
A Noisy-OR Networks 

A.1 Learning Algorithm 
A.1.1 Recognition Network 

Recall the evidence lower bound (ELBO): 

log p(x; θ) ≥ Eq(·|x;φ) [log p(x, h; θ) − log q(h|x; φ)] = L(x, θ, φ) 

One can derive the following gradients (see (Mnih & Gregor, 2014)): 

rθL(x, θ, φ) = Eq(·|x;φ)[rθ log p(x, h; θ)] 

rφL(x, θ, φ) = Eq(·|x;φ)[(log p(x, h; θ) − log q(h|x; φ)) ×rφ log q(h|x; φ)] 

Then, we maximize the lower bound by taking gradient steps w.r.t. θ and φ. To estimate the gradients, we 
average the quantities inside the expectations over multiple samples from q(·|x; φ). 

See Algorithm 1 for an update step of the algorithm, without variance normalization and input-dependent 
signal centering. 

The experiments use mini-batch size 20 (unless specified otherwise). θ and φ are optimized using Adam. 

Algorithm 1 Update step for learning noisy-OR networks with a recognition network. p(·, ·; θ) is the 
current noisy-OR network model (with parameters θ), q(·|·; φ) is the current recognition network model (with 
parameters φ), and x is a batch of 20 samples. 

function Update(p, q, x) 
for i ← 1 to 20 do 

(i)h(i) ← sample(q(·|x ; φ)) 
(i) (i)r(i) ← log p(h(i), x ; θ) − log q(h(i)|x ; φ) 

end for 
Δφ ← Δφ + η · 1 P20 (i) · rφ log q(h(i)|x(i); φ)20 i=1 r 

1 P20 (i)Δθ ← Δθ + η · i=1 rθ log p(h(i), x ; θ)20 
end function 

Variance Normalization and Input-Dependent Signal Centering 

We use variance normalization and input-dependent signal centering to improve the estimation of rθL(x, θ, φ), 
as in (Mnih & Gregor, 2014). 

The goal of both techniques is to reduce the variance in the estimation of rφL(x, θ, φ). They are based 
on the observation that (see (Mnih & Gregor, 2014)): 

rφL(x, θ, φ) = Eq(·|x;φ)[(log p(x, h; θ) − log q(h|x; φ)) ×rφ log q(h|x; φ)] 
= Eq(·|x;φ)[(log p(x, h; θ) − log q(h|x; φ) − c) ×rφ log q(h|x; φ)] 

where c does not depend on h. Therefore, it is possible to reduce the variance in the estimator by using some 
c close to log p(x, h; θ) − log q(h|x; φ). 

Variance normalization keeps running averages of the mean and variance of log p(x, h; θ)− log q(h|x; φ). Let 
c be the average mean and v be the average variance. Then variance normalization transforms log p(x, h; θ) − 
log q(h|x; φ) into log p(x,h;θ)−log√q(h|x;φ)−c .

max(1, v) 

Input-dependent signal centering keeps an input-dependent function c(x) that approximates the normalized 
value of log p(x, h; θ) − log q(h|x; φ). We model c(x) as a two-layer neural network with 100 hidden nodes in 
the second layer and tanh activation functions. We train c(x) to minimize "� �2 

# 
log p(x, h; θ) − log q(h|x; φ) − c

Eq(·|x;φ) √ − c(x)
max(1, v) 

1 



and optimize it using SGD. 
Therefore, our estimator of rφL(x, θ, φ) is obtained as: �� � � 

log p(x, h; θ) − log q(h|x; φ) − c rφL(x, θ, φ) ≈ Ê 
q(·|x;φ) √ − c(x) ×rφ log q(h|x; φ)

max(1, v) 

A.1.2 Mean-field Variational Posterior QmIn the mean-field algorithm, we use the variational posterior q(h) = i=1 qi(hi). That is, the latent variables 
are modeled as independent Bernoulli. 

For each data point, we optimize q from scratch (unlike the case of the recognition network variational 
posterior, which is “global”), and then we make a gradient update to the generative model. 

To optimize the variational posterior q we use coordinate ascent, according to: 

qi(hi) ∝ exp{E[m]\{i}[log p(hi, h[m]\{i}, x)]} 

where the expectation is over h[m]\{i}. 
See Algorithm 2 for an update step of the algorithm. We use 5 iterations of coordinate ascent, and we use 

20 samples to estimate expectations. 

