 0.

Their result (Theorem 2) roughly says with probability 1/n13, if the gap between a pair of consecutively ranked items’
scores is at least

√
log n/(npr), then their algorithm learns the ranking exactly. We compare to our Corollary 1.3 with

k = 1 and δ = 1
n13 though again we emphasize an exact comparison is impossible because our model is not a special

case of theirs or vice versa. Our corollary says with enough samples with high probability, we learn the ranking exactly.
On average, their sampling method will see O(n2rp) samples, so a reasonable way to compare results is to show the
required number of samples in our method is comparable to O(n2rp). If we assume that β, η, ζ, λ, and M are all constant,
αk =

√
log n/(npr) which is their assumed gap between scores, and d = n, the number of samples we require is

max{n log(n ∗ n13), log(n), n log(n ∗ n13)npr/ log(n)} = O(n2pr), matching their bounds.

Fourth, the set-up of (Heckel et al., 2019) is the same as (Shah and Wainwright, 2017) except it considers the adaptive setting.
If the gaps of the utilities of consecutively ranked items are constant and denoted by ∆, then under the same assumptions in
the discussion about (Shah and Wainwright, 2017), our Corollary 1.3 is slightly better by a log factor than their Theorem
1a: O(log(n/δ)n/(∆)2)) vs. O(log(n/δ)n log(2 log(2/∆))/(∆)2)). However, if many gaps between scores are large and
only some gaps between scores are small, their adaptive method is better than our Corollary 1.3. This is not surprising
since they can adaptively chose which pair to sample next based on the past pairwise comparisons, whereas we consider the
passive setting.

11.3. Proof of Corollary 1.2

Corollary 9.1 (Restatement of Corollary 1.2). Assume the set-up stated in the beginning of Section 2. Assume that for
any (i, j) ∈ P , |τ(i, j)| = 1. Partition P = tdk=1Pk into d sets where (i, j) ∈ Pk if τ(i, j) = {k} for k ∈ [d]. Let
ε := min(i,j)∈P ‖U

τ(i,j)
i − Uτ(i,j)

j ‖∞. Then

λ ≥ ε2(
n
2

) min
k∈[d]

|Pk|,
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ζ ≤ β2 +
β2(
n
2

) max
k∈[d]

|Pk|,

and

η ≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) .
Furthermore, let

m1 =
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

and let

m3 :=
48 log(2d/δ)β4 maxk∈[d]

((
n
2

)
|Pk|+ |Pk|2

)
3ε4 mink∈[d] |Pk|2

+
8 log(2d/δ)β2

((
n
2

)
+ maxk∈[d] |Pk|

)
3ε2 mink∈[d] |Pk|

.

Let δ > 0. If m ≥ max{m1,m3}, then with probability at least 1− δ,

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

(
n
2

)
exp(b∗)ε2 mink∈[d] |Pk|

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
,

where the randomness is from the randomly chosen pairs and the outcomes of the pairwise comparisons.

Proof. Note that |Pk| > 0, so that λ > 0, for all k ∈ [d] if the model is identifiable. Let U (j)
i be the j-th coordinate of the

vector Ui, ei be the i-th standard basis vector, and for a vector x, let diag(x) be the diagonal matrix whose (i, i)-th entry is
the i-th entry of x.

First we simplify and bound λ. Since each pair of items are chosen uniformly at random,

E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ) =
1(
n
2

) ∑
(i,j)∈P

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (155)

=
1(
n
2

) d∑
k=1

∑
(i,j)∈Pk

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (156)

=
1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek), (157)

which is a diagonal matrix. Therefore,

λ =
1(
n
2

) min
k∈[d]

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 (158)

≥ ε2(
n
2

) min
k∈[d]

|Pk|. (159)

Second, we simplify and bound ζ. Since |τ(k, j)| = 1 for all k, j ∈ P , let U (τ(k,j))
i denote the coordinate of Ui

corresponding to the only element in τ(k, j). Define eτ(k,j) similarly, which is one of the standard basis vectors.
From the proof of bounding λ in Equations (155) to (157), we have E((U

τ(i,j)
i − U

τ(i,j)
j )(U

τ(i,j)
i − U

τ(i,j)
j )T ) =
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1

(n2)

