
Bregman Duality in Thermodynamic Variational Inference

A. Conjugate Duality

The Bregman divergence associated with a convex function
f : ⌦ ! R can be written as (Banerjee et al., 2005):

DBf [p : q] = f(p) + f(q) " # p " q, $ f(q)%

The family of Bregman divergences includes many familiar
quantities, including the KL divergence corresponding to
the negative entropy generatorf(p) = "

R
p log p d!. Geo-

metrically, the divergence can be viewed as the difference
betweenf(p) and its linear approximation aroundq. Since
f is convex, we know that a Þrst order estimator will lie
below the function, yieldingDf [p : q] & 0.

For our purposes, we can letf !  (�) = log Z� over
the domain of probability distributions indexed by natural
parameters of an exponential family (e.g. (13)) :

D [�p : �q] =  (�p) "  (�q) " # �p " �q, $ � (�q)%
(34)

This is a common setting in the Þeld of information geom-
etry (Amari, 2016), which introduces dually ßat manifold
structures based on the natural parameters and the mean
parameters.

A.1. KL Divergence as a Bregman Divergence

For an exponential family with partition function (�) and
sufÞcient statisticsT (!) over a random variable!, the Breg-
man divergenceD corresponds to a KL divergence. Re-
calling that$ � (�) = ⌘� = E⇡� [T (!)] from (16), we
simplify the deÞnition (34) to obtain

D [�p : �q] =  (�p) "  (�q) " �p · ⌘q + �q · ⌘q

=  (�p) "  (�q) " Eq[�p · T (!)]

+ Eq[�q · T (!)]

= Eq

⇥
�q · T (!) "  (�q)

⇤
+ Eq[⇡0(!)]

| {z }
log q(!)

" Eq

⇥
�p · T (!) "  (�p)

⇤
" Eq[⇡0(!)]

| {z }
log p(!)

= Eq log
q(!)

p(!)

= DKL[q(!)||p(!)] (35)

where we have added and subtracted terms involving the
base measure⇡0(!), and used the deÞnition of our expo-
nential family from(13). The Bregman divergenceD is
thus equal to the KL divergence with arguments reversed.

A.2. Dual Divergence

We can leverage convex duality to derive an alternative
divergence based on the conjugate function 

! .

 
! (⌘) = sup

�
⌘ · � "  (�) =' ⌘ = $ �  (�)

= ⌘ · �⌘ "  (�⌘) (36)

The conjugate measures the maximum distance between
the line⌘ · � and the function (�), which occurs at the
unique point�⌘ where⌘ = $ � (�). This yields a bijective
mapping between⌘ and� for minimal exponential fami-
lies (Wainwright & Jordan, 2008). Thus, a distributionp
may be indexed by either its natural parameters�p or mean
parameters⌘p.

Noting that( ! )! =  (�) = sup⌘ ⌘ · � "  
! (⌘) (Boyd

& Vandenberghe, 2004), we can use a similar argument as
above to write this correspondence as� = $ ⌘ 

! (⌘). We
can then write the dual divergenceD ! as:

D ! [⌘p : ⌘q] =  
! (⌘p) "  

! (⌘q) " # ⌘p " ⌘q, $ ⌘  
! (⌘q)%

=  
! (⌘p) "  

! (⌘q) " ⌘p · �q + ⌘q · �q

=  
! (⌘p) +  (�q) " ⌘p · �q (37)

where we have used (36) to simplify the underlined terms.
Similarly,

D [�p : �q] =  (�p) "  (�q) " # �p " �q, $ � (�q)%

=  (�p) "  (�q) " �p · ⌘q + �q · ⌘q

=  (�p) +  
! (⌘q) " �p · ⌘q (38)

Comparing(37) and(38), we see that the divergences are
equivalent with the arguments reversed, so that:

D [�p : �q] = D ! [⌘q : ⌘p] (39)

This indicates that the Bregman divergenceD ! should also
be a KL divergence, but with the same order of arguments.
We derive this fact directly in(44) , after investigating the
form of the conjugate function ! .

A.3. Conjugate ! as Negative Entropy

We Þrst treat the case of an exponential family with no base
measure⇡0(!), with derivations including a base measure
in App. A.4. For a distributionp in an exponential family,
indexed by�p or ⌘p, we can writelog p(!) = �p · T (!) "
 (�). Then, (36) becomes:

 
! (⌘p) = �p · ⌘p "  (�p) (40)

= �p · Ep[T (!)] "  (�p) (41)

= Ep log p(!) (42)

= " Hp(!) (43)



Bregman Duality in Thermodynamic Variational Inference

since�p and (�p) are constant with respect to!. Utilizing
 

! (⌘p) = Ep log p(!) from above, the dual divergence with
q becomes:

D ! [⌘p : ⌘q] =  
! (⌘p) "  

! (⌘q) " # ⌘p " ⌘q, $ ⌘  
! (⌘q)%

= Ep log p(!) "  
! (⌘q) " ⌘p · �q + ⌘q · �q

= Ep log p(!) " ⌘p · �q +  (�q)

= Ep log p(!) " Ep[T (!) · �q] +  (�q)

= Ep log p(!) " Ep log q(!)

= DKL[p(!)||q(!)] (44)

Thus, the conjugate function is the negative entropy and in-
duces the KL divergence as its Bregman divergence (Wain-
wright & Jordan, 2008).

Note that, by ignoring the base distribution over!, we have
instead assumed that⇡0(!) := u(!) is uniform over the
domain. In the next section, we illustrate that the effect of
adding a base distribution is to turn the conjugate function
into a KL divergence, with the base⇡0(!) in the second
argument. This is consistent with our derivation of negative
entropy, sinceDKL[p�(!)||u(!)] = " Hp� (⌦) + const.

