
Bregman Duality in Thermodynamic Variational Inference

A. Conjugate Duality
The Bregman divergence associated with a convex function
f : ⌦ ! R can be written as (Banerjee et al., 2005):

DBf [p : q] = f(p) + f(q) � hp � q, rf(q)i

The family of Bregman divergences includes many familiar
quantities, including the KL divergence corresponding to
the negative entropy generator f(p) = �

R
p log p d!. Geo-

metrically, the divergence can be viewed as the difference
between f(p) and its linear approximation around q. Since
f is convex, we know that a first order estimator will lie
below the function, yielding Df [p : q] � 0.

For our purposes, we can let f ,  (�) = log Z� over
the domain of probability distributions indexed by natural
parameters of an exponential family (e.g. (13)) :

D [�p : �q] =  (�p) �  (�q) � h�p � �q, r� (�q)i
(34)

This is a common setting in the field of information geom-
etry (Amari, 2016), which introduces dually flat manifold
structures based on the natural parameters and the mean
parameters.

A.1. KL Divergence as a Bregman Divergence

For an exponential family with partition function  (�) and
sufficient statistics T (!) over a random variable !, the Breg-
man divergence D corresponds to a KL divergence. Re-
calling that r� (�) = ⌘� = E⇡� [T (!)] from (16), we
simplify the definition (34) to obtain

D [�p : �q] =  (�p) �  (�q) � �p · ⌘q + �q · ⌘q

=  (�p) �  (�q) � Eq[�p · T (!)]

+ Eq[�q · T (!)]

= Eq

⇥
�q · T (!) �  (�q)

⇤
+ Eq[⇡0(!)]

| {z }
log q(!)

� Eq

⇥
�p · T (!) �  (�p)

⇤
� Eq[⇡0(!)]

| {z }
log p(!)

= Eq log
q(!)

p(!)

= DKL[q(!)||p(!)] (35)

where we have added and subtracted terms involving the
base measure ⇡0(!), and used the definition of our expo-
nential family from (13). The Bregman divergence D is
thus equal to the KL divergence with arguments reversed.

A.2. Dual Divergence

We can leverage convex duality to derive an alternative
divergence based on the conjugate function  ⇤.

 
⇤(⌘) = sup

�
⌘ · � �  (�) =) ⌘ = r�  (�)

= ⌘ · �⌘ �  (�⌘) (36)

The conjugate measures the maximum distance between
the line ⌘ · � and the function  (�), which occurs at the
unique point �⌘ where ⌘ = r� (�). This yields a bijective
mapping between ⌘ and � for minimal exponential fami-
lies (Wainwright & Jordan, 2008). Thus, a distribution p

may be indexed by either its natural parameters �p or mean
parameters ⌘p.

Noting that ( ⇤)⇤ =  (�) = sup⌘ ⌘ · � �  
⇤(⌘) (Boyd

& Vandenberghe, 2004), we can use a similar argument as
above to write this correspondence as � = r⌘ 

⇤(⌘). We
can then write the dual divergence D ⇤ as:

D ⇤ [⌘p : ⌘q] =  
⇤(⌘p) �  

⇤(⌘q) � h⌘p � ⌘q, r⌘  
⇤(⌘q)i

=  
⇤(⌘p) �  

⇤(⌘q) � ⌘p · �q + ⌘q · �q

=  
⇤(⌘p) +  (�q) � ⌘p · �q (37)

where we have used (36) to simplify the underlined terms.
Similarly,

D [�p : �q] =  (�p) �  (�q) � h�p � �q, r� (�q)i

=  (�p) �  (�q) � �p · ⌘q + �q · ⌘q

=  (�p) +  
⇤(⌘q) � �p · ⌘q (38)

Comparing (37) and (38), we see that the divergences are
equivalent with the arguments reversed, so that:

D [�p : �q] = D ⇤ [⌘q : ⌘p] (39)

This indicates that the Bregman divergence D ⇤ should also
be a KL divergence, but with the same order of arguments.
We derive this fact directly in (44) , after investigating the
form of the conjugate function  ⇤.

A.3. Conjugate  ⇤ as Negative Entropy

We first treat the case of an exponential family with no base
measure ⇡0(!), with derivations including a base measure
in App. A.4. For a distribution p in an exponential family,
indexed by �p or ⌘p, we can write log p(!) = �p · T (!) �

 (�). Then, (36) becomes:

 
⇤(⌘p) = �p · ⌘p �  (�p) (40)

= �p · Ep[T (!)] �  (�p) (41)
= Ep log p(!) (42)
= �Hp(!) (43)
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since �p and  (�p) are constant with respect to !. Utilizing
 
⇤(⌘p) = Ep log p(!) from above, the dual divergence with

q becomes:

D ⇤ [⌘p : ⌘q] =  
⇤(⌘p) �  

⇤(⌘q) � h⌘p � ⌘q, r⌘  
⇤(⌘q)i

= Ep log p(!) �  
⇤(⌘q) � ⌘p · �q + ⌘q · �q

= Ep log p(!) � ⌘p · �q +  (�q)

= Ep log p(!) � Ep[T (!) · �q] +  (�q)

= Ep log p(!) � Ep log q(!)

= DKL[p(!)||q(!)] (44)

Thus, the conjugate function is the negative entropy and in-
duces the KL divergence as its Bregman divergence (Wain-
wright & Jordan, 2008).

Note that, by ignoring the base distribution over !, we have
instead assumed that ⇡0(!) := u(!) is uniform over the
domain. In the next section, we illustrate that the effect of
adding a base distribution is to turn the conjugate function
into a KL divergence, with the base ⇡0(!) in the second
argument. This is consistent with our derivation of negative
entropy, since DKL[p�(!)||u(!)] = �Hp� (⌦) + const.

