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A. Error Analysis
This section provides a more comprehensive error analysis
for the theoretical results in Section 3. To be specific, we
conduct approximation error analysis for the boosted re-
gressor fD,B under the assumption that the Bayes decision
function f∗L,P lies in the Höder spaces C0,α and C1,α.

A.1. Error Analysis for f∗L,P ∈ C0,α

First of all, we introduce some definitions and notations
which will be used in the supplementary material. For a
given histogram transform H , we write

fP,H := arg min
f∈FH

RL,P(f). (A.1)

In other words, fP,H is the function that minimizes the
excess riskRL,P(f) over the function set FH with the bin
width h ∈ [h0, h0]. Then, elementary calculation yields

fP,H = EP(f∗L,P(X)|AH(x))

=
∑
j∈IH

∫
Aj
f∗L,P dPX

PX(Aj)
· 1Aj

=
∑
j∈IH

∫
Aj

E(Y |X) dPX

PX(Aj)
· 1Aj .

Moreover, we write

fD,H := arg min
f∈FH

RL,D(f) (A.2)

for the empirical version, which can be further presented as

fD,H =
∑
j∈IH

∑n
i=1 Yi1Aj (Xi)∑n
i=1 1Aj (Xi)

· 1Aj .
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A.1.1. BOUNDING THE APPROXIMATION ERROR TERM

The following proposition shows that the L2 distance be-
tween fP,H and f∗L,P behaves polynomial in the regulariza-
tion parameter λ if we choose the bin width h0 appropriate-
ly.

Proposition 2 Let the histogram transformH be defined as
in (4) with bin width h satisfies Assumption 1. Furthermore,
suppose that the Bayes decision function f∗L,P ∈ C0,α. Then,
for any fixed λ > 0, there holds

λh−2d +RL,P(fP,H)−R∗L,P ≤ c · λ
α
α+d ,

where c is some constant depending on α, d, and c0 as in
Assumption 1.

A.1.2. BOUNDING THE SAMPLE ERROR TERM

To derive bounds on the sample error of regularized empir-
ical risk minimizers, let us briefly recall the definition of
VC dimension measuring the complexity of the underlying
function class.

Definition 3 (VC dimension) Let B be a class of subsets
of X and A ⊂ X be a finite set. The trace of B on A is
defined by {B ∩ A : B ⊂ B}. Its cardinality is denoted
by ∆B(A). We say that B shatters A if ∆B(A) = 2#(A),
that is, if for every Ã ⊂ A, there exists a B ⊂ B such that
Ã = B ∩A. For k ∈ N, let

mB(k) := sup
A⊂X ,#(A)=k

∆B(A). (A.3)

Then, the set B is a Vapnik-Chervonenkis class if there exists
k <∞ such that mB(k) < 2k and the minimal of such k is
called the VC dimension of B, and abbreviate as VC(B).

To prove Lemma 4, we need the following fundamental
lemma concerning with the VC dimension of purely random
partitions, which follows the idea put forward by Breiman
(2000) of the construction of purely random forest. To this
end, let p ∈ N be fixed and πp be a partition of X with
number of splits p and π(p) denote the collection of all
partitions πp.
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Lemma 4 Let Bp be defined by

Bp :=

{
B : B =

⋃
j∈J

Aj , J ⊂ {0, 1, . . . , p}, Aj ∈ πp
}
.

(A.4)

Then the VC dimension of Bp can be upper bounded by
dp+ 2.

To investigate the capacity property of continuous-valued
functions, we need to introduce the concept VC-subgraph
class. To this end, the subgraph of a function f : X → R is
defined by

sg(f) := {(x, t) : t < f(x)}.

A class F of functions on X is said to be a VC-subgraph
class, if the collection of all subgraphs of functions in F ,
which is denoted by sg(F) := {sg(f) : f ∈ F} is a VC
class of sets in X × R. Then the VC dimension of F is
defined by the VC dimension of the collection of the sub-
graphs, that is, VC(F) = VC(sg(F)).

Before we proceed, we also need to recall the definitions of
the convex hull and VC-hull class. The symmetric convex
hull Co(F) of a class of functions F is defined as the set
of functions

∑m
i=1 αifi with

∑m
i=1 |αi| ≤ 1 and each fi

contained in F . A set of measurable functions is called a
VC-hull class, if it is in the pointwise sequential closure of
the symmetric convex hull of a VC-class of functions.

