Bregman Duality in Thermodynamic Variational Inference

A. Conjugate Duality A.2. Dual Divergence
The Bregman divergence associated with a convex functiokiVe can leverage convex duality to derive an alternative
f:Q! Rcan be written asBanerjee et a)2005: divergence based on the conjugate functién
o W) =supn- BT () = n=$5v(p)
Dg,p:ql=f(p)+ f@)"#p" ¢,$ f(9)% 8

=n-By" ¥(By) (36)
The family of Bregman divergences includes many familiar . . :
guantities, including the KL divergence corresponding tol N€ conjugate measures f[he maximum distance between
the negative entropy generatpfp) =" [ plogpdw. Geo- thg linen '. 5 and the function)(f), W.hlc.h oceurs at .the
metrically, the divergence can be viewed as the differenc&Nidue point3, wherer = $ 54(55). This yields a bijective

betweenf(p) and its linear approximation arourd Since Ir_“apping berheen antzjﬁ f;r minimﬁl exp%r?en.tti)al fami-
f is convex, we know that a brst order estimator will lie ies Wainwright & Jordan2008. Thus, a distributiorp

below the function, yieldingD ;[p : q] & 0 may be indexed by either its natural paramefgysr mean
’ e ' parameters,.

For our purposes, we can I¢t! (8) = log Zz over

. DL : Noting that(«' )' = ¢(3) = sup, - B" ' (n) (Boyd
the domain of probability dl_strlbut_lons |nde>.<ed by natural& Vandenberghg2004), we can uge a similar argument as
parameters of an exponential family (e.g3)) :

above to write this correspondence/as- $ ,¢' (). We

can then write the dual divergencg,: as:
Dy[Bp : Bel =0(Bp) " ©(Bg) "#Bp" B, pv(Bg)% , , \
(34) Dy [771) : qu] =9 (771)) " (qu) " 77qa$ Y (77(1)%
= W (7717) ! "/}! (nq) "y Byt g By
This is a common setting in the Peld of information geom- = ' () + % (By) " np - By (37)
etry (Amari, 2016, which introduces dually Rat manifold

structures based on the natural parameters and the meahere we have used3@) to simplify the underlined terms.
parameters. Similarly,

<

A.1. KL Divergence as a Bregman Divergence Dy[By : Bgl = ¢(Bp) " ¥(By) "#Bp" By, $ p1(Bg)%

For an exponential family with partition functian(3) and = v(6) '(5'1) Fo1ha - Fa 1y
sufbcient statistic¥ (w) over a random variable, the Breg- =9(Bp) + ¢ (1) " Bp - 1g (38)

man divergence),, corresponds to a KL divergence. Re-C ina(3 d4(38 hat the di
calling that$ s1(8) = 15 = E,[T(w)] from (16), we omparing(37) and(38), we see that the divergences are

<

simplify the debnition34) to obtain equivalent with the arguments reversed, so that:
Dy [Bp : Bgl = Dy [ng = mp] (39)
Dw[ﬁp : ﬂq] = 7/’(513) " ¢(ﬂq) " Bp g+ By g

=(Bp)" V(By)" EqlBp - T(w)] This indicates that the Bregman divergerigg should also

+E,[B, - T(w)] be a KL divergence, but with the same order of arguments.
We derive this fact directly i(44) , after investigating the

=E, [@Z T(w)" w(@q)] + E,[mo(w)] form of the conjugate functiof' .

log q(w) . ' .
. . . A.3. Conjugatet as Negative Entropy
Eq [517 - T(w) ¢(ﬁp)] Eq[mo(w)]

We brst treat the case of an exponential family with no base

logp() measurer(w), with derivations including a base measure
—E, log q(w) in App. A.4. For a distributiorp in an exponential family,
T p(w) indexed byg,, or 7, we can writdog p(w) = 8, - T(w) "
= Drp]g(w)|lp(w)) (35)  ¥(B). Then, 86) becomes:
! =0Bp " (B (40)

where we have added and subtracted terms involving the (7p) - l; I;p I ()]p,,) w(B,) (41)
base measurgy(w), and used the debnition of our expo- =P Bl W P
nential family from(13). The Bregman divergend,; is =E,logp(w) (42)

thus equal to the KL divergence with arguments reversed. =" H,(w) (43)
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sincep, andy(3,) are constant with respectdo Utilizing ~ B. Renyi Divergence Variational Inference
¥' (n,) = E, log p(w) from above, the dual divergence with

¢ becomes: In this section, we show that each intermediate partition

functionlog Z corresponds to a scaled version of thenii
! n | " " ! . . .
Dyt [np ingl =4 (np) ™ A (ng) "#mp " 1g,$ 510" (ng)% VI objectiveL,, (Li & Turner, 2016.