A.4. Conjugate  ⇤ as a KL Divergence

As noted above, the derivation of the conjugate  ⇤(⌘) in
(40)-(43) ignored the possibilty of a base distribution in our
exponential family. We see that  ⇤(⌘) takes the form of a
KL divergence when considering a base measure ⇡0(!).

 
⇤(⌘) = sup

�
� · ⌘ �  (�) (45)

= �⌘ · ⌘ �  (�⌘)

= E⇡�⌘
[�⌘ · T (!)] �  (�⌘)

= E⇡�⌘
[�⌘ · T (!)] �  (�⌘) ± E⇡�⌘

[log ⇡0(!)]

= E⇡�⌘
[log ⇡�⌘(!) � log ⇡0(!)]

= DKL[⇡�⌘ (!)||⇡0(!)] (46)

Note that we have added and subtracted a factor of
E⇡�⌘

log ⇡0(!) in the fourth line, where our base mea-
sure ⇡0(!) = q(z |x) in the case of the TVO. Compar-
ing with the derivations in (41)-(42), we need to include a
term of Ep⇡0(!) in moving to an expected log-probability
Ep log p(!), with the extra, subtracted base measure term
transforming the negative entropy into a KL divergence.

In the TVO setting, this corresponds to

 
⇤(⌘) = DKL[⇡�⌘ (z |x)|| q(z |x)] . (47)

When including a base distribution, the induced Bregman
divergence is still the KL divergence since, as in the deriva-
tion of (35), both Ep log p(!) and Ep log q(!) will contain
terms involving the base distribution Ep log ⇡0(!).

B. Renyi Divergence Variational Inference
In this section, we show that each intermediate partition
function log Z� corresponds to a scaled version of the Rényi
VI objective L↵ (Li & Turner, 2016).

To begin, we recall the definition of Renyi’s ↵ divergence.

D↵[p||q] =
1

↵� 1
log

Z
q(!)1�↵p(!)↵d!

Note that this involves geometric mixtures similar to (14).
Pulling out the factor of log p(x) to consider normalized
distributions over z |x, we obtain the objective of Li &
Turner (2016). This is similar to the ELBO, but instead
subtracts a Renyi divergence of order ↵.

 (�) = log

Z
q(z |x)1��p(x, z)�d z

= � log p(x) � (1 � �)D� [p✓(z |x)||q�(z |x)]

= � log p(x) � �D1�� [q�(z |x)||p✓(z |x)]

:= � L1��

where we have used the skew symmetry property
D↵[p||q] = ↵

1�↵D1�↵[q||p] for 0 < ↵ < 1 (Van Erven
& Harremos, 2014). Note that L0 = 0 and L1 = log p✓(x)
as in Li & Turner (2016) and Sec. 3.

C. TVO using Taylor Series Remainders
Recall that in Sec. 4, we have viewed the KL divergence
D [� : �0] as the remainder in a first order Taylor approxi-
mation of  (�) around �0. The TVO objectives correspond
to the linear term in this approximation, with the gap in
TVOL(✓,�,x) and TVOU (✓,�,x) bounds amounting to a
sum of KL divergences or Taylor remainders. Thus, the
TVO may be viewed as a first order method.

Yet we may also ask, what happens when considering other
approximation orders? We proceed to show that thermody-
namic integration arises from a zero-order approximation,
while the symmetrized KL divergence corresponds to a sim-
ilar application of the fundamental theorem of calculus in
the mean parameter space ⌘� = r� (�). In App. E, we
briefly describe how ‘higher-order’ TVO objectives might
be constructed, although these will no longer be guaranteed
to provide upper or lower bounds on likelihood.

We will repeatedly utilize the integral form of the Taylor
remainder theorem, which characterizes the error in a k-th
order approximation of  (x) around a, with � 2 [a, x]2.
This identity can be derived using the fundamental theo-
rem of calculus and repeated integration by parts (see, e.g.

2We use generic variable x, not to be confused with data x, for
notational simplicity.
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(Kountourogiannis & Loya, 2003) and references therein):

Rk(x) =

Z x

a

r
(k+1)
�  (�)

k!
(x � �)k

d� (48)

C.1. Thermodynamic Integration as 0th Order
Remainder

Consider a zero-order Taylor approximation of  (1) around
a = 0, which simply uses  (0) as an estimator. Applying
the remainder theorem, we obtain the identity (6) underly-
ing thermodynamic integration in the TVO:

 (1) =  (0) + R0(1) (49)

 (1) �  (0) =

Z 1

0
r� (�)d� (50)

log p✓(x) =

Z 1

0
E⇡�


log

p✓(x, z)

q�(z |x)

�
d� (51)

where the last line follows as the definition of ⌘ =
r� (�) = r� log Z� in (16).

Note that this integration is symmetric, in that approximat-
ing  (0) using  (1) leads to an equivalent expression after
reversing the order of integration.

C.2. KL Divergence as 1st Order Remainder

We can apply a similar approach to the first order Taylor
approximations to reinterpret the TVO bound gaps in (9)
and (10), although our remainder expressions will no longer
be symmetric. We will thus distinguish between estimating
 (x) around a < x and a > x using R

!
1 (x) and R

 
1 (x),

respectively, with the arrow indicating the direction of inte-
gration.