∑d
k=1

(∑
(i,j)∈Pk(U

(k)
i − U (k)

j )2
)

diag(ek), so

ζ = max
(`,p)∈P

λmax(E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )− (U
τ(`,p)
` − Uτ(`,p)

p )(U
τ(`,p)
` − Uτ(`,p)

p )T ) (160)

= max
(`,p)∈P

λmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek)− (U
τ(`,p)
` − Uτ(`,p)

p )(U
τ(`,p)
` − Uτ(`,p)

p )T

 (161)

= max
(`,p)∈P

λmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek)− (U
(τ(`,p))
` − U (τ(`,p))

p )2diag(eτ(`,p))

 (162)

≤ β2

(
max
k∈[d]

(
|Pk|(
n
2

) + 1

))
(163)

(164)

since the maximum eigenvalue of a diagonal matrix is bounded by the absolute value of its largest entry. We have also
applied the triangle inequality and the definition of β since |τ(i, j)| = 1 for all (i, j) ∈ P .

Third, we simplify η. First notice from the proof of bounding λ from Equations (155) to (157),

(
E(U

τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T
)2

=

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

 diag(ek)

2

(165)

=
1(
n
2

)2 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

2

diag(ek), (166)

since the matrices above are diagonal.

Also,

E(((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T )2) (167)

= E((U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T ) (168)

=
1(
n
2

) d∑
k=1

∑
(i,j)∈Pk

(U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (U
τ(i,j)
i − Uτ(i,j)

j )(U
τ(i,j)
i − Uτ(i,j)

j )T (169)

=
1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )4

 diag(ek), (170)

For any random variable X , we have

E(X − E(X))2 = E(X2)− E(X)2. (171)

Therefore,
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η = σmax

 1(
n
2

) d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )4

 diag(ek)− 1(
n
2

)2 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )2

2

diag(ek)

 (172)

=
1(
n
2

)σmax

 d∑
k=1

 ∑
(i,j)∈Pk

(U
(k)
i − U (k)

j )4 − 1(
n
2

)
 ∑

(i,j)∈Pk

(U
(k)
i − U (k)

j )2

2
 diag(ek)

 (173)

≤ β4(
n
2

) max
k∈[d]

(
|Pk|+

|Pk|2(
n
2

) ) (174)

since the largest singular value of a diagonal matrix is bounded by the largest entry of the diagonal in absolute value. We
have also applied the triangle inequality and definition of β.

The remainder of the corollary follows by applying the bounds on λ, ζ and η to Theorem 1.

Now we explain how to get from these results to those in the main paper with the order terms. The O(·) upper bound on
the estimation error is easy to see. The value of C1 is given at the end of the proof of Theorem 1. Finally, it is easy to see
C4 = 48/3 in the main paper.

11.4. Tightening the bounds of Corollary 1.2

Still in the setting where the selection function chooses one coordinate per pair, assume |Pi| ≈ |Pj | for all i, j ∈ [d],
where Pi is defined in Corollary 1.2. Then, as we have stated in the main text, λ, η, ζ = O(1/d), and so by Corollary 1.2,
Ω(d3 log(d/δ)) samples ensures the estimation error is O(1). However, by tightening a bound used in the proof of Theorem
1, we can show Ω(d2 log(d/δ)) samples ensures the estimation error is O(1).

Recall the definition of β in Equation (4): β := max(i,j)∈P ‖U
τ(i,j)
i − U

τ(i,j)
j ‖∞. In our proof, we use

this to bound differences between feature vectors at Equation (66). In particular, for k ∈ [d] we bound
1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2. For any k ∈ [d], since |Pi| ≈ |Pj | for all i, j ∈ [d], each coordinate

is chosen approximately
(
n
2

)
/d times. Therefore, 1

(n2)

∑
(i,j)∈P

(
(U

τ(i,j)
i )(k) − (U

τ(i,j)
j )(k)

)2

≤ β2 d since only
(
n
2

)
/d

of the
(
n
2

)
terms in the sum are non-zero. We can now replace β with β/

√
d in Corollary 1.2. Therefore, Ω(d2 log(d/δ))

samples ensures the estimation error is O(1) since λ, η, ζ = O(1/d).

12. Proof of Corollary 1.3
In this section, we present the full lower bounds on the number of samples and upper bound on the estimation error. The
definitions of the constants that appear in the main text, i.e. C5, appear at the end of the proof.