We denote the function set F as

F :=
⋃

H∼PH

FH , (A.5)

which contains all the functions ofFH induced by histogram
transforms H with bin width h0.

The following lemma presents the upper bound for the VC
dimension of the function set F .

Lemma 5 Let F be the function set defined as in (A.5).
Then F is a VC-subgraph class with

VC(F) ≤ (d+ 1)2d+1
(
b2R
√
d/h0c+ 1

)d
.

To further bound the capacity of the function sets, we need
to introduce the following fundamental descriptions which
enables an approximation of an infinite set by finite subsets.

Definition 6 (Covering Numbers) Let (X , d) be a metric
space, A ⊂ X and ε > 0. We call A′ ⊂ A an ε-net of A if
for all x ∈ A there exists an x′ ∈ A′ such that d(x, x′) ≤ ε.
Moreover, the ε-covering number of A is defined as

N (A, d, ε) = inf

{
n ≥ 1 : ∃x1, . . . , xn ∈ X ,

such that A ⊂
n⋃
i=1

Bd(xi, ε)

}
,

where Bd(x, ε) denotes the closed ball in X centered at x
with radius ε.

The following lemma follows directly from Theorem 2.6.9
in Van der Vaart & Wellner (1996). For the sake of com-
pleteness, we present the proof in Section B.1.2.

Lemma 7 Let Q be a probability measure on X and

F :=
{
f : X → R : f ∈ [−M,M ]

}
.

Assume that for some fixed ε > 0 and v > 0, the covering
number of F satisfies

N (F , L2(Q),Mε) ≤ c (1/ε)v. (A.6)

Then there exists a universal constant c′ such that

logN (Co(F), L2(Q),Mε) ≤ c′c2/(v+2)ε−2v/(v+2).

The next theorem shows that covering numbers of F grow
at a polynomial rate.

Theorem 8 Let F be a function set defined as in (A.5).
Then there exists a universal constant c <∞ such that for
any ε ∈ (0, 1) and any probability measure Q, we have

N (F , L2(Q),Mε)

≤ c0(cd/h0)d · (16e)(cd/h0)
d

ε2(h0/cd)
d−2,

where the constant cd := 21+4/d · d1/2+1/d.

The following theorem gives an upper bound on the covering
number of the VC-hull class Co(F).

Theorem 9 Let F be the function set defined as in (A.5).
Then there exists a constant c1 such that for any ε ∈ (0, 1)
and any probability measure Q, there holds

logN (Co(F), L2(Q),Mε) ≤ c1ε2(h0/cd)
d−2. (A.7)

Next, let us recall the definition of entropy numbers.

Definition 10 (Entropy Numbers) Let (X , d) be a metric
space, A ⊂ X and m ≥ 1 be an integer. The m-th entropy
number of (A, d) is defined as

em(A, d) = inf

{
ε > 0 : ∃x1, . . . , x2m−1 ∈ X

such that A ⊂
2m−1⋃
i=1

Bd(xi, ε)

}
.
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Moreover, if (A, d) is a subspace of a normed space (E, ‖·‖)
and the metric d is given by d(x, x′) = ‖x− x′‖, x, x′ ∈ A,
we write em(A, ‖ · ‖) := em(A,E) := em(A, d). Finally,
if S : E → F is a bounded, linear operator between the
normed space E and F , we denote em(S) := em(SBE , ‖ ·
‖F ).

For a finite set D ∈ Xn, we define the norm of an empirical
L2-space by

‖f‖2L2(D) = ED|f |2 :=
1

n

n∑
i=1

|f(xi)
2|.

If E is the function space (9) and DX ∈ Xn, then the
entropy number em(id : E → L2(DX)) equals the m-th
entropy number of the symmetric convex hull of the family
{(fi), fi ∈ Fi}, where id : E → L2(DX) denotes the
identity map that assigns to every f ∈ E the corresponding
equivalence class in L2(DX).

Now, we are able to present an oracle inequality for BHTR,
which gives an upper bound for the sample error term.