Estimating  (�k) using a first order approximation around
a = �k�1 as in the TVO lower bound, the remainder exactly
matches the definition of the Bregman divergence in (19):

R
!
1 (�k) =  (�k) �

�
 (�k�1) + (�k � �k�1)r� (�k�1)| {z }

First-Order Taylor Approx

�

=

�kZ

�k�1

r
2
� (�)

1!
(�k � �)1d� (52)

where (52) corresponds to the Taylor remainder from (48).
Recall that this Bregman divergence D [�k : �k�1] cor-
responds to a KL divergence D

!
KL[⇡�k�1 ||⇡�k ] and con-

tributes to the gap in TVOL(✓,�,x).

Simplifying the Taylor remainder expression, with
r

2
� (�) = Var⇡� log p✓(x,z)

q�(z |x) , we obtain an integral repre-

sentation of the KL divergence:

D
!
KL[⇡�k�1 ||⇡�k ] =

�kZ

�k�1

(�k � �) Var⇡� log
p✓(x, z)

q�(z |x)
d�

(53)

Following similar arguments in the reverse direction, we
can obtain an integral form for the TVO upper bound gap
R
 
1 (�k�1) = DKL[⇡�k ||⇡�k�1 ] via the first-order approxi-

mation of  (�k�1) around a = �k.

R
 
1 (�k�1) =  (�k�1) �

�
 (�k) + (�k�1 � �k)r� (�k)

�

= (�k � �k�1)r� (�k) � ( (�k) �  (�k�1))

=

�k�1Z

�k

r
2
� (�)

1!
(�k�1 � �)1d� (54)

Note that the TVO upper bound (10) arises from the sec-
ond line, with R

 
1 (�k�1) � 0 and (�k � �k�1)r� (�k)

corresponding to a right-Riemann approximation.

Switching the order of integration in (54), we can write the
KL divergence as

D
 
KL[⇡�k ||⇡�k�1 ] =

�kZ

�k�1

(� � �k�1) Var⇡� log
p✓(x, z)

q�(z |x)
d�

(55)

While these integral expressions for the KL divergence may
not be immediately intuitive, our use of the Taylor remainder
theorem unifies their derivation with that of thermodynamic
integration. Alternative derivations may also be found in
Dabak & Johnson (2002).

C.3. Symmetrized KL Divergence

Combining the expressions for the KL divergence in Eq.
(53) and (55) immediately leads to a known result relating
the symmetrized KL divergence to the integral of the Fisher
information along the geometric path (Amari, 2016; Dabak
& Johnson, 2002).

D
$

KL = (�k � �k�1)

�kZ

�k�1

Var⇡�


log

p✓(x, z)

q�(z |x)
d�

�
(56)

where we have defined the symmetrized KL divergence as:

D
$

KL[�k�1;�k] = D
!
KL[⇡�k�1 ||⇡�k ] + D

 
KL[⇡�k ||⇡�k�1 ]

Our goal in this section will be to show that (56) arises
from similar ‘thermodynamic integration’ on the graph of
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the mean parameters ⌘� . Recall that we previously applied
the fundamental theorem of calculus to  (�) = log Z� to
obtain the difference in log-partition functions

 (�k) �  (�k�1) =

�kZ

�k�1

r� (�)d�

We can obtain a similar expression for the mean parameters
⌘� = r� (�) by integrating over the second derivative.

⌘k � ⌘k�1 =

�kZ

�k�1

r
2
� (�)d� (57)

Recalling that r
2
� (�) = Var⇡� log p✓(x,z)

q�(z |x) , we see that
the integrands in (56) and (57) are identical. Integrating
with respect to �, we obtain the ‘area of a rectangle’ identity
for the symmetrized KL divergence (as in (30)):

D
$

KL[�k�1;�k] = ��k ·

�kZ

�k�1

Var⇡�


log

p✓(x, z)

q�(z |x)
d�

�

= (�k � �k�1)

�kZ

�k�1

r
2
� (�)d�

= (�k � �k�1)
�
r� (�)

���k

�k�1

�

= (�k � �k�1)(⌘k � ⌘k�1) (58)

This identity is best understood via Fig. 5 in Sec. 4.4.

To summarize, we have given several equivalent ways of un-
derstanding the symmetrized KL divergence.The ‘forward’
and ‘reverse’ KL divergences arise as gaps in the TVO left-
and right-Riemann approximations (Figure 5), or first or-
der Taylor remainders as in (53) and (55). Summing these
quantities corresponds to the area of a rectangle (58) on
the graph of the TVO integrand ⌘� , or to the integral of a
variance term via the Taylor remainder theorem (56) or
fundamental theorem of calculus (57).

Note that the TVO integrand ⌘� = r� (�) =

E⇡� [log p✓(x,z)
q�(z |x) ] will be linear when its derivative, the

variance of the log importance weights, is constant within
� 2 [�k�1,�k]. The KL divergence is actually symmetric
in this case, which we treat in more detail in the next section
(App. D). More generally, the curvature of the integrand
indicates which direction of the KL divergence has larger
magnitude, and Figure 5 reflects our empirical observations
that DKL[⇡�k�1 ||⇡�k ] > DKL[⇡�k ||⇡�k�1 ].

D. Asymptotic Linear Scheduling Analysis
Grosse et al. (2013) treat a quantity identical to
TVOL(✓,�,x) in the context of analysing the variance of

AIS estimators. Using the Central Limit Theorem, Neal
(2001) show that the variance of an AIS estimator is mono-
tonically related to TVOL(✓,�,x) under perfect transitions,
or independent, exact samples from each intermediate �
(see Grosse et al. (2013) Eq. 3). However, note that AIS
estimates expectations over chains of MCMC samples rather
than the simple reweighting used in the TVO.