Corollary 9.2 (restatement of Corollary 1.3: sample complexity of learning the ranking). Assume the set-up of Theorem
1. Pick k ∈ [

(
n
2

)
]. Let αk be the k-th smallest number in {|〈w∗, Ui − Uj〉| : (i, j) ∈ P}. Let M := maxi∈[n] ‖Ui‖2. Let

γ∗ : [n]→ [n] be the ranking obtained from w∗ by sorting the items by their full-feature utilities 〈w∗, Ui〉 where γ∗(i) is the
position of item i in the ranking. Define γ̂ similarly but for the estimated ranking obtained from the MLE estimate ŵ. Let
δ > 0. Let

m1 =
3β2 log (2d/δ)d+ 4

√
dβ log (2d2/δ)

6
,

m2 =
8 log(4d/δ)(6η + λζ)

3λ2
,

and

m3 =
64M2(1 + exp(b∗))4(3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ))

6α2
k exp(b∗)2λ2

.

If m ≥ {m1,m2,m3}, then with probability 1 − 2
d , K(γ∗, γ̂) ≤ k − 1, where K(γ∗, γ̂) = |{(i, j) ∈ P : (γ∗(i) −

γ∗(j))(γ̂(i)− γ̂(j)) < 0}| is the Kendall tau distance between two rankings.
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Proof. By Theorem 1, with probability 1− δ, we have

‖w∗ − ŵ‖2 ≤
4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6m
(175)

≤ αk
2M

(176)

by definition of m.

The estimated full feature utility for item i is no further than αk
2 to the true utility of item i:

|〈w∗ − ŵ, Ui〉| ≤ ‖w∗ − ŵ‖2‖Ui‖2 by Cauchy–Schwarz (177)

≤ αk‖Ui‖2
2M

(178)

≤ αk
2
. (179)

Therefore for any i ∈ [n],
〈w∗, Ui〉 −

αk
2
≤ 〈ŵ, Ui〉 ≤ 〈w∗, Ui〉+

αk
2
. (180)

Let Pαk := {(i, j) ∈ P : |〈w∗, Ui − Uj〉| ≥ αk} and let (i, j) ∈ Pαk . WLOG, suppose 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0, i.e.
γ∗(i) − γ∗(j) ≤ 0, which means item j is ranked higher than item i in the true ranking given by γ. We want to show
〈ŵ, Ui〉 − 〈ŵ, Uj〉 ≤ 0, i.e. γ̂(i)− γ̂(j) ≤ 0, meaning that item j is ranked higher than item i in the estimated ranking given
by γ̂.

By applying Equation (180) and using the fact 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0, we have

〈ŵ, Ui〉 ≤ 〈w∗, Ui〉+
αk
2

by Equation (180) (181)

= 〈w∗, Ui〉 − 〈w∗, Uj〉+ 〈w∗, Uj〉+
αk
2

(182)

≤ −αk + 〈w∗, Uj〉+
αk
2

since (i, j) ∈ Pαk and since 〈w∗, Ui〉 − 〈w∗, Uj〉 ≤ 0 (183)

≤ 〈w∗, Uj〉 −
αk
2

(184)

≤ 〈ŵ, Uj〉 by Equation (180). (185)

Hence, 〈ŵ, Ui〉 − 〈ŵ, Uj〉 ≤ 0 for every i, j ∈ Pk, meaning that for any (i, j) ∈ Pk, γ∗ and γ̂ agree on the relative ordering
of item i and j. Furthermore, |Pk| =

(
n
2

)
− (k − 1). Therefore, K(γ∗, γ̂) ≤

(
n
2

)
− |Pk| = k − 1.

Now we explain how to get from these results to those in the main paper with the order terms. The value of C1 and C2 are
given at the end of the proof of Theorem 1. It is easy to see that C5 = 64 ∗ 4 ∗ 24/6.

13. Synthetic Experiments
Code is available at https://github.com/Amandarg/salient_features.

13.1. Plot of Parameters in Theorem 1

In this section, the goal is to empirically illustrate how the top-t selection function and intransitivities effect the parameters
b∗, ζ, η, β, and λ from Theorem 1 and hence the number of samples required and the exact upper bound on the estimation
error. Just as in the synthetic experiment section, we sample each coordinate of U from N(0, 1√

d
) and each coordinate of

w∗ is sampled from N(0, 4√
d
).