Algorithm 2 Update step for learning noisy-OR networks with mean-field variational posterior. p(·, ·; θ) is 
the current noisy-OR network model (with parameters θ), and x is a sample. 

function Update(p, x) 
q ← independent_Bernoulli_variables_distribution(m) 
for iter ← 1 to 5 do 
for k ← 1 to m do 
E = [0, 0] 
for t ← 1 to 20 do 
hk = 0 
h[m]\{k} ← sample(q(·)) 

1E[0] ← E[0] + log p(h, x; θ)20 
1E[1] ← E[1] + log p(h + 1k, x; θ)20 

end for 
qk(·) ∝ exp{E[·]}

end for 
end for 
for i ← 1 to 20 do 
h ← sample(q(·)) 

1Δθ ← Δθ + η · · rθ log p(h, x; θ)20 
end for 

end function 

A.2 Experiment Configuration 
Initialization 

In all noisy-OR network experiments, the model is initialized by sampling each prior probability πi, each 
failure probability fji, and each complement of noise probability 1 − lj as follows: sample z ∼ uniform[2.0, 4.0], 
and then set the parameter to sigmoid(z). Note that sigmoid(z) is roughly between 0.88 and 0.98, so the 
noisy-OR network is biased toward having large prior probabilities, large failure probabilities, and small noise 
probabilities. We found that this biased initialization improves results over one centered around 0.5. 

In the recognition network experiments, we initialize the recognition network to have all weight parameters 
and bias parameters uniform in [−0.1, 0.1]. 

In the mean-field network experiments, we initialize the mean-field Bernoulli random variables to have 
parameters uniform in [0.2, 0.8]. 
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Hyperparameters 

We generally tune hyperparameters within factors of 10 for each experiment configuration. Due to time 
constraints, for each choice of hyperparameters we only test it on 10 runs with random initializations of the 
algorithm, and then choosing the best performing hyperparameters for the large-scale experiments. 

In the recognition network experiments, we tune the step size for the noisy-OR network model parameters 
and the step size for the input-dependent signal centering neural network. The step size for the recognition 
network model parameters is the same as the one for the noisy-OR network model parameters (tuning it 
independently did not seem to change the results significantly). The variance reduction technique requires a 
rate for the running estimates; we set this to 0.8. 

In the mean-field experiments, we only tune the step size for the noisy-OR network model parameters. For 
the coordinate ascent method used to optimize the mean-field parameters, we use 5 iterations of coordinate 
ascent (i.e. 5 iterations through all coordinates), and in each iteration we estimate expectations with 20 
samples. 

Number of Epochs 

In all experiments, we use a large enough fixed number of epochs such that the log-likelihood does not improve 
at the end of the optimization in all or nearly-all the runs. However, to avoid overfitting, we save the model 
parameters at regular intervals in the optimization process, and report the results from the timestep that 
achieved the best validation set log-likelihood (i.e. we perform post-hoc “early stopping”). 

B Sparse Coding 

B.1 Learning Algorithm 
See Algorithm 3 for an update step of the algorithm. We use batch size 20 in the learning algorithm in all 
experiments. 

Algorithm 3 Alternating minimization algorithm update for sparse coding. A is the current matrix, and x 
is a batch of 20 samples. 

1: function Update(A, x) 
2: for i ← 1 to 20 do 
3: h(i) ← max(0, A†x(i) − α) 
4: 
5: 

end for 
1 P20 (i))h(i)T ]A ← A − η · [(Ah(i) − x20 i=1

6: normalize columns of A 
7: end function 

B.2 Experiment Configuration 
Initialization 

We initialize the matrix by sampling each entry from a standard Gaussian, and then normalizing the columns 
such as to have unit l2 norm. 

Hyperparameters 

We tune the step size for the updates to the matrix and the α variable. We tune hyperparameters within 
factors of 10 for each experiment configuration. 

Number of Epochs 

In all experiments, we use a large enough fixed number of epochs such that the error does not improve at the 
end of the optimization in all or nearly-all the runs. 
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C Neural PCFG 

C.1 Model Parameterization 
We adopt the same parameterization from Kim et al. (2019) and associate an input embedding wN for each 
symbol N on the left side of a rule (i.e. N ∈ {S} ∪ N ∪ P) and run a neural network over wN to obtain the 
rule probabilities. Concretely, each rule type πr is parameterized as follows, 

>exp(u f1(wS ))AπS→A = P ,>exp(uA0 f1(wS ))A0∈N 
>exp(uBC wA)

πA→BC = P ,>exp(uB0 C0∈M B0C0 wA) 
>exp(u f2(wT ))wπT →w = P ,>exp(u w0 f2(wT ))w0∈Σ 

where M is the product space (N ∪ P) × (N ∪ P), and f1, f2 are MLPs with two residual layers, 

fi(x) = gi,1(gi,2(Wix)), 

gi,j (y) = ReLU(Vi,j ReLU(Ui,j y)) + y. 