In this section, we provide additional perspective on the
analysis of Grosse et al. (2013), which considers the
asymptotic behavior of the scaled gap in TVOL(✓,�,x),
K · DKL

!
[⇡�k�1 ||⇡�k ], as K ! 1.

We begin by restating Theorem 1 of Grosse et al. (2013) for
the case of the full TVO objective. We describe the resulting
‘coarse-grained’ linear binning schedule for choosing {�k}

in D.1 and provide further analysis in D.2.
Theorem 1 (Grosse et al. (2013)). Suppose K + 1 distribu-

tions {⇡�k}
K
k=0 are linearly spaced along a path P . Under

the assumption of perfect transitions, if the Fisher informa-

tion matrix G(�) is smooth, then as K ! 1:

K

KX

k=1

D
!
KL[⇡�k�1 ||⇡�k ] !

1

2

1Z

0

�̇(t) · G
�
�(t)

�
· �̇(t)dt

(59)

=
1

2

�
D
!
KL[⇡�0 ||⇡�K ] + D

 
KL[⇡�K ||⇡�0 ]

�

Here, we let t 2 [0, 1] parameterize the path �(t) = (1 �

t) · �0 + t · �K , and let �̇(t) denote the derivative of the

parameter � with respect to t. For linear mixing of the

natural parameters as above, this is a constant: �̇(t) =
�K � �0. In the case of the full TVO integrand, �̇(t) = 1.

Proof. See (Grosse et al., 2013) for a detailed proof, which
proceeds by taking the Taylor expansion of DKL[�k||�k +
�� ] around each �k for small �� . In particular, �� =
1
K (�K ��0) for linearly spaced �k = (1�

k
K ) ·�0+ k

K ·�K .
We assume w.l.o.g. �K ��0 = 1 and �� = 1

K as in Grosse
et al. (2013) or TVO.

The zero- and first-order terms vanish, and the second-order
term, with �2

� = 1
K2 , can be written as (see e.g. Kullback

(1997) p. 26):

K

KX

k=1

DKL[�k||�k + �� ] = K ·
1

2K2

KX

k=1

�̇k · G(�k) · �̇k

+ K · O(K�3) (60)

!
1

2

1Z

0

�̇(t)G
�
�(t)

�
�̇(t)dt (61)

where we have absorbed �� = 1
K into a continuous mea-

sure dt as K ! 1.
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We now show that this expression corresponds to the sym-
metrized KL divergence, as in (Amari, 2016; Dabak & John-
son, 2002). While this was not stated in the theorem of
Grosse et al. (2013), it has also been shown by e.g. Huszar
(2017). Observe that G(�) = r� (�) = Var⇡� [T (x, z)]
as in (56) and (58). Noting that the chain rule implies
d
dtG

�
�(t)

�
= d

d�G
�
�(t)

�d�
dt , we can pull one term of

d�
dt = �̇(t) = (�K � �0) outside the integral and perform
integration by substitution. Ignoring the 1/2 factor,

(�K � �0)

2

1Z

0

G
�
�(t)

�d�
dt

dt =
(�K � �0)

2

�KZ

�0

r
2
� (�)d�

=
1

2
(�K � �0)(⌘K � ⌘0) (62)

=
1

2

�
D
!
KL[⇡�0 ||⇡�K ] + D

 
KL[⇡�K ||⇡�0 ]

�

D.1. ‘Coarse-Grained’ Linear Schedule

Grosse et al. (2013) then use this asymptotic condition (62)
as K ! 1 to inform the choice of a discrete partition
P = {�k}

K
k=0.

More concretely, consider dividing the interval [0, 1] into
J equally-spaced knot points {�j}

J
j=0. We then allocate a

total budget of K =
PJ

j=1 Kj intermediate distributions
across sub-intervals [�j�1,�j ], with uniform linear spacing
of the Kj partitions within each sub-interval.

Using (62), Grosse et al. (2013) assign a cost Fj =
(�j � �j�1)(⌘j � ⌘j�1) to each ‘coarse-grained’ interval
[�j�1,�j ]. Minimizing

P
j Fj subject to

P
j Kj = K, the

allocation rule becomes:

Kj /

q
(�j+1 � �j)(⌘j+1 � ⌘j) (63)

We observe that performance when using this method can
be sensitive to the number of knot points used, and we found
J = 20 to perform best in our experiments.

D.2. Additional Perspectives on Grosse et al. (2013)

Geometric Intuition for Theorem 1: To further under-
stand Theorem 1 of Grosse et al. (2013), observe that
the TVO integrand will appear linear within any interval
[�k�1,�k] as K ! 1. For general endpoints �0 and �K ,
we let �� = �k � �k�1 = �K��0

K .

Having already visualized the symmetrized KL diver-
gence as the area of a rectangle in Figure 5, we can see
that each directed KL divergence, D

!
KL[⇡�k�1 ||⇡�k ] and

D
 
KL[⇡�k ||⇡�k�1 ], will approach the area of triangle as the

integrand becomes linear or K ! 1, with area equal to

1/2 · �� · �⌘ . Then, the DKL scaled by K becomes

K

KX

k=1

D
!
KL[⇡�k�1 ||⇡�k ] ! K

KX

k=1

1

2
· �� · �⌘ (64)

= K

KX

k=1

1

2
(
�K � �0

K
) · (⌘k � ⌘k�1)

=
1

2
(�K � �0) · (⌘K � ⌘0) .

where, in the last line, we cancel factors of K and note the
cancellation of intermediate ⌘k in the telescoping sum.