In the experiments, the ambient dimension d = 10 and the number of items n = 100. We repeat the following 10 times:
sample U and w∗, and use this U and w∗ while varying t ∈ [d] to compute all of the parameters of interest and intransitivity

https://github.com/Amandarg/salient_features
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Figure 5. The parameters of Theorem 1 for the top-t selection function as a function of the average strong stochastic transitivity violation
rate over the 10 experiments. The average over 10 experiments where a new U and w∗ are drawn each time is depicted. The bars represent
the standard error over the 10 experiments.

rates. The x-axis of each plot is the average strong stochastic transitivity (SST) violation rate defined in Section 4.1 where
the average is taken over the 10 experiments. From Figure 2, intransitives decrease as t increases, so the x-axis in Figures 5
and 6 could roughly, but not exactly, be replaced with t, where t is decreasing from 10 to 1. The y-axis on the plots depict
the average value and the bars represent the standard error over the 10 experiments.

Figure 5 shows the parameters in Theorem 1. Larger λ means smaller sample complexity, whereas smaller b∗, ζ, β and η
means smaller sample complexity.

Recall in the Supplement re-statement of Theorem 1, the number of samples m required in the theorem is

m ≥ max

{
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6
,

8 log(2d/δ)(6η + λζ)

3λ2

}
.

Letm1 = 3β2 log (4d/δ)d+4
√
dβ log (4d/δ)

6 andm2 = 8 log(2d/δ)(6η+λζ)
3λ2 . Figure 6 showsm1,m2, and the bound from Theorem

1 with δ = 1
δ = 1

10 without the number of samples, i.e. the upper bound plot on the left does not include the number of
samples in it. The plot shows

4(1 + exp(b∗))2

exp(b∗)λ

√
3β2 log (4d/δ)d+ 4

√
dβ log (4d/δ)

6

without the 1√
m

term. Note that m1 has constant average and standard error bars since with the dimension fixed, it is a
function of β, which is constant in this case. Furthermore, this plot suggests that m1 << m2.

13.2. Additional Synthetic Experiments and Details

First we define the Kendall tau correlation. It is used in both Sections 4.1 and 4.2, and is defined as follows. Let
γ, ρ : [n] → [n] be two rankings on n items where γ(i) and ρ(i) is the position of item i in the ranking. Let A =∑

(i,j)∈P 1{(σ(i)−σ(j))(ρ(i)−ρ(j))>0}, respectively D =
∑

(i,j)∈P 1{(σ(i)−σ(j))(ρ(i)−ρ(j))≤0}, be the number of pairs of
items that σ and ρ agree, respectively disagree, on the relative ordering. Then the Kendall tau correlation of ρ and γ is

KT (γ, ρ) :=
A−D(

n
2

) . (186)

Second, recall the set-up in Section 4: The ambient dimension d = 10, the number of items n = 100, and the top-1 selection
function is used. The coordinates of U are drawn from N

(
0, 1√

d

)
,and the coordinates of w∗ are drawn from N

(
0, 4√

d

)
.

We sample m pairwise comparisons for m ∈ {2i ∗ (100) : i ∈ [11]}, fit the MLEs of the FBTL and salient preference model
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Figure 6. Number of samples m1 and m2 and upper bound on estimation error from Theorem 1 for the top-t selection function as a
function of the average strong stochastic transitivity violation rate over the 10 experiments. The average over 10 experiments where a new
U and w∗ are drawn is depicted. The bars represent the standard error over the 10 experiments.
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Figure 7. Pairwise prediction accuracy as a function of the number of samples, which are on the logarithmic scale, where the pairwise
comparisons are sampled from the salient feature preference model with the top-1.

with the top-1 selection function, and repeat 10 times. Figure 7 shows the average pairwise prediction accuracy, which is
defined as

|{(i, j) ∈ P : (Pij − .5)(P̂ij − 5) > 0}|(
n
2

)
where P̂ij is the estimated pairwise probability that item i beats item j. The bars shows the standard error over the 10
experiments. The gap between the salient feature preference model MLE and the FBTL MLE is expected since the data is
generated from the salient feature preference model.