=E,logp(w) " M Y Bg + Lﬁq To begin, we recall the debnition of Reny«t@ﬂ;ivergence.
=Eplogp(w)" mp - By JFM 1

=E,logp(w)" Ep[T(w) - By + ¢ (Bq) Dalpllg] = o1 log/Q(W)ln “p(w)dw
=Eplogp(w) " Eplogg(w)

= Drr[p(w)|lg(w)] (44)  Note that this involves geometric mixtures similar(1d)).

Pulling out the factor ofog p(x) to consider normalized

Thus, the conjugate function is the negative entropy and irdistributions overz |x, we obtain the objective dfi &

wright & Jordan 2008. subtracts a Renyi divergence of order

Note that, by ignoring the base distribution ouerwe have .
instead assumed thag(w) := u(w) is uniform over the ~ ¥(8) = 10g/Q(Z|X)1 ’p(x,2)dz
domain. In the next section, we illustrate that the effect of N "
adding a base distribution is to turn the conjugate function = Blogp(x)" (1" B)Dslps(z|X)llge(z|%)]
into a KL divergence, with the basg(w) in the second = Blogp(x)" B D1 glag(z|X)llpe(z|X)]
argument. This is consistent with our derivation of negative =0Ly g
entropy, since 1. [ps(w)||u(w)] =" Hy, () + const.

where we have used the skew symmetry property
A.4. Conjugate' as a KL Divergence Dalpllg] = %5 D1 olgllp] for 0 < o < 1 (Van Erven
& Harremos 2014). Note thatL, = 0 andL; = log pg(X)

As noted above, the derivation of the conjugatén) in as inLi & Turner (2016 and Sec3.

(40)-(43) ignored the possibilty of a base distribution in our
exponential family. We see that (1) takes the form of a

KL divergence when considering a base measyte). C. TVO using Taylor Series Remainders
P () =supB-n" ¥(B) (45) Recall that in Sec4, we have viewed the KL divergence
B Dy (B : 39 as the remainder in a Prst order Taylor approxi-
=By n" »(By) mation of+)(3) arounds* TheTvo objectives correspond
= Ex, [By - T(@)]" ¥(By) to the linear term in this approximation, with the gap in
! i} TVO (6, ¢,x) andTvoy (6, ¢, x) bounds amounting to a
=Er, [By T(W)]" ¥(8y) £Ex, [logmo(w)] sum of KL divergences or Taylor remainders. Thus, the
=Er, [logms, ()" logmo(w)] TVO may be viewed as a brst order method.
= Dk r[mg, ()] mo(w)] (46)  Yetwe may also ask, what happens when considering other

approximation orders? We proceed to show that thermody-
Note that we have added and subtracted a factor ofymic integration arises from a zero-order approximation,
Er, logmo(w) in the fourth line, where our base mea-\ il the symmetrized KL divergence corresponds to a sim-
suremo(w) = ¢(z|x) in the case of thevo. Compar- jjar application of the fundamental theorem of calculus in
ing with the derivations irf41)-(42), we need to include @ the mean parameter spage = $ 5¢(3). In App. E, we
term of E,mo (w) in moving to an expected log-probability pyriey describe how Ohigher-ordev® objectives might
K, log p(w), with the extra, subtracted base measure ternpe constructed, although these will no longer be guaranteed
transforming the negative entropy into a KL divergence. ¢, provide upper or lower bounds on likelihood.

In the Tvo setting, this corresponds to We will repeatedly utilize the integral form of the Taylor
! remainder theorem, which characterizes the errorkitta
= Dgr|ms, (Z| X z|x)]. 47 '
v ) relms, 210l a(z )] 47 order approximation ofy(z) arounda, with 3 ( [a,x]%.
This identity can be derived using the fundamental theo-

When including a base distribution, the induced Bregman

divergence is still the KL divergence since, as in the derival®™m of calculus and repeated integration by parts (see, e.g.

tion of (35), bothE, log p(w) andEE, log g(w) will contain 2\We use generic variabbe, not to be confused with data, for
terms involving the base distributidg), log o (w). notational simplicity.
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(Kountourogiannis & Loya2003 and references therein): sentation of the KL divergence:

B
k+1) " (Xa Z)
Rk(z) — /a ﬁTW(I " ﬂ)kdﬂ (48) D?{L[ﬂ-ﬁk 1 ”ﬂ-ﬂk] :ﬂ/ (ﬁk ﬁ) Varﬂ'ﬂ log é)z(z | X)
(53)

C.1. Thermodynamic Integration as0** Order
Remainder Following similar arguments in the reverse direction, we
can obtain an integral form for thevo upper bound gap
RY (Bk» 1) = Drir[mp,||7s,. ,] via the Prst-order approxi-
matlon ofy (B 1) arounda = Sy.