Theorem 11 Let the histogram transform Hn be defined as
in (4) with bin width hn satisfying Assumption 1. Further-
more, let fD,B be the BHTR regressor defined by (10) and
A(λ) be the corresponding approximation error defined by
(11). Then for all τ > 0, with probability Pn ⊗PH not less
than 1− 3e−τ , we have

Ωλ(f) +RL,D(fD,B)−R∗L,P
≤ 12A(λ) + 3456M2τ/n+ 3c′0T

2δ′λ−2δ
′

1 λ−12 n−2,

where c′0 is a constant.

A.2. Error Analysis for f∗L,P ∈ C1,α

A drawback to the analysis in C0,α is that the usual Taylor
expansion involved techniques for error estimation may not
apply directly. As a result, we fail to prove the exact benefits
of the boosting procedure. Therefore, in this subsection,
we turn to the function space C1,α consisting of smoother
functions. To be specific, we study the convergence rates of
fD,B to the Bayes decision function f∗L,P ∈ C1,α. To this
end, there is a point in introducing some notations.

For fixed h0, h0 > 0, let {Ht}Tt=1 be histogram transforms
with bin width ht ∈ [h0, h0], t = 1, . . . , T . Moreover,
let {fP,Ht}Tt=1 and {fD,Ht}Tt=1 be defined as in (A.1) and
(A.2), respectively. For x ∈ X , we define

fP,E(x) :=
1

T

T∑
t=1

fP,Ht(x) (A.8)

and

fD,E(x) :=
1

T

T∑
t=1

fD,Ht(x). (A.9)

Then we make the error decomposition

Eνn
(
RL,P(fD,E)−R∗L,P

)
= EνnEPX

(
fD,E(X)− f∗L,P(X)

)2
= EνnEPX

(
fD,E(X)− fP,E(X)

)2
+ EνnEPX

(
fP,E(X)− f∗L,P(X)

)2
, (A.10)

where νn := Pn⊗PH . In particular, in the case that T = 1,
i.e., for the base regressor HTR, we are concerned with the
lower bound for fD,H . We make the error decomposition

Eνn
(
RL,P(fD,H)−R∗L,P

)
= EνnEPX

(
fD,H(X)− f∗L,P(X)

)2
= EνnEPX

(
fD,H(X)− fP,H(X)

)2
+ EνnEPX

(
fP,H(X)− f∗L,P(X)

)2
. (A.11)

It is important to note that both of the two terms on the
right-hand side of (A.10) and (A.11) are data- and partition-
independent due to the expectation with respect to D and
H . Loosely speaking, the first error term corresponds to the
expected estimation error of the estimators fD,E or fD,H ,
while the second one demonstrates the expected approxima-
tion error.

A.2.1. UPPER BOUND FOR CONVERGENCE RATE OF
BHTR

The following Lemma presents the explicit representation of
AH(x) which will be used later in the proofs of Proposition
13.

Lemma 12 Let the histogram transform H be defined as in
(4) and A′H , AH be as in (6) and (5), respectively. Then for
any x ∈ Rd, the set AH(x) can be represented as

AH(x) =
{
x+ (R · S)−1z : z ∈ [−b′, 1− b′]

}
,

where b′ ∼ Unif(0, 1)d.

The next proposition presents the upper bound of the L2

distance between the ensemble regressor fP,E and the Bayes
decision function f∗L,P in the Hölder space C1,α.

Proposition 13 Let the histogram transform H be defined
as in (4) with bin width h satisfying Assumption 1 and T
be the number of iterations. Furthermore, let PX be the
uniform distribution and Lh0

(x, y, t) be the restricted least
squares loss defined as in (13). Moreover, let the Bayes
decision function satisfy f∗L,P ∈ C1,α. Then there holds

RLh0 ,P(fP,E)−R∗Lh0 ,P ≤ c
2
Lh

2(1+α)

0 +
1

T
· dc2Lh

2

0

(A.12)

in expectation with respect to PH .
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A.2.2. LOWER BOUND OF CONVERGENCE RATE OF
HTR

The following two propositions present the lower bound of
approximation error and sample error of HTR respectively.