Third, see Figures 8 and 9 for plots investigating model misspecification. In particular, we use the same experimental set-up
as in Section 4.1 except that in Figure 9 the salient feature preference model with the top-3 selection function is used to
generate the preference data. We fit the MLE for the salient feature preference model for the top-t selection function for all
t ∈ [d] for both plots. The FBTL model is equivalent to when t = 10.

In Figure 8, we see that the model is very sensitive to the choice of t. As we would expect, t = 2 has the second smallest
error when the number of samples exceed 210.

In Figure 9, we see that the model is still sensitive to the choice of t, but not as sensitive as in Figure 8. In this case, we can
not only overestimate t, i.e. t > 3, but underestimate t, i.e. t < 3. We see that t = 2 and t = 4–the two values of t closest to
the truth of t = 3–have roughly the same error. Interestingly, t = 1 has the worst performance.
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Figure 8. These plots investigate model misspecification. The true generative model for the pairwise preference data is the salient feature
preference model with the top-1 selection function. The coordinates of U and w are sampled from a Gaussian as described in the main
text. The MLEs for the salient feature preference model with the top-t selection function for t ∈ [d] is shown.
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Figure 9. These plots investigate model misspecification. The true generative model for the pairwise preference data is the salient feature
preference model with the top-3 selection function. The coordinates of U and w are sampled from a Gaussian as described in the main
text. The MLEs for the salient feature preference model with the top-t selection function for t ∈ [d] is shown.
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14. Real Data Experiments
Code is available at https://github.com/Amandarg/salient_features.

14.1. Algorithm implementation

In this section, we provide relevant details about how each algorithm is implemented.

• RankNet: We use the RankNet implementation found at https://github.com/airalcorn2/RankNet,
which uses Keras. However, we use the Adam optimizer with default parameters except with a learning rate of 0.0001.
We also add an `2 penalty to the weights.

• Salient feature preference model and FBTL: We use sklearn’s logistic regression solver. In particular, we set
tol = 1e− 10 and max iter = 10000. Furthermore, we do not fit an intercept. We use the default liblinear
solver for real data experiments, and the sag solver for synthetic data experiments since we do not use regularization.
All other parameters use the default values.

• Ranking SVM: We use sklearn’s LinearSVC solver with the same parameters as above. In particular, we do not
fit an intercept.

The synthetic experiments were ran on a 2016 MacBook Pro with a 2.6 GhZ Quad-Core Intel Core i7 processor. The real
data experiments were ran on the University of Michigan’s Great Lakes Cluster 1.

14.2. District compactness experiments

We refer the reader to (Kaufman et al., 2017) for the full details about the district compactness data, but provide relevant
details here. We obtained the data by contacting the authors.

14.3. Pairwise comparison description

There were three pairwise comparison studies. Due to data collection issues, only two of these pairwise comparison studies,
called shiny2pairs and shiny3pairs, are available. In shiny2pairs, there are 3,576 pairwise for 298 people
who each answered 12 pairwise comparisons. In shiny3pairs, there are 1,800 pairwise comparisons for 90 people who
each answered 20 pairwise comparisons. There is no overlap in the districts used in shiny2pairs and shiny3pairs.

14.4. k-wise rankings for k > 2 description

There are 8 sets of k-wise ranking data. In many cases, the feature data for some districts are missing entirely, so in our
own experiments, we throw out any district without feature data. Recall, we use the k-wise ranking data for validation and
testing, so we also remove any districts present in the training set.

• Shiny1 contains rankings for 298 people on 20 districts, but the feature information for 10 districts are missing. The
people are composed of undergraduate students, PhD students, law students, consultants, legislators involved in the
redistricting process, and judges.

• Shiny2 contains rankings on 20 districts for 103 people collected on Mturk. The feature information on 10 of the
districts are missing however.

• Mturk contains another set of Mturk experiments collected on 100 districts and 13 people, which we use as our
validation set. However, 34 of the districts also had pairwise comparison information collected about them, so we throw
these out.

• UG1-j1, UG1-j2, UG1-j3, UG1-j4, and UG1-j5 are 4 sets of 20-wise ranking data for 4 undergraduates at
Harvard. The initial task was to rank 100 districts at once, but the resulting data set contains 5 sets of rankings on
20 districts. Out of the 100 districts used across the 5 sets of rankings, there are 38 districts with missing feature
information.