The bias terms for the above expressions (including for the rule probabilities) are omitted for notational 
brevity. 

C.2 Experiment Configuration 
We use symbol embedding size of 256 and MLP hidden size (for the residual layers) of 256 for all our neural 
PCFGs. Training proceeds by gradient-based optimization on the log marginal likelihood with batch size 
of 1 and a learning rate of 0.001 with the Adam update rule. The maximum gradient norm is sent to be 3. 
Model parameters are initialized with Xavier-Glorot initialization. We train for 10 epochs and perform early 
stopping based on validation perplexity. 

The data-generating PCFG is trained on the Penn Treebank (PTB), where we lower-case all words, remove 
punctuation, take the top 10000 frequent words as the vocabulary (words not in the vocabulary are mapped 
to a special <unk> token), and train on sentences of up to length 20. We use the standard PTB splits for 
training the data-generating PCFG. Neural PCFGs trained on synthetic data are trained on 5000 or 50000 
samples, with validation and test set sizes of 1000 each. 

D Noisy-OR Networks: Data Sets Details 

D.1 IMG Data Set Properties 
In addition to being easy to visualize, the noisy-OR network model of the IMG data set has properties that 
ensure it is not “too easy” to learn. Specifically, 5 out of the 8 latent variable do not have “anchor” observed 
variables (i.e. observed variables for which a single failure probability is di˙erent from 1.0). Such anchor 
observed variables are an ingredient of most known provable algorithms for learning noisy-OR networks. More 
technically, the model requires a subtraction step in the quartet learning approach of (Jernite et al., 2013). 

D.2 PLNT Data Set Construction 
We learn the PLNT model from the UCI plants data set (Lichman et al., 2013), where each data point 
represents a plant that grows in North America and the 70 binary features indicate in which states and 
territories of North America it is found. The data set contains 34,781 data points. 

To learn the data set, we use the learning algorithm described in Section A.1.1, with 20 latent variables. 
We remove all learned latent variables with prior probability less than 0.01. Furthermore, we transform all 
failure probabilities greater than 0.50 into 1.00. This transformation is necessary to obtain sparse connections 
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between the latent variables and the observed variables; without it, every latent variable is connected to 
almost every observed variable, which makes learning diÿcult. The resulting noisy-OR network model has 8 
latent variables. Each latent variable has a prior probability between 0.05 and 0.20. By construction, each 
failure probability di˙erent from 1.00 is between 0.00 and 0.50. 

Figure 1 shows a representation of the latent variables learned in the PLNT data set. As observed, the 
latent variables correspond to neighboring regions in North America. 

Figure 1: Latent variable configuration of the PLNT noisy-OR network model. Each map represents a latent 
variable. The regions in blue represent the observed variables for which the failure probability is not 1.00. 
The fifth latent variable, which seems to contain only Florida, also contains Puerto Rico and Virgin Islands 
(not shown on map). 

E Tables of Results 
Below we present detailed tables of results for the experiments. 

Table 1 shows the noisy-OR network results with recognition network (partially included in the main 
document). 

Table 2 shows the noisy-OR network results with recognition network and larger batch size 1000. 
Table 3 shows the noisy-OR network results with mean-field variational posterior. 
Table 4 shows the noisy-OR network results with recognition network on the misspecified data sets 

(IMG-FLIP and IMG-UNIF). 
Table 5 shows the sparse coding results. 
Table 6 shows the neural PCFG results (included in the main document). 
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Table 1: Performance of the noisy-OR network learning algorithm with recognition network. Each row reports 
statistics for 500 runs of the algorithm with random initializations. The 95% confidence intervals are included. 
The first column denotes the number of latent variables used in learning, the second column the average 
number of ground truth latent variables recovered, the third column the percentage of runs with full ground 
truth recovery, and the fourth column the average test set negative log-likelihood. 