Proposition 14 Let the histogram transform H be defined
as in (4) with bin width h satisfying Assumption 1 and h0 ≤
1. Moreover, let the regression model defined by

Y := f(X) + ε (A.13)

with f ∈ C1,α. For a fixed constant cf ∈ (0,∞), let Af be
defined as

Af := {x ∈ Rd : ‖∇f‖∞ ≥ cf} (A.14)

and N1 be defined as

N1 := min

{
n ∈ N : h0,n ≤

R

4
√
d

}
. (A.15)

Then for all n > N1, there holds

RL,P(fP,H)−R∗L,P ≥
d

12

(
R

2

)d
c20PX(Af )c2f · h

2

0

in expectation with respect to PH .

Proposition 15 Let the histogram transform H be defined
as in (4) with bin width h satisfying Assumption 1. Let the
the regression model be defined as in (A.13) with f ∈ C1,α.
Moreover, assume that ε is independent of X such that
E(ε|X) = 0 and Var(ε|X) =: σ2 ≤ 4M2 hold almost
surely for some M > 0. Then there holds

RL,P(fD,H)−RL,P(fP,H)

≥ 4Rdσ2(1− 2e−1)cd0 · h
−d
0 · n−1

in expectation with respect to Pn, where the constant c0 is
as in Assumption 1.

B. Proofs
It is well-known that entropy numbers are closely related to
the covering numbers. To be specific, entropy and covering
numbers are in some sense inverse to each other. More
precisely, for all constants a > 0 and q > 0, the implication

ei(T, d) ≤ ai−1/q, ∀ i ≥ 1

=⇒ lnN (T, d, ε) ≤ ln(4)(a/ε)q, ∀ ε > 0 (B.1)

holds by Lemma 6.21 in Steinwart & Christmann (2008).
Additionally, Exercise 6.8 in Steinwart & Christmann (2008)
yields the opposite implication, namely

lnN (T, d, ε) < (a/ε)q, ∀ ε > 0

=⇒ ei(T, d) ≤ 31/qai−1/q, ∀ i ≥ 1. (B.2)

B.1. Proof for f∗L,P ∈ C0,α

B.1.1. PROOF RELATED TO SECTION A.1.1

Proof [of Proposition 2] The assumption f∗L,P ∈ C0,α im-
plies

RL,P(fP,H)−R∗L,P
= ‖fP,H − f∗L,P‖2L2(PX)

=

∥∥∥∥∑
j∈IH

1Aj (x)

PX(Aj)

∫
Aj

f∗L,P(x′)− f∗L,P(x) dPX(x′)

∥∥∥∥2
2

≤
∥∥∥∥∑
j∈IH

1Aj (x)

PX(Aj)

∫
Aj

∣∣f∗L,P(x′)− f∗L,P(x)
∣∣ dPX(x′)

∥∥∥∥2
2

≤
∥∥∥∥∑
j∈IH

1Aj (x)

PX(Aj)

∫
Aj

‖x′ − x‖α dPX(x′)

∥∥∥∥2
L2(PX)

≤
∥∥∥∥∑
j∈IH

1Aj (x)

PX(Aj)
(
√
d · h0)α PX(Aj)

∥∥∥∥2
L2(PX)

≤ (
√
d · h0)2α

≤ dαc−2α0 h2α0 ,

where the last inequality follows from Assumption 2. Con-
sequently we obtain

λh−2d +RL,P(fP,H)−R∗L,P ≤ λh
−2d
0 + dαc−2α0 h2α0

≤ cλ
α
α+d ,

where the constant c := d−α/(2α+2d)c
−α/(α+d)
0 .

B.1.2. PROOF RELATED TO SECTION A.1.2

Proof [of Lemma 4] This proof is conducted from the per-
spective of geometric constructions.

p = 1 p = 2 p = 2k

Figure 1. We take one case with d = 3 as an example to illustrate
the geometric interpretation of the VC dimension. The yellow
balls represent samples from class A, blue ones are from class B
and slices denote the hyper-planes formed by samples.