1https://arc-ts.umich.edu/greatlakes/

https://github.com/Amandarg/salient_features
https://github.com/airalcorn2/RankNet
https://arc-ts.umich.edu/greatlakes/
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Figure 10. For each of the k-wise ranking data sets, the average agreement between people in terms of the Kendall tau correlation is
shown.

See Figure 10 which depicts the average Kendall tau correlation between pairs of rankings in a k-wise ranking data set and
the standard deviation. Recall the Kendall tau correlation, KT (·, ·), is defined in Equation (186). This plot shows roughly
how much people agree with each other, where higher values mean more agreement. In particular, suppose there are N
k-wise rankings given by σ1, . . . , σN . Then the average Kendall tau correlation for the N rankings is

1

2
(
N
2

) ∑
(i,j)∈[N ]×[N ]

KT(σi, σj)

and refer to this quantity as the average intercoder Kendall tau correlation. We see that people typically disagree on shiny2
and shiny1, whereas people tend to agree more often on the rest of the k-wise data sets perhaps because there are fewer
people.

The districts used in shiny1 and shiny2 are the same, and these districts also comprise one of the UG1 data sets as well.
However, the districts in mturk are disjoint from the rest of the k-wise ranking sets. In addition, mturk has relatively low
intercoder variability. For these two reasons, we decided to use mturk as our validation set. We decided to keep shiny1
and shiny2 separate since the original authors did and also since they are comprised of different groups of people resulting
in different behavior, e.g., shiny1 has a higher average intercoder Kendall tau correlation than shiny2.

14.5. Data preprocessing

We remove pairwise comparisons that were asked fewer than 5 times resulting in 5,150 pairwise comparisons over 94
unique pairs on 122 districts. There are 8 sets of k-wise comparison data that we use for validation and testing. We remove
any districts in the k-wise ranking data that are present in the training data. We standardize the features of the districts
by subtracting the mean and dividing by the standard deviation, where we use the mean and standard deviation from the
training set. Standardizing the features is important for the salient feature preference model with the top-t selection function,
so that each feature is roughly on the same scale. Otherwise, the top-t selection function might just choose the coordinates
with the largest magnitude, and not the coordinates truly with the most variability.

14.6. Experiment details

The hyperparameters for the salient feature preference model with the top-t selection function are t and the `2 regularization
parameter µ. The hyperparameter for FBTL is the `2 regularization parameter µ. For Ranking SVM, the only hyperparameter
is C which controls the penalty for violating the margin. We vary t ∈ [d] where d = 27 since there are 27 features. We vary
µ and C in {.00001, .0001, .001, .01, .1, 1, 10, 100, 1000, 10000, 100000, 1000000}.

The hyperparameters for RankNet include the `2 regularization parameter µ and number of nodes in the hid-
den layer. We use one hidden layer. We varied the number of nodes in the single hidden unit in in {5 ∗
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i : i ∈ [19]}. We use a batch size of 250, and we use 800 epochs. Initially, we varied µ also in
{.00001, .0001, .001, .01, .1, 1, 10, 100, 1000, 10000, 100000, 1000000}, but as we will discuss in the next section we
decided to vary µ in {.00001, .0001, .001, .01, .1, 1, 10}.

14.7. Best performing hyperparameters

Again, the validation set that was use is the mturk ranking data. Given ŵ, an estimate of w∗, we estimate the ranking by
sorting each item’s features with its inner product with ŵ. Then we pick the best hyperparameters by the largest average
Kendall tau correlation of the estimated ranking with each individual ranking in mturk.

For FBTL, the best performing hyperparameter is µ = 100000. The average Kendall tau correlation of the estimated ranking
to each individual ranking in mturk is 0.38 with a standard deviation of 0.05. The pairwise comparison accuracy on the
training set is 56%, which is defined in Section 13.2 of the Supplement. Although the regularization strength is large, the
norm of the estimated judgement vector is .015. The largest coordinate of the judgement vector in absolute value is .005 and
the smallest is .0001.

For the salient feature preference model with the top-t selection function the best performing hyperparameters are t = 2 and
µ = .001. The average Kendall tau correlation of the estimated ranking to each individual ranking in mturk is 0.54 with a
standard deviation of 0.06. The pairwise comparison accuracy on the training set is 69%.