LAT RECOV FULL NEGATIVE 

VARS VARS RECOV (%) LL (NATS) 

IMG 
8 6.31 ± 0.11 29.6 ± 4.0 13.76 ± 0.11 
16 7.62 ± 0.06 73.6 ± 3.9 12.82 ± 0.05 
32 7.75 ± 0.05 79.6 ± 3.5 12.83 ± 0.05 
64 7.73 ± 0.05 77.0 ± 3.7 12.95 ± 0.04 
128 7.75 ± 0.04 75.6 ± 3.8 12.95 ± 0.04 
PLNT 
8 4.71 ± 0.12 0.4 ± 0.6 12.54 ± 0.06 
16 6.83 ± 0.12 45.0 ± 4.4 12.05 ± 0.07 
32 6.57 ± 0.11 38.6 ± 4.3 12.43 ± 0.08 
64 7.03 ± 0.10 55.0 ± 4.4 12.15 ± 0.07 
128 7.58 ± 0.08 77.6 ± 3.7 11.79 ± 0.05 
UNIF 
8 5.35 ± 0.14 12.6 ± 2.9 11.71 ± 0.13 
16 7.78 ± 0.05 85.4 ± 3.1 9.78 ± 0.02 
32 7.87 ± 0.04 88.2 ± 2.8 9.72 ± 0.01 
64 7.91 ± 0.04 93.6 ± 2.2 9.74 ± 0.01 
128 7.78 ± 0.08 91.2 ± 2.5 9.77 ± 0.01 
CON8 
8 3.70 ± 0.15 1.2 ± 1.0 8.33 ± 0.10 
16 5.77 ± 0.15 23.6 ± 3.7 7.02 ± 0.08 
32 7.45 ± 0.08 71.6 ± 4.0 6.08 ± 0.04 
64 7.68 ± 0.06 81.6 ± 3.4 5.98 ± 0.03 
128 7.88 ± 0.04 92.8 ± 2.3 5.90 ± 0.02 
CON24 
8 2.26 ± 0.15 0.4 ± 0.6 14.99 ± 0.17 
16 4.90 ± 0.21 17.2 ± 3.3 10.91 ± 0.13 
32 7.21 ± 0.10 53.8 ± 4.4 9.76 ± 0.03 
64 7.60 ± 0.06 68.4 ± 4.1 9.73 ± 0.02 
128 7.34 ± 0.08 52.2 ± 4.4 9.83 ± 0.02 
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Table 2: Performance of the noisy-OR network learning algorithm with recognition network and batch 
size 1000. Each row reports statistics for 500 runs of the algorithm with random initializations. The 95% 
confidence intervals are included. The first column denotes the number of latent variables used in learning, 
the second column the average number of ground truth latent variables recovered, the third column the 
percentage of runs with full ground truth recovery, and the fourth column the average test set negative 
log-likelihood. 

LAT RECOV FULL NEGATIVE 

VARS VARS RECOV (%) LL (NATS) 

IMG 
8 5.91 ± 0.13 24.2 ± 3.8 14.09 ± 0.13 
16 7.17 ± 0.10 53.6 ± 4.4 13.09 ± 0.09 
32 7.32 ± 0.08 58.6 ± 4.3 12.96 ± 0.08 
PLNT 
8 4.35 ± 0.12 0.0 ± 0.0 13.95 ± 0.05 
16 5.69 ± 0.09 5.0 ± 1.9 13.28 ± 0.05 
32 6.18 ± 0.08 15.6 ± 3.2 12.98 ± 0.06 
UNIF 
8 5.62 ± 0.17 26.6 ± 3.9 11.27 ± 0.13 
16 6.20 ± 0.19 51.0 ± 4.4 10.01 ± 0.04 
32 5.84 ± 0.21 49.2 ± 4.4 10.01 ± 0.04 
CON8 
8 2.86 ± 0.14 0.0 ± 0.0 8.85 ± 0.10 
16 4.31 ± 0.16 6.0 ± 2.1 7.94 ± 0.10 
32 7.22 ± 0.10 66.2 ± 4.2 6.21 ± 0.06 
CON24 
8 2.52 ± 0.18 2.0 ± 1.2 14.77 ± 0.20 
16 5.67 ± 0.24 51.8 ± 4.4 11.68 ± 0.25 
32 6.86 ± 0.19 74.4 ± 3.8 10.53 ± 0.19 
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Table 3: Performance of the noisy-OR network learning algorithm with mean-field variational posterior. Each 
row reports statistics for 500 runs of the algorithm with random initializations. The 95% confidence intervals 
are included. The first column denotes the number of latent variables used in learning, the second column 
the average number of ground truth latent variables recovered, the third column the percentage of runs with 
full ground truth recovery, and the fourth column the average test set negative log-likelihood. 