Consider a zero-order Taylor approximationygdfl) around
a = 0, which simply useg)(0) as an estimator. Applying
the remainder theorem, we obtain the identi6)  nderly-

ing thermodynamic integration in thevo: R% RY (Be 1) = (B 1) " (qp(ﬁk) + (B 1" Br)$ ﬁw(ﬂk))
(1) = 1(0) + Ro(1) (49) = (Br" B )8 59(Br) " (W(BK)" »(Br 1))
$ 50(8 (50) g
/ - [ 2 ) g gy (54)
log po(X )7/ E,, {log pe(x’z)}dﬂ (51) B
0 q¢(2]X) .
Note_that theTvoo upper bound10) arises from the sec-
where the Iast line follows as the depnition pf —  ondline, withRY* (B 1) & 0.and (B " Br- 1)$ s¢(Bx)
$ 50(8) =$ 5log Zs in (16). corresponding to a right-Riemann approximation.

Note that this integration is symmetric, in that approximat-SWitching the order of integration ifb4), we can write the
ing 1/(0) usingy (1) leads to an equivalent expression after KL divergence as

reversing the order of integration. Br
| | Dfulmslimsc = [ (8" B 1) Vars, log 220525
C.2. KL Divergence asl®* Order Remainder . , q¢(Z|X)
k" 1
We can apply a similar approach to the brst order Taylor (55)

approximations to reinterpret the TVO bound gapsdn (

and (L0), although our remainder expressions will no longerwhile these integral expressions for the KL divergence may
be symmetric. We will thus distinguish between estlmatmgnot be immediately intuitive, our use of the Taylor remainder

¢(z) arounda < z anda > x using R} (z) andRY (z),  theorem unibes their derivation with that of thermodynamic
respectively, with the arrow indicating the direction of inte-integration. Alternative derivations may also be found in

gration. Dabak & Johnsoif2002).

Estimatingy (8 ) using a brst order approximation around _ _
a = By 1 as in theTvo lower bound, the remainder exactly C-3. Symmetrized KL Divergence

matches the depnition of the Bregman divergenc&® (  compining the expressions for the KL divergence in Eq.

s (53) and 65) immediately leads to a known result relating
RY (Br) = ¢(Be)" (VB 1)+ (Be" B 1)$ 59(Br 1)) the symmetrized KL divergence to the integral of the Fisher

First-Order Taylor Approx information along the geometric patArfari, 2016 Dabak
B oo & Johnson 2002.
Bw(ﬁ) " 1
= T (B B)'dp (52) s (2]
’ & " . )
Br 1 DKL - (Bk Bk 1) / Varﬂ'/j |:10g Q¢(Z|X)d5:| (56)

where(52) corresponds to the Taylor remainder fr¢4®). o

Recall that this Bregman divergend®, [ : Si 1] cor- where we have debned the symmetrized KL divergence as:
responds to a KL divergenc®}, [r5,. , ||7s,] and con-
tributes to the gap imvoy (6, ¢, x).

Simplifying the Taylor remainder expression, with Our goal in this section will be to show théi6) arises

$ 34(B) = Varg, log 55((;{1))’ we obtain an integral repre- from similar Othermodynamic integrationO on the graph of

Dlg‘L[ﬁk" 1;616] = D%L[Wﬁk" 1”7Tﬁk} + D;?L[ﬂ-ﬁk”ﬂ-ﬁk” 1}
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the mean parameterg. Recall that we previously applied Als estimators. Using the Central Limit Theoreieal
the fundamental theorem of calculusit¢5) = log Zz to  (2001) show that the variance of ans estimator is mono-
obtain the difference in log-partition functions tonically related tarvoy, (6, ¢, x) under perfect transitions,
Be or independent, exact samples from each intermediate
" seeGrosse et al(2013 Eq. 3). However, note thatis
Y(Br)" BB 1) = / $ sv(B)dp éstimates expecté\tiongovgrain)s of McMmc samples rather
B 1 than the simple reweighting used in theo.
We can obtain a similar expression for the mean parameter;

 this section, we provide additional perspective on the
ng = $ 3¢(B) by integrating over the second derivative. I on, We provi " perspeciv

analysis of Grosse et al(2013, which considers the
asymptotic behavior of the scaled gapTivoy (6, ¢, x),

Bk
" e 1 = / $ 3u(B)dp (57) K-Dgilmp llms,], asK 1)
Br" 1

We begin by restating Theorem 1 Gfosse et al(2013 for

the case of the fultvo objective. We describe the resulting
Recalling thath 3¢(8) = Vary, log fj((;[i)), we see that Ocoarse-grained® linear binning schedule for chdgihg
the integrands in 56) and 67) are identical. Integrating in D.1and provide further analysis D.2.