A.4. Conjugate ! as a KL Divergence

As noted above, the derivation of the conjugate 
! (⌘) in

(40)-(43) ignored the possibilty of a base distribution in our
exponential family. We see that ! (⌘) takes the form of a
KL divergence when considering a base measure⇡0(!).

 
! (⌘) = sup

�
� · ⌘ "  (�) (45)

= �⌘ · ⌘ "  (�⌘)

= E⇡�⌘
[�⌘ · T (!)] "  (�⌘)

= E⇡�⌘
[�⌘ · T (!)] "  (�⌘) ± E⇡�⌘

[log ⇡0(!)]

= E⇡�⌘
[log ⇡�⌘(!) " log ⇡0(!)]

= DKL[⇡�⌘ (!)||⇡0(!)] (46)

Note that we have added and subtracted a factor of
E⇡�⌘

log ⇡0(!) in the fourth line, where our base mea-
sure⇡0(!) = q(z | x) in the case of theTVO. Compar-
ing with the derivations in(41)-(42), we need to include a
term ofEp⇡0(!) in moving to an expected log-probability
Ep log p(!), with the extra, subtracted base measure term
transforming the negative entropy into a KL divergence.

In theTVO setting, this corresponds to

 
! (⌘) = DKL[⇡�⌘ (z | x)|| q(z | x)] . (47)

When including a base distribution, the induced Bregman
divergence is still the KL divergence since, as in the deriva-
tion of (35), bothEp log p(!) andEp log q(!) will contain
terms involving the base distributionEp log ⇡0(!).

B. Renyi Divergence Variational Inference

In this section, we show that each intermediate partition
functionlog Z� corresponds to a scaled version of the R«enyi
VI objectiveL↵ (Li & Turner, 2016).

To begin, we recall the deÞnition of RenyiÕs↵ divergence.

D↵[p||q] =
1

↵ " 1
log

Z
q(!)1" ↵

p(!)↵d!

Note that this involves geometric mixtures similar to(14).
Pulling out the factor oflog p(x) to consider normalized
distributions overz | x, we obtain the objective ofLi &
Turner (2016). This is similar to theELBO, but instead
subtracts a Renyi divergence of order↵.

 (�) = log

Z
q(z | x)1" �

p(x , z)�d z

= � log p(x) " (1 " �)D� [p✓(z | x)||q�(z | x)]

= � log p(x) " �D1" � [q�(z | x)||p✓(z | x)]

:= � L1" �

where we have used the skew symmetry property
D↵[p||q] = ↵

1" ↵D1" ↵[q||p] for 0 < ↵ < 1 (Van Erven
& Harremos, 2014). Note thatL0 = 0 andL1 = log p✓(x)
as inLi & Turner (2016) and Sec.3.

C. TVO using Taylor Series Remainders

Recall that in Sec.4, we have viewed the KL divergence
D [� : �#] as the remainder in a Þrst order Taylor approxi-
mation of (�) around�#. TheTVO objectives correspond
to the linear term in this approximation, with the gap in
TVOL(✓,�, x) andTVOU (✓,�, x) bounds amounting to a
sum of KL divergences or Taylor remainders. Thus, the
TVO may be viewed as a Þrst order method.

Yet we may also ask, what happens when considering other
approximation orders? We proceed to show that thermody-
namic integration arises from a zero-order approximation,
while the symmetrized KL divergence corresponds to a sim-
ilar application of the fundamental theorem of calculus in
the mean parameter space⌘� = $ � (�). In App. E, we
brießy describe how Ôhigher-orderÕTVO objectives might
be constructed, although these will no longer be guaranteed
to provide upper or lower bounds on likelihood.

We will repeatedly utilize the integral form of the Taylor
remainder theorem, which characterizes the error in ak-th
order approximation of (x) arounda, with � ( [a, x]2.
This identity can be derived using the fundamental theo-
rem of calculus and repeated integration by parts (see, e.g.

2We use generic variablex, not to be confused with datax , for
notational simplicity.
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(Kountourogiannis & Loya, 2003) and references therein):

Rk(x) =

Z x

a

$ (k+1)
�  (�)

k!
(x " �)k

d� (48)

C.1. Thermodynamic Integration as0th Order
Remainder

Consider a zero-order Taylor approximation of (1) around
a = 0, which simply uses (0) as an estimator. Applying
the remainder theorem, we obtain the identity (6) underly-
ing thermodynamic integration in theTVO:

 (1) =  (0) + R0(1) (49)

 (1) "  (0) =

Z 1

0
$ � (�)d� (50)

log p✓(x) =

Z 1

0
E⇡�


log

p✓(x , z)

q�(z | x)

�
d� (51)

where the last line follows as the deÞnition of⌘ =
$ � (�) = $ � log Z� in (16).

Note that this integration is symmetric, in that approximat-
ing (0) using (1) leads to an equivalent expression after
reversing the order of integration.

C.2. KL Divergence as1st Order Remainder

We can apply a similar approach to the Þrst order Taylor
approximations to reinterpret the TVO bound gaps in (9)
and (10), although our remainder expressions will no longer
be symmetric. We will thus distinguish between estimating
 (x) arounda < x anda > x usingR

$
1 (x) andR

%
1 (x),

respectively, with the arrow indicating the direction of inte-
gration.

Estimating (�k) using a Þrst order approximation around
a = �k" 1 as in theTVO lower bound, the remainder exactly
matches the deÞnition of the Bregman divergence in (19):

R
$
1 (�k) =  (�k) "

�
 (�k" 1) + (�k " �k" 1)$ � (�k" 1)| {z }

First-Order Taylor Approx

�

=

�kZ

�k" 1

$ 2
� (�)

1!
(�k " �)1d� (52)

where(52) corresponds to the Taylor remainder from(48).
Recall that this Bregman divergenceD [�k : �k" 1] cor-
responds to a KL divergenceD $

KL[⇡�k" 1 ||⇡�k ] and con-
tributes to the gap inTVOL(✓,�, x).