LAT RECOV FULL NEGATIVE 

VARS VARS RECOV (%) LL (NATS) 

IMG 
8 6.72 ± 0.10 41.8 ± 4.3 13.57 ± 0.13 
16 7.52 ± 0.07 66.4 ± 4.1 12.91 ± 0.08 
32 7.23 ± 0.09 56.2 ± 4.4 13.12 ± 0.09 
PLNT 
8 4.35 ± 0.12 0.0 ± 0.0 12.63 ± 0.08 
16 5.69 ± 0.09 5.0 ± 1.9 12.33 ± 0.07 
32 6.18 ± 0.08 15.6 ± 3.2 12.32 ± 0.07 
UNIF 
8 5.62 ± 0.17 26.6 ± 3.9 11.79 ± 0.12 
16 6.20 ± 0.19 51.0 ± 4.4 11.15 ± 0.13 
32 5.84 ± 0.21 49.2 ± 4.4 11.65 ± 0.14 
CON8 
8 2.86 ± 0.14 0.0 ± 0.0 8.88 ± 0.09 
16 4.31 ± 0.16 6.0 ± 2.1 8.34 ± 0.09 
32 7.22 ± 0.10 66.2 ± 4.2 8.08 ± 0.09 
CON24 
8 2.52 ± 0.18 2.0 ± 1.2 13.27 ± 0.18 
16 5.67 ± 0.24 51.8 ± 4.4 12.33 ± 0.19 
32 6.86 ± 0.19 74.4 ± 3.8 13.26 ± 0.21 

Table 4: Performance of the noisy-OR network learning algorithm with recognition network on the misspecified 
data sets (IMG-FLIP and IMG-UNIF). Each row reports statistics for 500 runs of the algorithm with random 
initializations. The 95% confidence intervals are included. The first column denotes the number of latent 
variables used in learning, the second column the average number of ground truth latent variables recovered, 
the third column the percentage of runs with full ground truth recovery, and the fourth column the average 
test set negative log-likelihood. 

LAT RECOV FULL NEGATIVE 

VARS VARS RECOV (%) LL (NATS) 

IMG-FLIP 
8 4.40 ± 0.10 0.2 ± 0.4 15.29 ± 0.12 
9 5.59 ± 0.13 12.2 ± 2.9 14.46 ± 0.13 
10 6.09 ± 0.12 20.0 ± 3.5 13.97 ± 0.11 
16 6.88 ± 0.09 27.0 ± 3.9 13.23 ± 0.06 
IMG-UNIF 
8 4.95 ± 0.12 0.0 ± 0.0 15.75 ± 0.11 
9 5.35 ± 0.12 5.4 ± 2.0 14.87 ± 0.11 
16 7.27 ± 0.09 59.0 ± 4.3 13.20 ± 0.05 
32 7.76 ± 0.05 80.0 ± 3.5 12.77 ± 0.03 
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COLS RECOV FULL ERROR 

COLS RECOV (%) 

◦γ =γγ 5◦ = 5= 5◦

24 8.71 ± 0.18 0.0 ± 0.0 9.32 ± 0.18 
48 14.54 ± 0.37 1.4 ± 1.0 3.11 ± 0.16 

◦ ◦γγγ = = 10= 1010◦

24 19.77 ± 0.29 17.2 ± 3.3 2.28 ± 0.15 
48 23.84 ± 0.05 88.4 ± 2.8 0.04 ± 0.02 

Table 5: Performance of the sparse coding learning algorithm. Each row reports statistics for 500 runs of 
the algorithm with random initializations. The 95% confidence intervals are included. The first column 
denotes the number of latent variables used in learning, the second column the average number of ground 
truth columns recovered, the third column the percentage of runs with full ground truth recovery, and the 
fourth column the average error. 

Table 6: Results from the neural PCFG experiments, where both the training set size and the number of 
nonterminal/preterminal symbols are varied. The data-generating PCFG is shown at the top, while the 
learned PCFGs are shown at the bottom. F1 score is calculated by comparing the MAP parse trees from the 
learned PCFG against the MAP parse trees from the data-generating PCFG, ignoring the tree labels. For 
reference, a random tree baseline obtains an unlabeled F1 score of 30.3. 