with respect tg3, we obtain the Oarea of a rectangleO identitYneorem 1(Grosse et a2013). Suppose K + 1 distribu-
for the symmetrized KL divergence (as B0)):

tions {ﬂ'ﬂk}kK:O are linearly spaced along a path P. Under

Br the assumption of perfect transitions, if the Fisher informa-
D& [Br 13 Bk] = Ag, - / Var,, [log pH((:ii)) dﬁ] tion matrix G() is smooth, then as K 1)
q
k"1 (z) K 1 1
by K Diglma limslt 5 [ 60)-G(8(0) - Aoy
= (5" B [ $3uaas = 2
B 1 (59)
. 1 %
=(Bc" Be1)($5v(B) ZZ ) = i(Dfs(L[Wﬁo”WﬁK] + D [mpilims, )
=Be" B )™ e 1) (58) Here, we let t ([0, 1] parameterize the path 5(t) = (1"
This identity is best understood via Figin Sec.4.4. t) - Bo +t- Bk, and let B(t) denote the derivative of the

r{)arameter B with respect to t. For linear mixing of the
watural parameters as above, this is a constant: B(t) =
k" Bo. In the case of the full TVO integrand, 5(t) = 1.

To summarize, we have given several equivalent ways of u
derstanding the symmetrized KL divergence.The Oforwar
and OreverseO KL divergences arise as gapsrinaHeft-
and right-Riemann approximationSi§ure 9, or brst or-
der Taylor remainders as iB3) and 65). Summing these
guantities corresponds to the area of a rectargle ¢n
the graph of thervo integrandg, or to the integral of a
variance term via the Taylor remainder theoreBb) (or
fundamental theorem of calculu&7).

Proof. See Grosse et a)2013 for a detailed proof, which
proceeds by taking the Taylor expansion®f 1, [ 8|8k +
Ag] around eactp;, for small Ag. In particular,Ag =
+(Bk" Bo) for linearly spaced, = (1" £)-Bo+ £ Bk.
We assume w.l.o.g3x " fo = 1andAg = % as inGrosse
et al.(2013 or Tvo.

Note th;t(xfge TV_O mtegrand g = $ 5_1/}(6_ ) = The zero- and prst-order terms vanish, and the second-order
Ers [log o izixy] Will be linear when its derivative, the orm withA2 = -, can be written as (see elgullback

variance of the log importance weights, is constant within1997 p. 26):
B ( [Bx 1,Pk]- The KL divergence is actually symmetric

in this case, which we treat in more detail in the next section 1 K. .
(App. D). More generally, the curvature of the integrandKZDKL[ﬂk“Bk +Ag =K 29K2 Zﬁ’f +G(Br) - Pr
indicates which direction of the KL divergence has larger *=! k=1

magnitude, andrigure SreRects our empirical observations +K-O(K ?) (60)
thatDip[ms,. . |lms.] > Drrlms,lIms,. .|

K

N |

1
JECEEO O G
D. Asymptotic Linear Scheduling Analysis 0

Grosse et al.(2013 treat a quantity identical to where we have absorbek; = % into a continuous mea-
TVOL (0, $,X) in the context of analysing the variance of suredt asK !)
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We now show that this expression corresponds to the sym/2 - Ag - A, . Then, theD g, scaled by becomes
metrized KL divergence, as ii\(nari, 2016 Dabak & John- 1% K

son 2002. While this was not stated in the theorem of N~ ps 10 o110 KN 2. A4 A, 64
Grosse et a2013, it has also been shown by elguszar 2 Dika o ollma Z 2 TF T (64)
(2017. Observe thati(3) = $ s (B) = Var,,[T(x,2)] K .

as in 66) and 68). Noting that the chain rule implies Kzl ﬁK fBO ) (k" mer 1)

£G(B(1) = #5G(B(t)) % we can pull one term of Pt 5!

k=1

dt?
95 — B(t) = (Bx " Bo) outside the integral and perform
integration by substitution. Ignoring thg'2 factor,

= 5(5K " Bo) (k" M) -

. where, in the last line, we cancel factorsiéfand note the
" d " cancellation of intermediatg; in the telescoping sum.
51{ Bo) /G 5dt (51{ Bo) /$6U’ a3
0

Thermodynamic Interpretation:  This limiting behavior
} ., is also discussed in thermodynamics, where the LHS4f (
(B ™ Bo)(nx ™ 10) 62)  and 69) corresponds to the rate of entropy production in
s % transitioning a system fromg, to 7g, along a path debned
(DgLlmsollmsec] + Dicmprcllms, ]) by {3.}. The condition that ! )  refers to the linear
response regime, witfb9) related to the thermodynamic
divergence Crooks 2007).