Simplifying the Taylor remainder expression, with
$ 2
� (�) = Var⇡� log p✓(x,z)

q�(z | x) , we obtain an integral repre-

sentation of the KL divergence:

D
$
KL[⇡�k" 1 ||⇡�k ] =

�kZ

�k" 1

(�k " �) Var⇡� log
p✓(x , z)

q�(z | x)
d�

(53)

Following similar arguments in the reverse direction, we
can obtain an integral form for theTVO upper bound gap
R

%
1 (�k" 1) = DKL[⇡�k ||⇡�k" 1 ] via the Þrst-order approxi-

mation of (�k" 1) arounda = �k.

R
%
1 (�k" 1) =  (�k" 1) "

�
 (�k) + (�k" 1 " �k)$ � (�k)

�

= (�k " �k" 1)$ � (�k) " ( (�k) "  (�k" 1))

=

�k" 1Z

�k

$ 2
� (�)

1!
(�k" 1 " �)1d� (54)

Note that theTVO upper bound (10) arises from the sec-
ond line, withR

%
1 (�k" 1) & 0 and(�k " �k" 1)$ � (�k)

corresponding to a right-Riemann approximation.

Switching the order of integration in(54), we can write the
KL divergence as

D
%
KL[⇡�k ||⇡�k" 1 ] =

�kZ

�k" 1

(� " �k" 1) Var⇡� log
p✓(x , z)

q�(z | x)
d�

(55)

While these integral expressions for the KL divergence may
not be immediately intuitive, our use of the Taylor remainder
theorem uniÞes their derivation with that of thermodynamic
integration. Alternative derivations may also be found in
Dabak & Johnson(2002).

C.3. Symmetrized KL Divergence

Combining the expressions for the KL divergence in Eq.
(53) and (55) immediately leads to a known result relating
the symmetrized KL divergence to the integral of the Fisher
information along the geometric path (Amari, 2016; Dabak
& Johnson, 2002).

D
&

KL = (�k " �k" 1)

�kZ

�k" 1

Var⇡�


log

p✓(x , z)

q�(z | x)
d�

�
(56)

where we have deÞned the symmetrized KL divergence as:

D
&

KL[�k" 1;�k] = D
$
KL[⇡�k" 1 ||⇡�k ] + D

%
KL[⇡�k ||⇡�k" 1 ]

Our goal in this section will be to show that(56) arises
from similar Ôthermodynamic integrationÕ on the graph of
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the mean parameters⌘� . Recall that we previously applied
the fundamental theorem of calculus to (�) = log Z� to
obtain the difference in log-partition functions

 (�k) "  (�k" 1) =

�kZ

�k" 1

$ � (�)d�

We can obtain a similar expression for the mean parameters
⌘� = $ � (�) by integrating over the second derivative.

⌘k " ⌘k" 1 =

�kZ

�k" 1

$ 2
� (�)d� (57)

Recalling that$ 2
� (�) = Var⇡� log p✓(x,z)

q�(z | x) , we see that
the integrands in (56) and (57) are identical. Integrating
with respect to�, we obtain the Ôarea of a rectangleÕ identity
for the symmetrized KL divergence (as in (30)):

D
&

KL[�k" 1;�k] = ��k ·

�kZ

�k" 1

Var⇡�


log

p✓(x , z)

q�(z | x)
d�

�

= (�k " �k" 1)

�kZ

�k" 1

$ 2
� (�)d�

= (�k " �k" 1)
�
$ � (�)

���k

�k" 1

�

= (�k " �k" 1)(⌘k " ⌘k" 1) (58)

This identity is best understood via Fig.5 in Sec.4.4.

To summarize, we have given several equivalent ways of un-
derstanding the symmetrized KL divergence.The ÔforwardÕ
and ÔreverseÕ KL divergences arise as gaps in theTVO left-
and right-Riemann approximations (Figure 5), or Þrst or-
der Taylor remainders as in (53) and (55). Summing these
quantities corresponds to the area of a rectangle (58) on
the graph of theTVO integrand⌘� , or to the integral of a
variance term via the Taylor remainder theorem (56) or
fundamental theorem of calculus (57).

Note that the TVO integrand ⌘� = $ � (�) =

E⇡� [log p✓(x,z)
q�(z | x) ] will be linear when its derivative, the

variance of the log importance weights, is constant within
� ( [�k" 1,�k]. The KL divergence is actually symmetric
in this case, which we treat in more detail in the next section
(App. D). More generally, the curvature of the integrand
indicates which direction of the KL divergence has larger
magnitude, andFigure 5reßects our empirical observations
thatDKL[⇡�k" 1 ||⇡�k ] > DKL[⇡�k ||⇡�k" 1 ].

D. Asymptotic Linear Scheduling Analysis

Grosse et al. (2013) treat a quantity identical to
TVOL(✓,�, x) in the context of analysing the variance of

AIS estimators. Using the Central Limit Theorem,Neal
(2001) show that the variance of anAIS estimator is mono-
tonically related toTVOL(✓,�, x) under perfect transitions,
or independent, exact samples from each intermediate�

(seeGrosse et al.(2013) Eq. 3). However, note thatAIS

estimates expectations overchains of MCMC samples rather
than the simple reweighting used in theTVO.

In this section, we provide additional perspective on the
analysis ofGrosse et al.(2013), which considers the
asymptotic behavior of the scaled gap inTVOL(✓,�, x),
K · DKL

#
[⇡�k" 1 ||⇡�k ], asK ! ) .

We begin by restating Theorem 1 ofGrosse et al.(2013) for
the case of the fullTVO objective. We describe the resulting
Ôcoarse-grainedÕ linear binning schedule for choosing{�k}

in D.1 and provide further analysis inD.2.