Figure 11 shows how often each of the 27 features are selected by the top-2 selection function over unique pairwise
comparisons in the training data. Notice that var xcoord and circle area are never selected. The learned weights
for those features in the FBTL model when all the features are used are 2 of the top 3 features with the smallest weights, so
these features play a relatively insignificant role when all the features are used any way.

For RankNet, the best hyperparameters on the validation set are µ = .1 and 75 nodes in the hidden layer. The average
Kendall tau correlation of the estimated ranking to each individual ranking in mturk is 0.407 with a standard deviation of
0.05. The pairwise comparison accuracy on the training set is 59%. As we discussed in the previous section, we initially
searched over larger values of µ. The best performing hyperparameters were µ = 10000 and 40 nodes in the hidden layer.
The pairwise comparison training accuracy was higher (69%) and the average Kendall tau correlation on the validation set
was also higher (.48 with a standard deviation of .05). However, these hyperparameters were very unstable, i.e. training on
the same data with the same hyperparameters sometimes gave a completely different model where the average Kendall tau
correlation on the validation set or some of the test sets were sometimes negative.

For Ranking SVM, the best hyperparameter on the validation set is C = 1000000. The average Kendall tau correlation of the
estimated ranking to each individual ranking in mturk is 0.38 with a standard deviation of 0.05. The pairwise comparison
accuracy on the training set is 56%. Although C is large, the norm of the estimate of the judgement vector is .006, the
largest entry in absolute value is .002, and the smallest is .0006, so it is finding a non-zero estimate for the judgement vector.

14.8. Zappos experiments

We refer the reader to (Yu and Grauman, 2014; 2017) for the full details about the UT Zappos50k data set but provide
relevant details here. The data can be found at http://vision.cs.utexas.edu/projects/finegrained/
utzap50k/.

14.9. Pairwise comparison data description

The UT Zappos50K data set consists of pairwise comparisons on images of shoes and 960 extracted color and vision
features for each shoe (Yu and Grauman, 2014; 2017). Given images of two different shoes and an attribute from {“open,”
“pointy,” “sporty,” “comfort”}, respondents were asked to pick which shoe exhibits the attribute more. The data consists
of both easier, coarse questions, i.e. based on comfort, pick between a slipper or high-heel, and also harder, fine grained
questions i.e. based on comfort, pick between two slippers. Each pairwise comparison is asked to 5 different people, and the
confidence of each person’s answer is also collected.

There are 2,863 unique pairwise comparisons involving 5,319 shoes for open, 2,700 unique pairwise comparisons involving
5,028 shoes for pointy, 2,766 unique pairwise comparisons involving 5,144 shoes for sporty, and 2,756 unique pairwise
comparisons involving 5,129 shoes for comfort. For each attribute, 86% of unique pairwise comparisons involve an item
that is in no other pairwise comparison regarding that attribute. Also, for each attribute, nearly 93% of items only appear in

http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
http://vision.cs.utexas.edu/projects/finegrained/utzap50k/
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Figure 11. The frequency that the top-2 selection function chooses each feature over unique pairwise comparisons in the training data.
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Table 3. Statistics about the best performing t for the salient feature preference model with the top-t selection function on the validation
set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 440 310 110 40
Max 830 980 850 950
Average 663 614 550 563
Standard deviation 150 198 238 305

Table 4. Statistics about the best performing µ for the salient feature preference model on the validation set over 10 train/validation/test
splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 1000 100 1000 10
Max 10000 100000 10000 10000
Average 4600.0 12520.0 5500.0 5311.0
Standard deviation 4409.08 29389.65 4500.0 4700.46

one pairwise comparison. In light of this, an algorithm like (Chen and Joachims, 2016b) will likely not work well since (1)
this model requires learning a set of parameters for each item and (2) the model does not work for unseen items, i.e., we
must ensure that items in testing also appear in training to evaluate the model.

Furthermore, for each of the attributes, there are no triplets of items (i, j, k) where pairwise comparison data has been
collected on i vs. j, j vs. k, and k vs. i. Therefore, we cannot even test if there are intransitivities in this data.