N = DN =

D.1. OCoarse-GrainedO Linear Schedule Exponential and Mixture Geodesics: As in the state-
Grosse et a(2013 then use this asymptotic conditiopg) ~ Ment of Theorem 1, we can more generally consider con-
asK ') to inform the choice of aliscrete partition necting two d|§tr|but|ons, indexed by natural parameters
P = {8}, Bo and 31, using a parametet ( [0,1]. The curve

o By = (1" t)- By +t- P1 then corresponds to our path
More concretely, consider dividing the interval 1] into  exponential family {3), and is also referred to as the
J equally-spaced knot poin{sﬁj} o- We then allocate a  geodesic in information geometAmari (2016.
total budget ofK’ = Z K mtermedlate distributions
across sub-interval;- 1, 3;], W|th uniform linear spacing
of the K; partitions within each sub-interval.

Similarly, the moment-averaged path®fosse et al2013,
which also underlies our scheduling strategy in Ség.
can be viewed as a linear mixture in the mean parameter
Using 62), Grosse et al(2013 assign a cost; =  space. Then-geodesic then refers to the cumye= (1"

(B;" Bj~1)(n; " 1) to each Ocoarse-grainedO interval) - 7o + ¢ - 71 (Amari, 2016. Note that these mixtures
(8 1, B;]. Minimizing 3_ F; subject to) ", K; = K, the  reference different distribution for the same paramateo
allocation rule becomes: thatns, + ;.

K% /(B B)(ngan " 1) (63)

Grosse et al(2013 proceed to show that the expression
for the symmetric KL divergencé9) corresponds to the
integral of the Fisher information alorgrher the geometric
We observe that performance when using this method cagr mixture paths (Theorem 2 Grosse et al(2013, The-
be sensitive to the number of knot points used, and we foun@drem 3.2 ofAmari (2016). The union of the intermediate

J = 20 to perform best in our experiments. distributions integrated by these two paths coincide in our
one-dimensional exponential family, although this intuition
D.2. Additional Perspectives onGrosse et al.(2013 does not appear to translate to higher dimensions.

Geometric Intuition for Theorem 1: To further under-
stand Theorem 1 oGrosse et al(2013, observe that E. Higher Order Tvo
the Tvo integrand will appear linear within any interval
Bk 1,Bk] @asK ') . For general endpoints, andSk,
we letAg = B, " By 1 = 2o,

While the convexity of the log-partition function yields the
family of Bregman divergences from the remainder in the
prst order Taylor approximation, we might also consider
Having already visualized the symmetrized KL diver-higher order terms to obtain tighter bounds on likelihood or
gence as the area of a rectangleFigure 5 we can see analyse properties of the TVO integraigy(5). We give

that each directed KL divergenc®, [r5,. ,||7s,] and  an example derivation for a second-ord®o objectives,
D, 75, |75, ,], will approach the area ofiangle as the  although these are no longer guaranteed to be upper or lower
integrand becomes linear & ! ) , with area equal to bounds on likelihood.
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Left-to-Right Expansion We brst consider expanding Model Following (Burda et al. 2015, we use a varia-
the approximations in th&vo left-Riemann sum to sec- tional autoencode{ingma & Welling, 2013 with a 50-
ond order. We denote the resulting objecm@), sincewe dimensional stochastic layer,( R °°

move Oleft-to-rightO in estimatings; ) arounds;- ;. We

begin by writing the second-order Taylor approximation: po(x,2) = ps(x |2)p(2)

p(z) = N(z]0,1)
w(ﬁk) ’ w(ﬁk" 1) + (ﬁk " ﬁk" 1) $ ,Bw(ﬁk" 1) pe(x IZ) — BeI’H(X |deC0de§(Z))

Lo
+ i(ﬂk B 1)?$ 30 (B 1) (65) qs(Z1X) = N (Z; 4 (x), ! (X))
While Tvoy (0, 6, x) consists of the brst-order term alone, Where the encoder and decoder are each two-layer MLPs
we can also consider adding the non-negative, second-ord@fth tanh activations and 200 hidden dimensions. The out-

term to form the objectivdl;gQ). Using successive Taylor put of the encoder is duplicated and passed through an

approximations of(3;), we obtain similar telescoping additional linear layer to parameterize the mean and log-
cancellations to obtain standard deviation of a conditionally independent Normal