Thermodynamic Interpretation: This limiting behavior
is also discussed in thermodynamics, where the LHS of (64)
and (59) corresponds to the rate of entropy production in
transitioning a system from ⇡�0 to ⇡�1 along a path defined
by {�k}. The condition that K ! 1 refers to the linear
response regime, with (59) related to the thermodynamic
divergence (Crooks, 2007).

Exponential and Mixture Geodesics: As in the state-
ment of Theorem 1, we can more generally consider con-
necting two distributions, indexed by natural parameters
�0 and �1, using a parameter t 2 [0, 1]. The curve
�t = (1 � t) · �0 + t · �1 then corresponds to our path
exponential family (13), and is also referred to as the e-
geodesic in information geometry Amari (2016).

Similarly, the moment-averaged path of Grosse et al. (2013),
which also underlies our scheduling strategy in Sec. 5,
can be viewed as a linear mixture in the mean parameter
space. The m-geodesic then refers to the curve ⌘t = (1 �

t) · ⌘0 + t · ⌘1 (Amari, 2016). Note that these mixtures
reference different distribution for the same parameter t, so
that ⌘�t 6= ⌘t.

Grosse et al. (2013) proceed to show that the expression
for the symmetric KL divergence (59) corresponds to the
integral of the Fisher information along either the geometric
or mixture paths (Theorem 2 of Grosse et al. (2013), The-
orem 3.2 of Amari (2016)). The union of the intermediate
distributions integrated by these two paths coincide in our
one-dimensional exponential family, although this intuition
does not appear to translate to higher dimensions.

E. Higher Order TVO

While the convexity of the log-partition function yields the
family of Bregman divergences from the remainder in the
first order Taylor approximation, we might also consider
higher order terms to obtain tighter bounds on likelihood or
analyse properties of the TVO integrand r� (�). We give
an example derivation for a second-order TVO objectives,
although these are no longer guaranteed to be upper or lower
bounds on likelihood.
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Left-to-Right Expansion We first consider expanding
the approximations in the TVO left-Riemann sum to sec-
ond order. We denote the resulting objective L

(2)
! , since we

move ‘left-to-right’ in estimating  (�k) around �k�1. We
begin by writing the second-order Taylor approximation:

 (�k) ⇡  (�k�1) + (�k � �k�1) r� (�k�1)

+
1

2
(�k � �k�1)

2
r

2
� (�k�1) (65)

While TVOL(✓,�,x) consists of the first-order term alone,
we can also consider adding the non-negative, second-order
term to form the objective L

(2)
! . Using successive Taylor

approximations of  (�k), we obtain similar telescoping
cancellations to obtain

log p(x) � L
(2)
! = log p(x) �

KX

k=1

(�k � �k�1) · ⌘�k�1

�

KX

k=1

1

2
(�k � �k�1)

2 Var⇡�k�1
log

p(x, z)

q(z |x)

(66)

where ⌘�k�1 = E⇡�k�1
log p(x,z)

q(z |x) .

We previously obtained a lower bound on log-likelihood
via this construction, with log p(x) � TVOL(✓,�,x) � 0.
However, L

(2)
! will only provide a lower bound if r� (�)

is concave, i.e. r
3
� (�)  0. To see this, we write the

Taylor remainder (48) as

R
!
2 (�k) =

�kZ

�k�1

1

6
(�k � �t)

3
r

3
� (�t)d�t (67)

with the third derivative equal to

r
3
� (�) = E⇡� [T (x, z)3] � 3 [E⇡� T (x, z)] · E⇡� [T (x, z)2]

+ 2[E⇡� T (x, z)]3

= E⇡� [T (x, z)3] � [E⇡� T (x, z)]3

� 3[E⇡� T (x, z)] · [Var⇡� T (x, z)]

In addition to indicating that L
(2)
! is a lower bound

on log p✓(x), testing the concavity of r� (�) using
r

3
� (�)  0 can also indicate whether a trapezoid approxi-

mation to the TVO integral provides a valid lower bound.

We can give an identical construction for the reverse direc-
tion L

(2)
 or higher order approximations. We leave a full

exploration of these objectives for future work.

F. Experimental Setup
Code for all experiments can be found at https://
github.com/vmasrani/tvo_all_in.

Model Following (Burda et al., 2015), we use a varia-
tional autoencoder (Kingma & Welling, 2013) with a 50-
dimensional stochastic layer, z 2 R

50

p✓(x, z) = p✓(x | z)p(z)

p(z) = N (z |0, I)

p✓(x | z) = Bern(x |decoder✓(z))
q�(z |x) = N (z;µ�(x),��(x))

where the encoder and decoder are each two-layer MLPs
with tanh activations and 200 hidden dimensions. The out-
put of the encoder is duplicated and passed through an
additional linear layer to parameterize the mean and log-
standard deviation of a conditionally independent Normal
distribution. The output of the decoder is a sigmoid which
parameterizes the probabilities of the independent Bernoulli
distribution. ✓ and � refer to the weights of the decoder and
encoder, respectively.

Dataset We use Omniglot (Lake et al., 2013), a dataset
of 1623 handwritten characters across 50 alphabets. Each
datapoint is binarized 28 ⇥ 28 image, i.e x 2 {0, 1}

784,
where we follow the common procedure in the literature of
sampling each binary-valued observation with expectation
equal to the real pixel value (Salakhutdinov & Murray, 2008;
Burda et al., 2015). We split the dataset into 24,345 training
and 8,070 test examples.

Training Procedure All models are written in PyTorch
and trained on GPUs. For each scheduler, we train for 5000
epochs using the Adam optimizer (Kingma & Ba, 2017)
with a learning rate of 10�3, and minibatch size of 1000.
All weights are initialized with PyTorch’s default initializer.