Theorem 1(Grosse et al.(2013)). Suppose K + 1 distribu-

tions {⇡�k}
K
k=0 are linearly spaced along a path P . Under

the assumption of perfect transitions, if the Fisher informa-

tion matrix G(�) is smooth, then as K ! ) :

K

KX

k=1

D
$
KL[⇡�k" 1 ||⇡�k ] !

1

2

1Z

0

�̇(t) · G
�
�(t)

�
· �̇(t)dt

(59)

=
1

2

�
D

$
KL[⇡�0 ||⇡�K ] + D

%
KL[⇡�K ||⇡�0 ]

�

Here, we let t ( [0, 1] parameterize the path �(t) = (1 "
t) · �0 + t · �K , and let �̇(t) denote the derivative of the

parameter � with respect to t. For linear mixing of the

natural parameters as above, this is a constant: �̇(t) =
�K " �0. In the case of the full TVO integrand, �̇(t) = 1.

Proof. See (Grosse et al., 2013) for a detailed proof, which
proceeds by taking the Taylor expansion ofDKL[�k||�k +
�� ] around each�k for small �� . In particular,�� =
1
K (�K " �0) for linearly spaced�k = (1" k

K ) ·�0+ k
K ·�K .

We assume w.l.o.g.�K " �0 = 1 and�� = 1
K as inGrosse

et al.(2013) or TVO.

The zero- and Þrst-order terms vanish, and the second-order
term, with�2

� = 1
K2 , can be written as (see e.g.Kullback

(1997) p. 26):

K

KX

k=1

DKL[�k||�k + �� ] = K ·
1

2K2

KX

k=1

�̇k · G(�k) · �̇k

+ K · O(K" 3) (60)

!
1

2

1Z

0

�̇(t)G
�
�(t)

�
�̇(t)dt (61)

where we have absorbed�� = 1
K into a continuous mea-

suredt asK ! ) .
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We now show that this expression corresponds to the sym-
metrized KL divergence, as in (Amari, 2016; Dabak & John-
son, 2002). While this was not stated in the theorem of
Grosse et al.(2013), it has also been shown by e.g.Huszar
(2017). Observe thatG(�) = $ � (�) = Var⇡� [T (x , z)]
as in (56) and (58). Noting that the chain rule implies
d
dtG

�
�(t)

�
= d

d�G
�
�(t)

�d�
dt , we can pull one term of

d�
dt = �̇(t) = (�K " �0) outside the integral and perform
integration by substitution. Ignoring the1/2 factor,

(�K " �0)

2

1Z

0

G
�
�(t)

�d�
dt

dt =
(�K " �0)

2

�KZ

�0

$ 2
� (�)d�

=
1

2
(�K " �0)(⌘K " ⌘0) (62)

=
1

2

�
D

$
KL[⇡�0 ||⇡�K ] + D

%
KL[⇡�K ||⇡�0 ]

�

D.1. ÔCoarse-GrainedÕ Linear Schedule

Grosse et al.(2013) then use this asymptotic condition (62)
asK ! ) to inform the choice of adiscrete partition
P = {�k}

K
k=0.

More concretely, consider dividing the interval[0, 1] into
J equally-spaced knot points{�j}

J
j=0. We then allocate a

total budget ofK =
PJ

j=1 Kj intermediate distributions
across sub-intervals[�j" 1,�j ], with uniform linear spacing
of theKj partitions within each sub-interval.

Using (62), Grosse et al.(2013) assign a costFj =
(�j " �j" 1)(⌘j " ⌘j" 1) to each Ôcoarse-grainedÕ interval
[�j" 1,�j ]. Minimizing

P
j Fj subject to

P
j Kj = K, the

allocation rule becomes:

Kj *
q

(�j+1 " �j)(⌘j+1 " ⌘j) (63)

We observe that performance when using this method can
be sensitive to the number of knot points used, and we found
J = 20 to perform best in our experiments.

D.2. Additional Perspectives onGrosse et al.(2013)

Geometric Intuition for Theorem 1: To further under-
stand Theorem 1 ofGrosse et al.(2013), observe that
the TVO integrand will appear linear within any interval
[�k" 1,�k] asK ! ) . For general endpoints�0 and�K ,
we let�� = �k " �k" 1 = �K " �0

K .

Having already visualized the symmetrized KL diver-
gence as the area of a rectangle inFigure 5, we can see
that each directed KL divergence,D

$
KL[⇡�k" 1 ||⇡�k ] and

D
%
KL[⇡�k ||⇡�k" 1 ], will approach the area oftriangle as the

integrand becomes linear orK ! ) , with area equal to

1/2 · �� · �⌘ . Then, theDKL scaled byK becomes

K

KX

k=1

D
$
KL[⇡�k" 1 ||⇡�k ] ! K

KX

k=1

1

2
· �� · �⌘ (64)

= K

KX

k=1

1

2
(
�K " �0

K
) · (⌘k " ⌘k" 1)

=
1

2
(�K " �0) · (⌘K " ⌘0) .

where, in the last line, we cancel factors ofK and note the
cancellation of intermediate⌘k in the telescoping sum.

Thermodynamic Interpretation: This limiting behavior
is also discussed in thermodynamics, where the LHS of (64)
and (59) corresponds to the rate of entropy production in
transitioning a system from⇡�0 to ⇡�1 along a path deÞned
by {�k}. The condition thatK ! ) refers to the linear
response regime, with(59) related to the thermodynamic
divergence (Crooks, 2007).