We proceed by induction. Firstly, we concentrate on par-
tition with the number of splits p = 1. Because of the
dimension of the feature space is d, the smallest number of
sample points that cannot be divided by p = 1 split is d+ 2.
Concretely, owing to the fact that d points can be used to
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form d− 1 independent vectors and hence a hyperplane in a
d-dimensional space, we might take the following case into
consideration: There is a hyperplane consisting of d points
all from one class, say class A, and two points pB1 , pB2 from
the opposite class B located on the opposite sides of this
hyperplane, respectively. We denote this hyperplane by HA

1 .
In this case, points from two classes cannot be separated by
one split (since the positions are pB1 , H

A
1 , p

B
2 ), so that we

have VC(B1) ≤ d+ 2.

Next, when the partition is with the number of splits p = 2,
we analyze in the similar way only by extending the above
case a little bit. Now, we pick either of the two single
sample points located on opposite side of the HA

1 , and add
d − 1 more points from class B to it. Then, they together
can form a hyperplane HB

2 parallel to HA
1 . After that, we

place one more sample point from class A to the side of
this newly constructed hyperplane HB

2 . In this case, the
location of these two single points and two hyperplanes are
pB1 , H

A
1 , H

B
2 , p

A
2 . Apparently, p = 2 splits cannot separate

these 2d+ 2 points. As a result, we have VC(B2) ≤ 2d+ 2.

Inductively, the above analysis can be extended to the
general case of number of splits p ∈ N. In this manner,
we need to add points continuously to form p mutually
parallel hyperplanes where any two adjacent hyperplanes
should be constructed from different classes. Without
loss of generality, we consider the case for p = 2k + 1,
k ∈ N, where two points (denoted as pB1 , pB2 ) from class
B and 2k + 1 alternately appearing hyperplanes form the
space locations: pB1 , H

A
1 , H

B
2 , H

A
3 , H

B
4 , . . . ,H

A
(2k+1), p

B
2 .

Accordingly, the smallest number of points that cannot be
divided by p splits is dp+ 2, leading to VC(Bp) ≤ dp+ 2.
This completes the proof.

Proof [of Lemma 5] Recall that for a histogram trans-
form H , the set πH = (Aj)j∈IH is a partition of BR
with the index set IH induced by H . The choice k :=
b2R
√
d/h0c + 1 leads to the partition of BR of the form

πk := {Ai1,...,id}ij=1,...,k with

Ai1,...,id :=

d∏
j=1

Aj

:=

d∏
j=1

[
−R+

2R(ij − 1)

k
,−R+

2Rij
k

)
. (B.3)

Obviously, we have |Aij | ≤
h0√
d

. Let D be a data set of the
form

D := {(xi, ti) : xi ∈ BR, ti ∈ [−M,M ], i = 1, · · · ,m}

with

m := #(D) = 2d+1(d+ 1)
(
b2R
√
d/h0c+ 1

)d
.

Then there exists at least one cell A with

#(D ∩ (A× [−M,M ])) ≥ 2d+1(d+ 1). (B.4)

Moreover, for any x, x′ ∈ A, the construction of the parti-
tion (B.3) implies ‖x − x′‖ ≤ h0. Consequently, for any
arbitrary histogram transform H and Aj ∈ πH , at most one
vertex of Aj lies in A, since the bin width of Aj is larger
than h0. Therefore,

ΠH|A :=

{⋃
j∈I

(
(Aj ∩A)× [−M, cj ]

)
, I ⊂ IH

}
⋃{⋃

j∈I

(
(Aj ∩A)× (cj ,M ]

)
, I ⊂ IH

}

forms a partition of A× [−M,M ] with #(ΠH|A) ≤ 2d+1.
It is easily seen that this partition can be generated by 2d+1−
1 splitting hyperplanes on the space A× [−M,M ]. In this
way, Lemma 4 implies that ΠH|A can only shatter a dataset
with at most (d + 1)(2d+1 − 1) + 1 elements. Thus (B.4)
indicates that ΠH|A fails to shatter D ∩ (A × [−M,M ]).
Therefore, the subgraphs of F{

{(x, t) : t < f(x)}, f ∈ F
}

cannot shatter the data set D as well. By Definition 3, we
immediately get

VC(F) ≤ 2d+1(d+ 1)
(
b2R
√
d/h0c+ 1

)d
and the assertion is thus proved.