distribution. The output of the decoder is a sigmoid which
Wy (2) " K W parameterizes the probabilities of the independent Bernoulli
logp(x) "L § =logp(x)" > _(Be" B 1) nye distribution. and¢ refer to the weights of the decoder and
k=1 encoder, respectively.
K
" Z p(X,Z) )
po q(z|x) Dataset We use Omniglotl(ake et al, 2013, a dataset
(66) of 1623 handwritten characters across 50 alphabets. Each
datapoint is binarized8 . 28 image, i.ex ( {0,1}7%,
log 2>:2) where we follow the common procedure in the literature of
a(=[x) sampling each binary-valued observation with expectation
We previously obtained a lower bound on log-likelihood equal to the real pixel valuS@alakhutdinov & Murray2008
via this construction, withog p(x) " TVOL(0,¢,X) & 0.  Buyrda et al,2015. We split the dataset into 24,345 training
However,L§* will only provide a lower bound i 5¢/(3)  and 8,070 test examples.
is concave, i.e.$ 31(5) - 0. To see this, we write the
Taylor remainder48) as Training Procedure  All models are written in PyTorch
B and trained on GPUs. For each scheduler, we train for 5000
$ 1 " 33 epochs using the Adam optimizéfihgma & Ba 2017
Bz (Be) = / g Bk " B8 5v(B)db: ©7 with a learning rate 010" 3, and minibatch size of 1000.
Br 1 All weights are initialized with PyTorchOs default initializer.

with the third derivative equal to

$ 30(B) = Exy[T(x,2)"]" 3[Er,T(X,2)] - En, [T(X,2)’]
+2[E,,T(x,2))? While the Legendre tran_sform, mapping between a target
value of expected sufpcient statistigs= E, [T'(w)] and
the appropriate natural parametgrscan be a difbcult prob-
=Er, [T(x,2)°]" [Ex,T(x,2)]? lem in general, we describe how to efpciently implement
" 3[Ex,T(x,2)] - [Var:,T(x,z)] our Omoments-spacingO schedule in the contexoof

(Brk" Br1)*Varg, log

N |

whereng,., =E

o 1

G. Implementation Details

In addition to indicating that_{?) is a lower bound Recall from Sec5 that we are interested in Pnding a discrete

o > o _
on logpy(x), testing the concavity of zv(3) using PartiionPs = {Bxk}—o such that:

$ %w(ﬂ) - 0 can also indicate whether a trapezoid approxi- - ok

mation to thervo integral provides a valid lower bound. Br =g <(1 %) ELBO+ - EUBO) (68)

We can give an identical construction for the reverse direcy, other words. we seek to bnd the, such that
tion L{?) or higher order approximations. We leave a full
exploration of these objectives for future work.

Erg, [log 5;873] ., Tk, Wheren,, are equally spaced be-

tween theeLBO andeEUBO (seeFigure §.

F. Experimental Setup More concretely, we provide pseudo-code implementing
' our moments spacing schedule below. Given a sef of
Code for all experiments can be found latps:// log-importance weights per sample, and a number of inter-

github.com/vmasrani/tvo_all_in . mediate distributiong:
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Figure 10.Pseudo-code Implementation of Moments Scheduling far

# Calculate expected sufficient statistics 1
eta at a given beta (Eg. 12) 2 def moments_spacing_schedule(log_iw, K,
def calc_eta(log_iw, beta): search= Cbinary O):
# 1) Exponentiate /normalize  over 3 # 1) Calculate target values for uniform
importance  sample dimension moments spacing
snis = torch.exp(log_iw *beta - 4 elbo = calc_eta(log_iw, 0)
torch.logsumexp(log_iw * peta, 5 eubo = calc_eta(log_iw, 1)
dim = 1, keepdim=True)) 6 targets = [(1-t) +elbo+t *eubo
# 2) Take mean over data examples 7 for t in np.linspace(0,1,K+1)]
return  torch.mean(snis *log_iw, dim =0) 8
9 # 2) Find beta corresponding to each
def binary_search(target, log_iw, start=0, target  (including beta =0,1)
stop=1, threshold = 0.1): 10 beta_schedule = [0]
11
beta_guess = .5 = (stop-start) 12 for _k in range (1, K):
eta_guess = calc_eta(log_iw,beta_guess) 13 target_eta = targets[ K]
if eta_guess > target + threshold: 14
return  binary_search( 15 beta_k = binary_search(
target, 16 target_eta,
log_iw, 17 log_iw,
start=beta_guess, 18 start = 0,
stop=stop) 19 stop = 1)
elif  eta_guess < target - threshold: 20
return  binary_search( 21 beta_schedule.append(beta_k)
target, 22
log_iw, 23 beta_schedule.append(1)
start=start, 24 # 3) Return beta schedule : used for
stop=beta_guess) Riemann approximation points in TVO
else : objective
return  beta_guess 25 return  beta_schedule
H. Additional Results B1, which reRects the shape of tmeo integrand, is nearly

, , i ... identical at5, , 0.30 across botmNIST and Omniglot.
In this section, we report wall-clock runtimes and run similar

experiments as in Se8.to evaluate our moments spacing
schedule and reparameterized gradients on the binariz
MNIST dataset$alakhutdinov & Murray2008.