Exponential and Mixture Geodesics: As in the state-
ment of Theorem 1, we can more generally consider con-
necting two distributions, indexed by natural parameters
�0 and �1, using a parametert ( [0, 1]. The curve
�t = (1 " t) · �0 + t · �1 then corresponds to our path
exponential family (13), and is also referred to as thee-
geodesic in information geometryAmari (2016).

Similarly, the moment-averaged path ofGrosse et al.(2013),
which also underlies our scheduling strategy in Sec.5,
can be viewed as a linear mixture in the mean parameter
space. Them-geodesic then refers to the curve⌘t = (1 "
t) · ⌘0 + t · ⌘1 (Amari, 2016). Note that these mixtures
reference different distribution for the same parametert, so
that⌘�t += ⌘t.

Grosse et al.(2013) proceed to show that the expression
for the symmetric KL divergence(59) corresponds to the
integral of the Fisher information alongeither the geometric
or mixture paths (Theorem 2 ofGrosse et al.(2013), The-
orem 3.2 ofAmari (2016)). The union of the intermediate
distributions integrated by these two paths coincide in our
one-dimensional exponential family, although this intuition
does not appear to translate to higher dimensions.

E. Higher Order TVO

While the convexity of the log-partition function yields the
family of Bregman divergences from the remainder in the
Þrst order Taylor approximation, we might also consider
higher order terms to obtain tighter bounds on likelihood or
analyse properties of the TVO integrand$ � (�). We give
an example derivation for a second-orderTVO objectives,
although these are no longer guaranteed to be upper or lower
bounds on likelihood.
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Left-to-Right Expansion We Þrst consider expanding
the approximations in theTVO left-Riemann sum to sec-
ond order. We denote the resulting objectiveL

(2)
$ , since we

move Ôleft-to-rightÕ in estimating (�k) around�k" 1. We
begin by writing the second-order Taylor approximation:

 (�k) ,  (�k" 1) + (�k " �k" 1) $ � (�k" 1)

+
1

2
(�k " �k" 1)

2 $ 2
� (�k" 1) (65)

While TVOL(✓,�, x) consists of the Þrst-order term alone,
we can also consider adding the non-negative, second-order
term to form the objectiveL(2)

$ . Using successive Taylor
approximations of (�k), we obtain similar telescoping
cancellations to obtain

log p(x) " L
(2)
$ = log p(x) "

KX

k=1

(�k " �k" 1) · ⌘�k" 1

"
KX

k=1

1

2
(�k " �k" 1)

2 Var⇡�k" 1
log

p(x , z)

q(z | x)

(66)

where⌘�k" 1 = E⇡�k" 1
log p(x,z)

q(z | x) .

We previously obtained a lower bound on log-likelihood
via this construction, withlog p(x) " TVOL(✓,�, x) & 0.
However,L(2)

$ will only provide a lower bound if$ � (�)
is concave, i.e.$ 3

� (�) - 0. To see this, we write the
Taylor remainder (48) as

R
$
2 (�k) =

�kZ

�k" 1

1

6
(�k " �t)

3 $ 3
� (�t)d�t (67)

with the third derivative equal to

$ 3
� (�) = E⇡� [T (x , z)3] " 3 [E⇡� T (x , z)] · E⇡� [T (x , z)2]

+ 2[E⇡� T (x , z)]3

= E⇡� [T (x , z)3] " [E⇡� T (x , z)]3

" 3[E⇡� T (x , z)] · [Var⇡� T (x , z)]

In addition to indicating thatL(2)
$ is a lower bound

on log p✓(x), testing the concavity of$ � (�) using
$ 3
� (�) - 0 can also indicate whether a trapezoid approxi-

mation to theTVO integral provides a valid lower bound.

We can give an identical construction for the reverse direc-
tion L

(2)
% or higher order approximations. We leave a full

exploration of these objectives for future work.

F. Experimental Setup

Code for all experiments can be found athttps://
github.com/vmasrani/tvo_all_in .

Model Following (Burda et al., 2015), we use a varia-
tional autoencoder (Kingma & Welling, 2013) with a 50-
dimensional stochastic layer,z ( R

50

p✓(x , z) = p✓(x | z)p(z)

p(z) = N (z |0, I )

p✓(x | z) = Bern(x |decoder✓(z))

q�(z | x) = N (z; µ �(x), ! �(x))

where the encoder and decoder are each two-layer MLPs
with tanh activations and 200 hidden dimensions. The out-
put of the encoder is duplicated and passed through an
additional linear layer to parameterize the mean and log-
standard deviation of a conditionally independent Normal
distribution. The output of the decoder is a sigmoid which
parameterizes the probabilities of the independent Bernoulli
distribution.✓ and� refer to the weights of the decoder and
encoder, respectively.

Dataset We use Omniglot (Lake et al., 2013), a dataset
of 1623 handwritten characters across 50 alphabets. Each
datapoint is binarized28 . 28 image, i.ex ( { 0, 1}

784,
where we follow the common procedure in the literature of
sampling each binary-valued observation with expectation
equal to the real pixel value (Salakhutdinov & Murray, 2008;
Burda et al., 2015). We split the dataset into 24,345 training
and 8,070 test examples.

Training Procedure All models are written in PyTorch
and trained on GPUs. For each scheduler, we train for 5000
epochs using the Adam optimizer (Kingma & Ba, 2017)
with a learning rate of10" 3, and minibatch size of 1000.
All weights are initialized with PyTorchÕs default initializer.

G. Implementation Details

While the Legendre transform, mapping between a target
value of expected sufÞcient statistics⌘ = E⇡� [T (!)] and
the appropriate natural parameters�, can be a difÞcult prob-
lem in general, we describe how to efÞciently implement
our Ômoments-spacingÕ schedule in the context ofTVO.