Proof [of Lemma 7] Let Fε be an ε-net over F . Then, for
any f ∈ Co(F), there exists an fε ∈ Co(Fε) such that
‖f − fε‖L2(Q) ≤ ε. Therefore, we can assume without loss
of generality that F is finite.

Obviously, (A.6) holds for 1 ≤ ε ≤ c1/v. Let v′ := 1/2 +
1/v and M ′ := c1/vM . Then (A.6) implies that for any
n ∈ N, there exists f1, . . . , fn ∈ F such that for any f ∈ F ,
there exists an fi such that

‖f − fi‖L2(Q) ≤M ′n−1/v.

Therefore, for each n ∈ N, we can find sets F1 ⊂ F2 ⊂
· · · ⊂ F such that the set Fn is a M ′n−1/v-net over F and
#(Fn) ≤ n.

In the following, we show by induction that for q ≥ 3 + v
and n, k ≥ 1, there holds

logN
(
Co(Fnkq ), L2(Q), ckM

′n−v
′)
≤ c′kn, (B.5)

where ck and c′k are constants depending only on c and v
such that supk max{ck, c′k} <∞. The proof of (B.5) will
be conducted by a nested induction argument.
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Let us first consider the case k = 1. For a fixed n0, let
n ≤ n0. Then for c1 satisfying c1M ′n−v

′

0 ≥ M , there
holds

logN
(
Co(Fnkq ), L2(Q), ckM

′n−v
′)

= 0,

which immediately implies (B.5). For a general n ∈ N, let
m := n/` for large enough ` to be chosen later. Then for
any f ∈ Fn \ Fm, there exists an f (m) ∈ Fm such that

‖f − f (m)‖L2(Q) ≤M ′m−1/v.

Let πm : Fn \ Fm → Fm be the projection operator. Then
for any f ∈ Fn \ Fm, there holds

‖f − πmf‖L2(Q) ≤M ′m−1/v

Therefore, for λi, µj ≥ 0 and
∑n
i=1 λi =

∑m
j=1 µj = 1,

we have
n∑
i=1

λif
(n)
i =

m∑
j=1

µjf
(m)
j +

n∑
k=m+1

λk
(
f
(n)
k − πmf (n)k

)
.

Let Gn be the set

Gn := {0} ∪ {f − πmf : f ∈ Fn \ Fm}.

Then we have #(Gn) ≤ n and for any g ∈ Gn, there holds

‖g‖L2(Q) ≤M ′m−1/v.

Moreover, we have

Co(Fn) ⊂ Co(Fm) + Co(Gn). (B.6)

Applying Lemma 2.6.11 in Van der Vaart & Wellner (1996)
with ε := 1

2c1m
1/vn−v

′
to Gn, we can find a 1

2c1M
′n−v

′
-

net over Co(Gn) consisting of at most

(e+ enε2)2/ε
2

≤
(
e+

ec21
`2/v

)8`2/vc−2
1 n

(B.7)

elements.

Suppose that (B.5) holds for k = 1 and n = m. In other
words, there exists a c1M ′m−v

′
-net over Co(Fm) consist-

ing of at most em elements, which partitions Co(Fm) into
m-dimensional cells of diameter at most 2c1M

′m−v
′
. Each

of these cells can be isometrically identified with a subset
of a ball of radius c1M ′m−v

′
in Rm and can be therefore

further partitioned into(
3c1M

′m−v
′

1
2c1M

′n−v′

)m
= (6`v

′
)n/`

cells of diameter 1
2c1M

′n−v
′
. As a result, we get a

1
2c1M

′n−v
′
-net of Co(Fm) containing at most

em · (6`v
′
)n/` (B.8)

elements.

Now, (B.6) together with (B.7) and (B.8) yields that there
exists a c1M ′n−v

′
-net of Co(Fn) whose cardinality can be

bounded by

en/`
(
6`v
′)n/`(

e+
ec21
`2/v

)8`2/vc−2
1 n

≤ en,

for suitable choices of c1 and ` depending only on v. This
concludes the proof of (B.5) for k = 1 and every n ∈ N.