Comparison with IWAE ~ We compargVvo using our mo-
ents scheduling against theAe andIwWAE DREG as in

Fig. 9 of the main text. We bnd that oavo reparame-

terized gradient estimator achieves nearly identical model

learning performance a&/AE andIWAE DREG, with notably

improved posterior inference for all values®f

Wall-Clock Times We report wall clock runtimes for var-
ious scheduling methods with = 50 and K = 5 in Fig.

11. While Tvo methods require slight overhead compared
with IWAE, our adaptive moments scheduler does not re-

R . . Evaluating Scheduling Strategies In the Fig.14-18 be-
quire signibcantly more computation than the log-uniform . .
baseline low, we reproduce the setting of Fig8 to evaluate our

scheduling strategies by, for Tvo with bothREINFORCE

and reparameterized gradient estimators, on Omniglot and
MNIST. We also report posterior inference results as mea-
sured by tesD g 1.[g4(z | X)||pe(z | X)]. In general, we bPnd

Grid Search Comparison We evaluate our moments
schedule withK' = 2 against grid search over the choice

of a single intermediatg, in Fig. 12. The setup is similar
9 & g b comparable performance between our moments schedule

to that of Fig. 1 on Omniglot (see Sec8), but here we . .
use reparameterization gradients instead of the original and the Iog-u_nlform baseline, although our approach per-
forms best withK' = 2 and does not require grid search.

Here, we train for 1000 epochs using an Adam optimizer, . :
with learning ratel0’ * and batch size 100. Further, onMNIST with batch size 1000 and lov, log-

uniform, linear, and coarse-grained schedules suffer from
We again bnd that our moments spacing schedule arrivgsoor performance due to instability in training, which is
at an optimal choice of;, and can even outperform the avoided by our moments schedule. Training can be stabi-
best static value due to its ability to adaptively update atized by using smaller batch sizes as in Fig.

each epoch. It is interesting to note that the bnal choice of
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|. Reparameterization Gradients for the TVO Integrand

Recall that thervo objective involves terms of the form

45(z1¥)" Ppy(x,2)" . pe(X,2)
7 and f(z) =log Wz 1) (69)

While Masrani et al(2019 derive aREINFORCEStyle gradient estimator for the/o, we seek to apply the reparameterization
trick when possible, and thus differentiate with respect to only the inference network paramhetsie that, for
z; 1 q¢(z|x) reparameterizable with= z(e, ¢) ande; / p(e), any expectation unders can be written as

Er, [f(z)] where 7mg(z|x) =

E,, [f(2)] = Zlﬁﬂfwx) [0 f(2)] = ZiﬁE wPf(2)] where w= P22 (70)

In differentiating 70), we will frequently encounter terms of the forify , [f(z)ﬁ log 5’9(2" f() for genericf(z). Noting
that the total derivative contains score function partial derivatives, we apply the reparameterization trick to these terms in an
approach similar to the Odoubly-reparameterizedO estimatmkef et al(2018. The following lemma summarizes these

calculations, rewritten using expectations undgias in (70).

Lemma 1. Let f(z) : RM O! R, m5(z|X), and w = Po(%2) 11 depend on ¢. When z | q5(Z| X) is reparameterizable

CIED)
viaz = z(e,d), €| p(e), the following identity holds fgr expectations under mg
d B 0z . dlogw ,, 0f(2)
Er, |f@) g5 0pu] =5, |52 (07 pr@ Zget e 202, )
Proof. SeeAppendix 1.3 O

Corollary 1.1. For the choice of f(z) = 1 we obtain

0z dlogw

E, 1 =01" BE,, | =— . 72
|| = v oE,, [S220EY) 72)

The following lemma will allow us to apply reparameterization within the normalization constant.

Lemma 2. Let the same conditions hold as in Lemma 1, with Zg = [ q4(Z | X)" Ppe(x,2)? dz. Then
d 0z dlogw

Zg=pB1" B)E. |w’Z= 73
23 =507 9B | T2 73)
Proof. SeeAppendix |.4 O

We now proceed to differentiate the TVO integrand given@&g).(
I.1. ReparameterizedTvo Gradient Estimator
For genericf(z) : RM 0! R and reparameterizabte/ g¢4(z|x) as above, the gradient with respecttoan be written as

B @) =, [ (155@) 8 (ZSE) | s sicow, 1@, 522050 )

The gradient of the'vo integrand is of particular interest. Fftz) = logw with w = ”9((;‘ f(), (74) simplibes to

0z dlogw

%6 02 (75)

0z 8logw]

llogw] = (1" 28)E, [ 99 0z

d "
%]EWB ] +B(1" B)COVr, {logw
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Proof. We track changes between lineshilue, and begin by applying the product rule.

1B [1@)] = 55 (2B [0” £2)]) (76)
()] )] e
= (c;iszﬁ) (%)E [wf £(2)] + Z; 'E. [mﬁ f(2) (Ciblogwﬂ + Z, 'Ee [wﬁ (C;;f(z))] (78)
(87) (2 [ ] [

il R
We proceed to simplify only the brst two terms, applyiregnma 2to I andLemma 1to 2.