G. Implementation Details
While the Legendre transform, mapping between a target
value of expected sufficient statistics ⌘ = E⇡� [T (!)] and
the appropriate natural parameters �, can be a difficult prob-
lem in general, we describe how to efficiently implement
our ‘moments-spacing’ schedule in the context of TVO.

Recall from Sec. 5 that we are interested in finding a discrete
partition P� = {�k}

K
k=0 such that:

�k = ⌘
�1
�

✓
(1 �

k

K
) · ELBO +

k

K
· EUBO

◆
(68)

In other words, we seek to find the �k such that
E⇡�k

[log p✓(x,z)
q�(z |x) ] ⇡ ⌘k, where ⌘k are equally spaced be-

tween the ELBO and EUBO (see Figure 6).

More concretely, we provide pseudo-code implementing
our moments spacing schedule below. Given a set of S

log-importance weights per sample, and a number of inter-
mediate distributions K:
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Figure 10. Pseudo-code Implementation of Moments Scheduling for TVO

1 # Calculate expected sufficient statistics

eta at a given beta (Eq. 12)

2 def calc_eta(log_iw, beta):

3 # 1) Exponentiate/normalize over

importance sample dimension

4 snis = torch.exp(log_iw*beta -

5 torch.logsumexp(log_iw*beta,

6 dim = 1, keepdim=True))

7 # 2) Take mean over data examples

8 return torch.mean(snis*log_iw, dim =0)

9

10 def binary_search(target, log_iw, start=0,

stop=1, threshold = 0.1):

11

12 beta_guess = .5*(stop-start)

13 eta_guess = calc_eta(log_iw,beta_guess)

14 if eta_guess > target + threshold:

15 return binary_search(

16 target,

17 log_iw,

18 start=beta_guess,

19 stop=stop)

20 elif eta_guess < target - threshold:

21 return binary_search(

22 target,

23 log_iw,

24 start=start,

25 stop=beta_guess)

26 else:

27 return beta_guess

1

2 def moments_spacing_schedule(log_iw, K,

search=’binary’):

3 # 1) Calculate target values for uniform

moments spacing

4 elbo = calc_eta(log_iw, 0)

5 eubo = calc_eta(log_iw, 1)

6 targets = [(1-t)*elbo+t*eubo

7 for t in np.linspace(0,1,K+1)]

8

9 # 2) Find beta corresponding to each

target (including beta=0,1)

10 beta_schedule = [0]

11

12 for _k in range(1, K):

13 target_eta = targets[_k]

14

15 beta_k = binary_search(

16 target_eta,

17 log_iw,

18 start = 0,

19 stop = 1)

20

21 beta_schedule.append(beta_k)

22

23 beta_schedule.append(1)

24 # 3) Return beta_schedule: used for

Riemann approximation points in TVO

objective

25 return beta_schedule

H. Additional Results
In this section, we report wall-clock runtimes and run similar
experiments as in Sec. 8 to evaluate our moments spacing
schedule and reparameterized gradients on the binarized
MNIST dataset (Salakhutdinov & Murray, 2008).

Wall-Clock Times We report wall clock runtimes for var-
ious scheduling methods with S = 50 and K = 5 in Fig.
11. While TVO methods require slight overhead compared
with IWAE, our adaptive moments scheduler does not re-
quire significantly more computation than the log-uniform
baseline.

Grid Search Comparison We evaluate our moments
schedule with K = 2 against grid search over the choice
of a single intermediate �1 in Fig. 12. The setup is similar
to that of Fig. 1 on Omniglot (see Sec. 8), but here we
use reparameterization gradients instead of the original TVO.
Here, we train for 1000 epochs using an Adam optimizer
with learning rate 10�3 and batch size 100.

We again find that our moments spacing schedule arrives
at an optimal choice of �1, and can even outperform the
best static value due to its ability to adaptively update at
each epoch. It is interesting to note that the final choice of

�1, which reflects the shape of the TVO integrand, is nearly
identical at �1 ⇡ 0.30 across both MNIST and Omniglot.

Comparison with IWAE We compare TVO using our mo-
ments scheduling against the IWAE and IWAE DREG as in
Fig. 9 of the main text. We find that our TVO reparame-
terized gradient estimator achieves nearly identical model
learning performance as IWAE and IWAE DREG, with notably
improved posterior inference for all values of S.

Evaluating Scheduling Strategies In the Fig. 14-18 be-
low, we reproduce the setting of Fig. 8 to evaluate our
scheduling strategies by K, for TVO with both REINFORCE
and reparameterized gradient estimators, on Omniglot and
MNIST. We also report posterior inference results as mea-
sured by test DKL[q�(z |x)||p✓(z |x)]. In general, we find
comparable performance between our moments schedule
and the log-uniform baseline, although our approach per-
forms best with K = 2 and does not require grid search.
Further, on MNIST with batch size 1000 and low K, log-
uniform, linear, and coarse-grained schedules suffer from
poor performance due to instability in training, which is
avoided by our moments schedule. Training can be stabi-
lized by using smaller batch sizes as in Fig. 12.
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Figure 11. Omniglot Runtimes (S = 50, K = 5, 5k epochs) Figure 12. MNIST K = 2, with reparameterization gradients.