5000 SAMPLES 50000 SAMPLES 

|N | |P| NEGATIVE F1 NEGATIVE F1 

LL (NATS) LL (NATS) 

10 10 6.330 − 6.330 − 

10 10 6.747 58.1 6.647 69.4 
20 20 6.660 62.1 6.582 76.5 
30 30 6.658 64.4 6.581 74.0 
40 40 6.655 62.0 6.576 72.3 

F Noisy-OR Networks: State of the Optimization Process 
Figures 2 and 3 show more steps of the optimization process on the successful run with 16 latent variables 
mentioned in Figure 3. 

Figure 2: Latent variables on a successful run of the noisy-OR network learning algorithm on the IMG data 
set with 16 latent variables. Shown is the state of the latent variables after epochs 1/9, 2/9, 3/9, 4/9, 5/9, 
6/9, 8/9, 8/9, and 1. 
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Figure 3: Latent variables on a successful run of the noisy-OR network learning algorithm on the IMG data 
set with 16 latent variables. Shown is the state of the latent variables after epochs 1, 2, 3, 5, 10, 20, 30, 50, 
and 100. 

G Noisy-OR Networks: Recovered Latent Variables on Misspeci-
fied Data Sets 

Figure 4 shows successful recoveries for the IMG-FLIP and IMG-UNIF data sets. As observed, some of the 
extra latent variables are used to model some of the noise due to misspecification. 

(a) 

00 

(b) 

Figure 4: Latent variables recovered in successful runs (i.e. they recover the IMG latent variables) on 
the mismatched data sets. Below each 8 × 8 images corresponding to a latent variable, there is a color 
corresponding to its prior (whiter means prior closer to 1.0). (a) Successful run with 16 latent variables on 
the IMG-FLIP data set. (b) Successful run with 16 latent variables on the IMG-UNIF data set. 

H Noisy-OR Networks: Duplicate Latent Variables Are Not Equiv-
alent to a Single Latent Variable 

We give an example of a model with two latent variables that has identical failure probabilities and is not 
equivalent to a model with one latent variable that has the same failure probabilities (and possibly di˙erent 
priors). 

Consider a noisy-OR network model with two latent variables h1, h2 and two observed variables x1, x2. 
Let π1 = π2 = 0.25 (prior probabilities), f11 = f12 = f21 = f22 = 0.1 (failure probabilities), and l1 = l2 = 0.0 
(noise probabilities). Then the negative moments are P(x1 = 0) = 0.600625, P(x2 = 0) = 0.600625, and 
P(x1 = 0, x2 = 0) = 0.56625625. 

1, x2. LetConsider now a noisy-OR network model with one latent variable h0 and two observed variables x1 
f 0 = f 0 = 0.1 and l11 21 

0 
1 = l0 2 = 0.0. Then, to match the first-order negative moments P(x0 1 = 0) = P(x1 = 0) 

and P(x0 2 = 0) = P(x2 = 0), we need π0 1 = 0.44375 (prior probability). But then this gives P(x0 1 = 0, x 0 = 
0) = 0.5606875, which does not match P(x1 = 0, x2 = 0). Therefore, there exists no noisy-OR model with 
one latent variable and identical failure and noise probabilities that is equivalent to the noisy-OR model with 
two latent variables. 
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I Theoretical Conjecture 
Finally, we state some concrete theoretical conjecture that the experiments are indicating: 

Conjecture 1 (Overparametrization). Suppose p(x, h; θ) = p(h; θ)p(x|h; θ) is a single-latent layer generative 
model, with m latent variables, and n observable variables. 

Then, training an overparametrized model p(x, h; θ̃) = p(h; θ̃)p(x|h; θ̃) with poly(m, n) latent variables, n 
observable variables and poly(m, n, 1/�) training samples, with EM or variational inference with a suÿciently 
rich class of variational posteriors and random start with high probability recovers a model with parameters θ̂  

s.t. 

(1) No overfitting: 
KL(p(x, h; θ̂), p(x, h; θ)) ≤ �. 

(2) Parameter recovery: A filtering procedure which removes duplicates (i.e. if nodes hi, hj have 
parameter weights that are close enough, we remove one of them) and low-activity nodes (e.g. p(hi = 1) 
is low for binary h, or Pr[|hi| ≥ α] for real-valued h) results in a set of nodes S, whose parameters are 
close to the ground truth parameters of p(x, h; θ). 
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