1+2 81" BE. [wﬁazalogw] (1) E., [f(2) + 8 <(1 " B, [malogw‘f(z)} - {82 8f(z)D

op 0z Z3 do 0z 0p 0z
Lemma 2 Lemma 1
(80)
i dzOdlogw] ,, " 0z dlogw R 0z 9f(z)
50" B, [SEZEE) VB, @) 480" 9B, [0 )] om, [S2U2] e
i dzdlogw N 0z dlogw N 0z 0f(z)
R A R e N R s ®2)
. 0z dlogw] , 0z 0f(z)
—5a* p)(cow, |12 52 00| )+ o, [ 5200 )
By plugging 83) back into {9) we arrive at the reparameterized gradient for geng(a) (74).
d B " 0z dlogw]Y , 0z 9f(z) d
28, U@ =50 5) (cou, 1) 200 ) - m,, 20D s [Lr] s
B d . (020f(2) } 9z dlogw
—5,, | (755@) " 8 (F 02 )|+ oo, [r@. G2 5EE] @9

Finally, to optimize thervo integrand, we can substitufgz) = log w for various terms in&5). We then us&€orollary 1.1
to apply the reparameterization trick within the total derivative in the brst term.

d d ) 9z ol . 0z 01
%Em logw] = Er, [<d¢logw) B (6@15 ;iw>} +B8(1" B)CovVy, [logw ¥ giw}

=Enr, {(1 " B) (32810gw> "B (82810gw> } +B8(1" B)CovVy, [logw 02 8logw} (87)

(86)

op 0z op 0z 8(;5 0z
Corollary 1.1
P %8logw " azalogw

This establishesrb) and is the expression that we use to optimizemthe with reparameterization in the main text. O

|.2. REPARAM / REINFORCE Equivalence for g

It is well known (Tucker et al. 2018 that the reparameterization trick ar@&INFORCE estimator are equivalent for
expectations undef,(z | x), which allows us to trade high variane&INFORCEgradients for reparameterization gradients
which directly consider derivatives of the functigiz).

By |/ 5 sz, (89)

¢1ogq¢(2|><)] =E. [&b °E
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We use this equivalence to show a similar result for expectations underhich we will then use in the proofs demma 1
in [.3 andLemma 2in 1.4,

Lemma 3. Let the same conditions hold as in Lemma 1. Then

Er, |10 55 l0g0s(210| = Ex, |52 (22 + 51 252" )| (90)
Proof.
0 1 .
En, [f(z)&ﬁlogq¢(z|x)] = Z—ﬁIE%mx) [ Pf(z )&;5 logq¢(2|x)} Using (70) (91)
1 [9z0wPf(z)) .
= ZEE _%82] Using @9) (92)
1 [0z 0f(2) B
= ZEE 96 ( g 92 +f(2)82)} (93)
1 [0z [ 50f(2) 0dlogw
— - 5 (2 + rpur )| (04)
1 [ 50z (0f(2) dlogw
=5 [ 5 (L2 + et (95)
_ 9z (0f(2) Ologw .
= Eqr, [5(15 ( 0z +Bf(2)azﬂ Using (70) (96)
O]
I.3. Proof of Lemma 1
Br, |12 g5 os| =, |52 (00 p)1@ 5 202, ©7)
Proof. Using the fact thads logw =" 04 log gs(z|X),
d B dlogw  0dzdlogw
Er, [ ) togu] = B, [ r(a) (L2t + G228 )] (o8)
_ . Ologgy(z|x) 0z 0dlogw
~En s _(Z)( o+ o) )
-, (ﬂz)Mg;fZ'X))" (ro5e 5] (100
[0z [0 81 0z 0l .
=" Enr, 3¢>< g(zz ng) " (f(z)aqzS giw)] Using Lemma3  (101)
o [0z (0f(2) alogw 0log w
="Eg, _a¢< 5, TAf@——" f2) 96 )} (102)
o [0z af(Z dlogw
=" En, _(%< = @)= ﬂ (103)
B [0z 8logw 0f(z)
= E., _a< 7 57 )} (104)

O
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I.4. Proof of Lemma 2

d
2y = 51" DE, [w

ﬂﬁzalogw} (105)

op 0z

Proof. Noting that we can use reparameterization inside the integyak fq¢(Z|X)1" Ppo(x,2)Pdz = Eq, [wf] =
E.[w”], we obtain

1578 = 3B’ (106)
=E, [5wﬁj¢ log w} (107)
= BZEx, [d‘; log w] (108)
= B(1" B)ZsEn, [g; algi w] UsingCorollary 1.1 (109)
— 50 BB |w? G 110)

O