(a) MNIST Test log p✓(x) (b) MNIST Test DKL[q�(z |x)||p✓(z |x)]

Figure 13. Model Learning and Inference by S (with K = 5)

(a) MNIST Test log p✓(x) (b) MNIST Test DKL[q�(z |x)||p✓(z |x)]

Figure 14. TVO with REINFORCE Gradients: Model Learning and Inference by K (with S = 50)
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(a) MNIST Test log p✓(x) (b) MNIST Test DKL[q�(z |x)||p✓(z |x)]

Figure 15. TVO with Reparameterized Gradients: Model Learning and Inference by K (with S = 50)

(a) Omniglot Test log p✓(x) (b) Omniglot Test DKL[q�(z |x)||p✓(z |x)]

Figure 17. TVO with REINFORCE Gradients: Model Learning and Inference by K (with S = 50)

(a) Omniglot Test log p✓(x) (b) Omniglot Test DKL[q�(z |x)||p✓(z |x)]

Figure 18. TVO with Reparameterized Gradients: Model Learning and Inference by K (with S = 50)
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I. Reparameterization Gradients for the TVO Integrand
Recall that the TVO objective involves terms of the form

E⇡� [f(z)] where ⇡�(z |x) =
q�(z |x)1��p✓(x, z)�

Z�
and f(z) = log

p✓(x, z)

q�(z |x)
(69)

While Masrani et al. (2019) derive a REINFORCE-style gradient estimator for the TVO, we seek to apply the reparameterization
trick when possible, and thus differentiate with respect to only the inference network parameters �. Note that, for
zi ⇠ q�(z |x) reparameterizable with z = z(✏,�) and ✏i ⇠ p(✏), any expectation under ⇡� can be written as

E⇡� [f(z)] =
1

Z�
Eq�(z |x)

⇥
w
�
f(z)

⇤
=

1

Z�
E✏
⇥
w
�
f(z)

⇤
where w =

p✓(x, z)

q�(z |x)
(70)

In differentiating (70), we will frequently encounter terms of the form E⇡�

h
f(z) d

d� log p✓(x,z)
q�(z |x)

i
for generic f(z). Noting

that the total derivative contains score function partial derivatives, we apply the reparameterization trick to these terms in an
approach similar to the ‘doubly-reparameterized’ estimator of Tucker et al. (2018). The following lemma summarizes these
calculations, rewritten using expectations under ⇡� as in (70).

Lemma 1. Let f(z) : RM
7! R, ⇡�(z |x), and w = p✓(x,z)

q�(z |x) all depend on �. When z ⇠ q�(z |x) is reparameterizable

via z = z(✏,�), ✏ ⇠ p(✏), the following identity holds for expectations under ⇡�

E⇡�


f(z)

d

d�
log w

�
= E⇡�


@ z

@�

✓
(1 � �)f(z)

@ log w

@ z
�
@f(z)

@ z

◆�
. (71)

Proof. See Appendix I.3.

Corollary 1.1. For the choice of f(z) = 1 we obtain

E⇡�


d

d�
log w

�
= (1 � �) E⇡�


@ z

@�

@ log w

@ z

�
. (72)

The following lemma will allow us to apply reparameterization within the normalization constant.

Lemma 2. Let the same conditions hold as in Lemma 1, with Z� =
R

q�(z |x)1��p✓(x, z)� dz. Then

d

d�
Z� = �(1 � �) E✏


w
� @ z

@�

@ log w

@ z

�
. (73)

Proof. See Appendix I.4.

We now proceed to differentiate the TVO integrand given by (69).

I.1. Reparameterized TVO Gradient Estimator

For generic f(z) : RM
7! R and reparameterizable z ⇠ q�(z |x) as above, the gradient with respect to � can be written as

d

d�
E⇡� [f(z)] = E⇡�

✓
d

d�
f(z)

◆
� �

✓
@ z

@�

@f(z)

@ z

◆�
+ �(1 � �)Cov⇡�


f(z),

@ z

@�

@ log w

@ z

�
. (74)

The gradient of the TVO integrand is of particular interest. For f(z) = log w with w = p✓(x,z)
q�(z |x) , (74) simplifies to

d

d�
E⇡� [log w] = (1 � 2�)E⇡�


@ z

@�

@ log w

@ z

�
+ �(1 � �)Cov⇡�


log w,

@ z

@�

@ log w

@ z

�
. (75)
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Proof. We track changes between lines in blue, and begin by applying the product rule.

d

d�
E⇡� [f(z)] =

d

d�

⇣
Z
�1
� E✏

⇥
w
�

f(z)
⇤⌘

(76)

=

✓
d

d�
Z
�1
�

◆
E✏
⇥
w
�

f(z)
⇤
+ Z

�1
� E✏


f(z)

✓
d

d�
w
�

◆�
+ Z

�1
� E✏


w
�

✓
d

d�
f(z)

◆�
(77)

=

✓
d

d�
Z�

◆ 
�1

Z
2
�

!
E✏
⇥
w
�

f(z)
⇤
+ Z

�1
� E✏


�w

�
f(z)

✓
d

d�
log w

◆�
+ Z

�1
� E✏


w
�

✓
d

d�
f(z)

◆�
(78)

=

✓
d

d�
Z�

◆✓
�1

Z�

◆
E⇡� [f(z)]

| {z }
1�

+� E⇡�


f(z)

d

d�
log w

�

| {z }
2�

+E⇡�


d

d�
f(z)

�
(79)

We proceed to simplify only the first two terms, applying Lemma 2 to 1� and Lemma 1 to 2�.