Recall from Sec.5 that we are interested in Þnding a discrete
partitionP� = {�k}

K
k=0 such that:

�k = ⌘
" 1
�

✓
(1 "

k

K
) · ELBO +

k

K
· EUBO

◆
(68)

In other words, we seek to Þnd the�k such that
E⇡�k

[log p✓(x,z)
q�(z | x) ] , ⌘k, where⌘k are equally spaced be-

tween theELBO andEUBO (seeFigure 6).

More concretely, we provide pseudo-code implementing
our moments spacing schedule below. Given a set ofS

log-importance weights per sample, and a number of inter-
mediate distributionsK:
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Figure 10.Pseudo-code Implementation of Moments Scheduling forTVO

1 # Calculate expected sufficient statistics
eta at a given beta ( Eq. 12)

2 def calc_eta(log_iw, beta):
3 # 1) Exponentiate / normalize over

importance sample dimension
4 snis = torch.exp(log_iw * beta -
5 torch.logsumexp(log_iw * beta,
6 dim = 1, keepdim=True))
7 # 2) Take mean over data examples
8 return torch.mean(snis * log_iw, dim =0)
9

10 def binary_search(target, log_iw, start=0,
stop=1, threshold = 0.1):

11

12 beta_guess = .5 * (stop-start)
13 eta_guess = calc_eta(log_iw,beta_guess)
14 if eta_guess > target + threshold:
15 return binary_search(
16 target,
17 log_iw,
18 start=beta_guess,
19 stop=stop)
20 elif eta_guess < target - threshold:
21 return binary_search(
22 target,
23 log_iw,
24 start=start,
25 stop=beta_guess)
26 else :
27 return beta_guess

1

2 def moments_spacing_schedule(log_iw, K,
search= Õbinary Õ):

3 # 1) Calculate target values for uniform
moments spacing

4 elbo = calc_eta(log_iw, 0)
5 eubo = calc_eta(log_iw, 1)
6 targets = [(1-t) * elbo+t * eubo
7 for t in np.linspace(0,1,K+1)]
8

9 # 2) Find beta corresponding to each
target ( including beta =0,1)

10 beta_schedule = [0]
11

12 for _k in range (1, K):
13 target_eta = targets[_k]
14

15 beta_k = binary_search(
16 target_eta,
17 log_iw,
18 start = 0,
19 stop = 1)
20

21 beta_schedule.append(beta_k)
22

23 beta_schedule.append(1)
24 # 3) Return beta_schedule : used for

Riemann approximation points in TVO
objective

25 return beta_schedule

H. Additional Results

In this section, we report wall-clock runtimes and run similar
experiments as in Sec.8 to evaluate our moments spacing
schedule and reparameterized gradients on the binarized
MNIST dataset (Salakhutdinov & Murray, 2008).

Wall-Clock Times We report wall clock runtimes for var-
ious scheduling methods withS = 50 andK = 5 in Fig.
11. While TVO methods require slight overhead compared
with IWAE, our adaptive moments scheduler does not re-
quire signiÞcantly more computation than the log-uniform
baseline.

Grid Search Comparison We evaluate our moments
schedule withK = 2 against grid search over the choice
of a single intermediate�1 in Fig. 12. The setup is similar
to that of Fig. 1 on Omniglot (see Sec.8), but here we
use reparameterization gradients instead of the originalTVO.
Here, we train for 1000 epochs using an Adam optimizer
with learning rate10" 3 and batch size 100.

We again Þnd that our moments spacing schedule arrives
at an optimal choice of�1, and can even outperform the
best static value due to its ability to adaptively update at
each epoch. It is interesting to note that the Þnal choice of

�1, which reßects the shape of theTVO integrand, is nearly
identical at�1 , 0.30 across bothMNIST and Omniglot.

Comparison with IWAE We compareTVO using our mo-
ments scheduling against theIWAE andIWAE DREG as in
Fig. 9 of the main text. We Þnd that ourTVO reparame-
terized gradient estimator achieves nearly identical model
learning performance asIWAE andIWAE DREG, with notably
improved posterior inference for all values ofS.

Evaluating Scheduling Strategies In the Fig.14-18 be-
low, we reproduce the setting of Fig.8 to evaluate our
scheduling strategies byK, for TVO with bothREINFORCE

and reparameterized gradient estimators, on Omniglot and
MNIST. We also report posterior inference results as mea-
sured by testDKL[q�(z | x)||p✓(z | x)]. In general, we Þnd
comparable performance between our moments schedule
and the log-uniform baseline, although our approach per-
forms best withK = 2 and does not require grid search.
Further, onMNIST with batch size 1000 and lowK, log-
uniform, linear, and coarse-grained schedules suffer from
poor performance due to instability in training, which is
avoided by our moments schedule. Training can be stabi-
lized by using smaller batch sizes as in Fig.12.
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Figure 11.Omniglot Runtimes (S = 50 , K = 5 , 5k epochs) Figure 12.MNIST K = 2 , with reparameterization gradients.