14.10. Data pre-processing

Respondents were given the option to declare a tie between two items. We do not train on any of these pairwise comparisons.
To be clear, we use both the “coarse” and “fine-grained” comparisons during training. We standardize the features by
subtracting the mean and dividing by the standard deviation, where we use the mean and standard deviation of the training
set for each attribute since we train a model for each attribute.

14.11. Experiment details

The hyperparameters for the salient feature preference model with the top-t selection function are t and the `2 regularization
parameter µ. The hyperparameter for FBTL is the `2 regularization parameter µ. For Ranking SVM, the only hyperparameter
is C which controls the penalty for violating the margin. We vary t ∈ {10 ∗ i : i ∈ [99]} since there are 990 features. We
vary µ and C in {.000001, .00001, .0001, .001, .01, .1}. For RankNet, the hyperparameters are µ and the number of nodes
in the hidden layer. We vary µ in {.05, .1, .15} and the nodes in {50, 250, 500}. We choose these values of µ to try since
on validation sets, it appeared that any value less than .05 was over fitting (train accuracy was in the 90%s but validation
accuracy was in the 70%s) and values above .15 were not learning a good model (train accuracy was in the 60%s). We only
search over these hyperparameters due to time constraints. We use ten 70% train, 15% validation, and 15% test split.

14.12. Best performing hyperparameters

Because the pairwise comparisons are either “coarse” or “fine-grained,” we pick the best hyperparameters based on the
average of the pairwise comparison accuracy on the “coarse” questions and the “fine-grained” questions on the validation
set. See Table 3 for statistics about the best performing t for the salient feature preference model with the top-t selection
function on the validation set over 10 train/validation/test splits. See Tables 4, 5, 7 for statistics about the best performing µ
for the salient feature preference model, FBTL model, and RankNet on the validation set over the 10 train/validation/test
splits. See Table 6 for statistics about the best performing C for Ranking SVM on the validation set over the over the 10
train/validation/test splits. See Table 8 for the best performing number of nodes in the hidden layer on the validation set over
the 10 splits. We also report the average pairwise accuracy, which has been defined in the main text, on the validation set for
all algorithms in Table 9.
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Table 5. Statistics about the best performing µ for FBTL on the validation set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 1000 100 1000 10
Max 100000 100000 100000 100000
Average 15400 12520 17200 24211
Standard deviation 28517 29389 27827 38131

Table 6. Statistics about the best performing C for Ranking SVM on the validation set over 10 train/validation/test splits for UT
Zappos50k.

Attribute: open pointy sporty comfort

Min 10000 1000 10000 100
Max 100000 1000000 1000000 1000000
Average 70000 124300 163000 144010
Standard deviation 42426 294261 281888 288619

Table 7. Statistics about the best performing µ for RankNet on the validation set over 10 train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min .05 .05 .05 .05
Max .15 .1 .15 .15
Average .075 .055 .085 .105
Standard deviation .033 .015 .039 .041

Table 8. Statistics about the best performing number of nodes in the hidden layer for RankNet on the validation set over 10
train/validation/test splits for UT Zappos50k.

Attribute: open pointy sporty comfort

Min 50 50 50 250
Max 500 500 250 500
Average 335 205 190 350
Standard deviation 178.95 201.84 91.65 122.47

Table 9. Average pairwise prediction accuracy over 10 train/validation/test splits on the validation sets by attribute for UT Zappos50k.
C stands for coarse and F stands for fine grained. The number in parenthesis is the standard deviation.

Model: open-C pointy-C sporty-C comfort-C open-F pointy-F sporty-F comfort-F

Salient features 0.75 (.01) 0.8 (.01) 0.79 (.02) 0.77 (.03) 0.64 (.03) 0.6 (.03) 0.62 (.03) 0.66 (.03)
FBTL 0.75 (.02) 0.8 (.01) 0.79 (.01) 0.77 (.02) 0.63 (.03) 0.59 (.03) 0.6 (.02) 0.62 (.03)
Ranking SVM 0.75 (.02) 0.8 (.02) 0.8 (.01) 0.77 (.02) 0.62 (.04) 0.59 (.03) 0.6 (.02) 0.62 (.04)
RankNet 0.75 (.02) 0.78 (.03) 0.78 (.01) 0.76 (.02) 0.67 (.03) 0.61 (.04) 0.61 (.02) 0.64 (.03)