1� + 2� =�(1 � �)E✏

w
� @ z

@�

@ log w

@ z

�

| {z }
Lemma 2

✓
�1

Z�

◆
E⇡� [f(z)] + �

✓
(1 � �)E⇡�


@ z

@�

@ log w

@ z
f(z)

�
� E⇡�


@ z

@�

@f(z)

@ z

�◆

| {z }
Lemma 1

(80)

=�(1 � �)E⇡�


@ z

@�

@ log w

@ z

�
(�1)E⇡� [f(z)] +�(1 � �)E⇡�


@ z

@�

@ log w

@ z
f(z)

�
� �E⇡�


@ z

@�

@f(z)

@ z

�
(81)

=�(1 � �)

✓
E⇡�


@ z

@�

@ log w

@ z
f(z)

�
� E⇡�


@ z

@�

@ log w

@ z

�
E⇡� [f(z)]

◆
� �E⇡�


@ z

@�

@f(z)

@ z

�
(82)

=�(1 � �)

✓
Cov⇡�


f(z),

@ z

@�

@ log w

@ z

�◆
� �E⇡�


@ z

@�

@f(z)

@ z

�
. (83)

By plugging (83) back into (79) we arrive at the reparameterized gradient for general f(z) (74).

d

d�
E⇡� [f(z)] = �(1 � �)

✓
Cov⇡�


f(z),

@ z

@�

@ log w

@ z

�◆
� �E⇡�


@ z

@�

@f(z)

@ z

�
+ E⇡�


d

d�
f(z)

�
(84)

= E⇡�

✓
d

d�
f(z)

◆
� �

✓
@ z

@�

@f(z)

@ z

◆�
+ �(1 � �)Cov⇡�


f(z),

@ z

@�

@ log w

@ z

�
. (85)

Finally, to optimize the TVO integrand, we can substitute f(z) = log w for various terms in (85). We then use Corollary 1.1
to apply the reparameterization trick within the total derivative in the first term.

d

d�
E⇡� [log w] = E⇡�

✓
d

d�
log w

◆
� �

✓
@ z

@�

@log w

@ z

◆�
+ �(1 � �)Cov⇡�


log w,

@ z

@�

@ log w

@ z

�
(86)

= E⇡�


(1 � �)

✓
@ z

@�

@ log w

@ z

◆

| {z }
Corollary 1.1

��

✓
@ z

@�

@ log w

@ z

◆�
+ �(1 � �)Cov⇡�


log w,

@ z

@�

@ log w

@ z

�
(87)

= (1 � 2�)E⇡�


@ z

@�

@ log w

@ z

�
+ �(1 � �)Cov⇡�


log w,

@ z

@�

@ log w

@ z

�
(88)

This establishes (75) and is the expression that we use to optimize the TVO with reparameterization in the main text.

I.2. REPARAM / REINFORCE Equivalence for ⇡�

It is well known (Tucker et al., 2018) that the reparameterization trick and REINFORCE estimator are equivalent for
expectations under q�(z |x), which allows us to trade high variance REINFORCE gradients for reparameterization gradients
which directly consider derivatives of the function f(z).

Eq�(z |x)


f(z)

@

@�
log q�(z |x)

�
= E✏


@ z

@�

@f(z)

@ z

�
. (89)
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We use this equivalence to show a similar result for expectations under ⇡� , which we will then use in the proofs of Lemma 1
in I.3 and Lemma 2 in I.4.

Lemma 3. Let the same conditions hold as in Lemma 1. Then

E⇡�


f(z)

@

@�
log q�(z |x)

�
= E⇡�


@ z

@�

✓
@f(z)

@ z
+ �f(z)

@ log w

@ z

◆�
. (90)

Proof.

E⇡�


f(z)

@

@�
log q�(z |x)

�
=

1

Z�
Eq�(z |x)


w
�
f(z)

@

@�
log q�(z |x)

�
Using (70) (91)

=
1

Z�
E✏

@ z

@�

@(w�f(z))

@ z

�
Using (89) (92)

=
1

Z�
E✏

@ z

@�

✓
w
� @f(z)

@ z
+ f(z)

@w
�

@ z

◆�
(93)

=
1

Z�
E✏

@ z

@�

✓
w
� @f(z)

@ z
+ f(z)�w

� @ log w

@ z

◆�
(94)

=
1

Z�
E✏

w
� @ z

@�

✓
@f(z)

@ z
+ f(z)�

@ log w

@ z

◆�
(95)

= E⇡�


@ z

@�

✓
@f(z)

@ z
+ �f(z)

@ log w

@ z

◆�
Using (70) (96)

I.3. Proof of Lemma 1

E⇡�


f(z)

d

d�
log w

�
= E⇡�


@ z

@�

✓
(1 � �)f(z)

@ log w

@ z
�
@f(z)

@ z

◆�
. (97)

Proof. Using the fact that @� log w = �@� log q�(z |x),

E⇡�


f(z)

d

d�
log w

�
= E⇡�


f(z)

✓
@ log w
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+
@ z
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@ log w
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= E⇡�


f(z)

✓
�
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�

✓
f(z)
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@ log w
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(100)

= �E⇡�
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@ log w
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◆
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Using Lemma 3 (101)
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@f(z)

@ z
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= �E⇡�


@ z
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✓
@f(z)

@ z
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@ log w

@ z

◆�
(103)
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@ log w
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@ z

◆�
. (104)
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I.4. Proof of Lemma 2

d

d�
Z� = �(1 � �)E✏


w
� @ z

@�

@ log w

@ z

�
. (105)

Proof. Noting that we can use reparameterization inside the integral Z� =
R

q�(z |x)1��p✓(x, z)�dz = Eq� [w� ] =
E✏[w� ], we obtain

d

d�
Z� =

d

d�
E✏[w� ] (106)

= E✏

�w

� d

d�
log w

�
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d�
log w

�
(108)
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�
Using Corollary 1.1 (109)
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