(a) MNIST Testlog p! (x ) (b) MNIST TestD KL [q" (z | x )||p! (z | x )]

Figure 13.Model Learning and Inference byS (with K = 5 )

(a) MNIST Testlog p! (x ) (b) MNIST TestD KL [q" (z | x )||p! (z | x )]

Figure 14.TVO with REINFORCEGradients: Model Learning and Inference byK (with S = 50)
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(a) MNIST Testlog p! (x ) (b) MNIST TestD KL [q" (z | x )||p! (z | x )]

Figure 15.TVO with Reparameterized Gradients: Model Learning and Inference byK (with S = 50)

(a) Omniglot Testlog p! (x ) (b) Omniglot TestD KL [q" (z | x )||p! (z | x )]

Figure 17.TVO with REINFORCEGradients: Model Learning and Inference byK (with S = 50)

(a) Omniglot Testlog p! (x ) (b) Omniglot TestD KL [q" (z | x )||p! (z | x )]

Figure 18.TVO with Reparameterized Gradients: Model Learning and Inference byK (with S = 50)
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I. Reparameterization Gradients for the TVO Integrand

Recall that theTVO objective involves terms of the form

E⇡� [f(z)] where ⇡�(z | x) =
q�(z | x)1" �

p✓(x , z)�

Z�
and f(z) = log

p✓(x , z)

q�(z | x)
(69)

While Masrani et al.(2019) derive aREINFORCE-style gradient estimator for theTVO, we seek to apply the reparameterization
trick when possible, and thus differentiate with respect to only the inference network parameters�. Note that, for
zi / q�(z | x) reparameterizable withz = z(✏,�) and✏i / p(✏), any expectation under⇡� can be written as

E⇡� [f(z)] =
1

Z�
Eq�(z | x)

⇥
w
�
f(z)

⇤
=

1

Z�
E✏
⇥
w
�
f(z)

⇤
where w =

p✓(x , z)

q�(z | x)
(70)

In differentiating (70), we will frequently encounter terms of the formE⇡�

h
f(z) d

d� log p✓(x,z)
q�(z | x)

i
for genericf(z). Noting

that the total derivative contains score function partial derivatives, we apply the reparameterization trick to these terms in an
approach similar to the Ôdoubly-reparameterizedÕ estimator ofTucker et al.(2018). The following lemma summarizes these
calculations, rewritten using expectations under⇡� as in (70).

Lemma 1. Let f(z) : RM 0! R, ⇡�(z | x), and w = p✓(x,z)
q�(z | x) all depend on �. When z / q�(z | x) is reparameterizable

via z = z(✏,�), ✏ / p(✏), the following identity holds for expectations under ⇡�

E⇡�


f(z)

d

d�
log w

�
= E⇡�


@ z
@�

✓
(1 " �)f(z)

@ log w

@ z
"
@f(z)

@ z

◆�
. (71)

Proof. SeeAppendix I.3.

Corollary 1.1. For the choice of f(z) = 1 we obtain

E⇡�


d

d�
log w

�
= (1 " �) E⇡�


@ z
@�

@ log w

@ z

�
. (72)

The following lemma will allow us to apply reparameterization within the normalization constant.

Lemma 2. Let the same conditions hold as in Lemma 1, with Z� =
R

q�(z | x)1" �
p✓(x , z)� dz. Then

d

d�
Z� = �(1 " �) E✏


w
� @ z
@�

@ log w

@ z

�
. (73)

Proof. SeeAppendix I.4.

We now proceed to differentiate the TVO integrand given by (69).

I.1. ReparameterizedTVO Gradient Estimator

For genericf(z) : RM 0! R and reparameterizablez / q�(z | x) as above, the gradient with respect to� can be written as

d

d�
E⇡� [f(z)] = E⇡�

✓
d

d�
f(z)

◆
" �

✓
@ z
@�

@f(z)

@ z

◆�
+ �(1 " �)Cov⇡�


f(z),

@ z
@�

@ log w

@ z

�
. (74)

The gradient of theTVO integrand is of particular interest. Forf(z) = log w with w = p✓(x,z)
q�(z | x) , (74) simpliÞes to

d

d�
E⇡� [log w] = (1 " 2�)E⇡�


@ z
@�

@ log w

@ z

�
+ �(1 " �)Cov⇡�


log w,

@ z
@�

@ log w

@ z

�
. (75)
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Proof. We track changes between lines inblue, and begin by applying the product rule.

d

d�
E⇡� [f(z)] =

d

d�

⇣
Z

" 1
� E✏

⇥
w
�

f(z)
⇤⌘

(76)

=

✓
d

d�
Z

" 1
�

◆
E✏
⇥
w
�

f(z)
⇤
+ Z

" 1
� E✏


f(z)

✓
d

d�
w
�

◆�
+ Z

" 1
� E✏


w
�

✓
d

d�
f(z)

◆�
(77)

=

✓
d

d�
Z�

◆ 
" 1

Z
2
�

!
E✏
⇥
w
�

f(z)
⇤
+ Z

" 1
� E✏


�w

�
f(z)

✓
d

d�
log w

◆�
+ Z

" 1
� E✏


w
�

✓
d

d�
f(z)

◆�
(78)

=

✓
d

d�
Z�

◆✓
" 1

Z�

◆
E⇡� [f(z)]

| {z }
11

+� E⇡�


f(z)

d

d�
log w

�

| {z }
21

+E⇡�


d

d�
f(z)

�
(79)

We proceed to simplify only the Þrst two terms, applyingLemma 2to 11 andLemma 1to 21 .

11 + 21 =�(1 " �)E✏

w
� @ z
@�

@ log w

@ z

�

| {z }
Lemma 2

✓
" 1

Z�

◆
E⇡� [f(z)] + �

✓
(1 " �)E⇡�


@ z
@�

@ log w

@ z
f(z)

�
" E⇡�


@ z
@�

@f(z)

@ z

�◆

| {z }
Lemma 1

(80)

=�(1 " �)E⇡�


@ z
@�

@ log w

@ z

�
(" 1)E⇡� [f(z)] +�(1 " �)E⇡�


@ z
@�

@ log w

@ z
f(z)

�
" �E⇡�


@ z
@�

@f(z)

@ z

�
(81)

=�(1 " �)

✓
E⇡�


@ z
@�

@ log w

@ z
f(z)

�
" E⇡�


@ z
@�

@ log w

@ z

�
E⇡� [f(z)]

◆
" �E⇡�


@ z
@�

@f(z)

@ z

�
(82)

=�(1 " �)

✓
Cov⇡�


f(z),

@ z
@�

@ log w

@ z

�◆
" �E⇡�


@ z
@�

@f(z)

@ z

�
. (83)

By plugging (83) back into (79) we arrive at the reparameterized gradient for generalf(z) (74).

d

d�
E⇡� [f(z)] = �(1 " �)

✓
Cov⇡�


f(z),

@ z
@�

@ log w

@ z

�◆
" �E⇡�


@ z
@�

@f(z)

@ z

�
+ E⇡�


d

d�
f(z)

�
(84)

= E⇡�

✓
d

d�
f(z)

◆
" �

✓
@ z
@�

@f(z)

@ z

◆�
+ �(1 " �)Cov⇡�


f(z),

@ z
@�

@ log w

@ z

�
. (85)

Finally, to optimize theTVO integrand, we can substitutef(z) = log w for various terms in (85). We then useCorollary 1.1
to apply the reparameterization trick within the total derivative in the Þrst term.

d

d�
E⇡� [log w] = E⇡�

✓
d

d�
log w

◆
" �

✓
@ z
@�

@log w

@ z

◆�
+ �(1 " �)Cov⇡�


log w,

@ z
@�

@ log w

@ z

�
(86)

= E⇡�


(1 " �)

✓
@ z
@�

@ log w

@ z

◆

| {z }
Corollary 1.1

" �
✓
@ z
@�

@ log w

@ z

◆�
+ �(1 " �)Cov⇡�


log w,

@ z
@�

@ log w

@ z

�
(87)

= (1 " 2�)E⇡�


@ z
@�

@ log w

@ z

�
+ �(1 " �)Cov⇡�


log w,

@ z
@�

@ log w

@ z

�
(88)

This establishes (75) and is the expression that we use to optimize theTVO with reparameterization in the main text.

I.2. REPARAM / REINFORCE Equivalence for⇡�

It is well known (Tucker et al., 2018) that the reparameterization trick andREINFORCE estimator are equivalent for
expectations underq�(z | x), which allows us to trade high varianceREINFORCEgradients for reparameterization gradients
which directly consider derivatives of the functionf(z).

Eq�(z | x)


f(z)

@

@�
log q�(z | x)

�
= E✏


@ z
@�

@f(z)

@ z

�
. (89)
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We use this equivalence to show a similar result for expectations under⇡� , which we will then use in the proofs ofLemma 1
in I.3 andLemma 2in I.4.

Lemma 3. Let the same conditions hold as in Lemma 1. Then

E⇡�


f(z)

@

@�
log q�(z | x)

�
= E⇡�


@ z
@�

✓
@f(z)

@ z
+ �f(z)

@ log w

@ z

◆�
. (90)

Proof.

E⇡�


f(z)

@

@�
log q�(z | x)

�
=

1

Z�
Eq�(z | x)


w
�
f(z)

@

@�
log q�(z | x)

�
Using (70) (91)

=
1

Z�
E✏

@ z
@�

@(w�f(z))

@ z

�
Using (89) (92)

=
1

Z�
E✏

@ z
@�

✓
w
� @f(z)

@ z
+ f(z)

@w
�

@ z

◆�
(93)

=
1

Z�
E✏

@ z
@�

✓
w
� @f(z)

@ z
+ f(z)�w

� @ log w

@ z

◆�
(94)

=
1

Z�
E✏

w
� @ z
@�

✓
@f(z)

@ z
+ f(z)�

@ log w

@ z

◆�
(95)

= E⇡�


@ z
@�

✓
@f(z)

@ z
+ �f(z)

@ log w

@ z

◆�
Using (70) (96)

I.3. Proof of Lemma 1

E⇡�


f(z)

d

d�
log w

�
= E⇡�


@ z
@�

✓
(1 " �)f(z)

@ log w

@ z
"
@f(z)

@ z

◆�
. (97)

Proof. Using the fact that@� log w = " @� log q�(z | x),

E⇡�


f(z)

d

d�
log w

�
= E⇡�


f(z)

✓
@ log w

@�
+
@ z
@�

@ log w

@�

◆�
(98)

= E⇡�


f(z)

✓
"
@ log q�(z | x)
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+
@ z
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@ log w
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◆�
(99)

= " E⇡�
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@ log q�(z | x)
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◆
"
✓

f(z)
@ z
@�

@ log w

@�

◆�
(100)

= " E⇡�


@ z
@�

✓
@f(z)

@ z
+ �f(z)

@ log w

@ z

◆
"
✓

f(z)
@ z
@�

@ log w
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◆�
Using Lemma3 (101)

= " E⇡�


@ z
@�

✓
@f(z)

@ z
+ �f(z)

@ log w

@ z
" f(z)

@ log w

@�

◆�
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= " E⇡�


@ z
@�

✓
@f(z)

@ z
+ (� " 1)f(z)

@ log w

@ z

◆�
(103)

= E⇡�


@ z
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✓
(1 " �)f(z)

@ log w

@ z
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@f(z)

@ z

◆�
. (104)
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I.4. Proof of Lemma 2

d

d�
Z� = �(1 " �)E✏


w
� @ z
@�

@ log w

@ z

�
. (105)

Proof. Noting that we can use reparameterization inside the integralZ� =
R

q�(z | x)1" �
p✓(x , z)�dz = Eq� [w� ] =

E✏[w� ], we obtain

d

d�
Z� =

d

d�
E✏[w� ] (106)

= E✏

�w

� d

d�
log w

�
(107)

= �Z�E⇡�


d

d�
log w

�
(108)

= �(1 " �)Z�E⇡�


@ z
@�

@ log w

@ z

�
UsingCorollary 1.1 (109)

= �(1 " �)E✏

w
� @ z
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@ log w

@ z

�
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