Let us consider a general k ∈ N. Similarly as above, there
holds

Co(Fnkq ) ⊂ Co(Fn(k−1)q ) + Co(Gn,k), (B.9)

where the set Gn,k contains at most nkq elements with norm
smaller than M ′(n(k − 1)q)−1/v . Applying Lemma 2.6.11
in Van der Vaart & Wellner (1996) to Gn,k, we can find an
M ′k−2n−v

′
-net over Co(Gn,k) consisting of at most(

e+ ek2q/v−4+q
)22q/v+1k4−2q/vn

(B.10)

elements. Moreover, by the induction hypothesis, we have a
ck−1M

′n−v
′
-net over Co(Fn(k−1)q ) consisting of at most

ec
′
k−1n (B.11)

elements. Using (B.9), (B.10), and (B.11), we obtain a
ckM

′n−v
′
-net over Co(Fnkq ) consisting of at most ec

′
kn

elements, where

ck = ck−1 +
1

k2
,

c′k = c′k−1 + 22q/v+1 1 + log(1 + k2q/v−4+q)

k2q/v−4
.

Form the elementary analysis we know that if 2q/v−5 = 2,
then there exist constants c′′1 , c′′2 , and c′′3 such that

lim
k→∞

ck = c−1/vn
(v+2)/2v
0 +

∞∑
i=2

1/i2 ≤ c′′1c−1/v + c′′2 ,

lim
k→∞

c′k = 1 + c

∞∑
i=1

2(2/i)2q/vi5 ≤ c′′3 .

Thus (B.5) is proved. Taking ε := ckM
′n−v

′
/M in (B.5),

we get

logN (Co(Fnkq ), L2(Q),Mε)

≤ c′kc
1/v′

k (M ′)1/v
′
M−1/v

′
ε−1/v

′
.

This together with

(M ′)1/v
′

= (c1/vM)1/v
′

= c2/(v+2)M1/v′
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yields

logN (Co(F), L2(Q),Mε) ≤ c′c2/(v+2)ε−2v/(v+2),

where the constant c′ depends on the constants c′′1 , c′′2 and
c′′3 . This finishes the proof.

Proof [of Theorem 8] We find the upper bound of VC(F)
satisfies

2d+1(d+ 1)(2R
√
d/h0 + 2)d ≤ d · 2d+2(4R

√
d/h0)d

= (cdR/h0)d,

where cd := 21+4/d · d1/2+1/d. Then Theorem 2.6.7 in
Van der Vaart & Wellner (1996) yields the assertion.

Proof [of Theorem 9] The assertion follows directly from
Lemma 7 with

c := c0(cd/h0)d · (16e)(cd/h0)
d

,

v := 2((cd/h0)d − 1).

Let δ := (h0/cd)
d, then we have

c2/(v+2) = (c0δ
−1(16e)1/δ)δ

= 16e(c0δ
−1)δ

= 16e(c0δ
−1)δ.

Note that the function f defined by f(δ) := (c0δ
−1)δ is

continuous and

lim
δ→0

f(δ) = 1.

Then there exists a constant Md > 0 such that f(δ) ≤Md

for all 0 < δ ≤ (1/cd)
d if h0 ≤ 1. Consequently, we have

logN (Co(F), L2(Q),Mε) ≤ 16ec′Mdε
2(h0.n/cd)

d−2.

With c1 := 16ec′Md we obtain the assertion.

Proof [of Theorem 11] Denote

r∗ := Ωλ(f) +RL,P(f)−R∗L,P,

and for r > r∗, we write

Fr := {f ∈ E : Ωλ(f) +RL,P(f)−R∗L,P ≤ r},
Hr := {L ◦ f − L ◦ f∗L,P : f ∈ Fr}.

Note that for f ∈ Fr, we have λ1‖f‖E ≤ r, that is,∑
i∈I
|wi|2 ≤ r/λ1.

Then, by the Cauchy-Schwarz inequality, we get

∑
i∈I
|wi| ≤

(
T
∑
i∈I
|wi|2

)1/2

≤ (rT/λ1)1/2.

Consequently, we have Fr ⊂ (rT/λ1)1/2BE . Since L is
Lipschitz continuous with |L|1 ≤ 4M , we find

ED∼Pnem(Hr, L2(D))

≤ 4MED∼PnXem(Fr, L2(D))

≤ 8M(rT/λ1)1/2ED∼PnXem(BE , L2(D))

≤ 8M(rT/λ1)1/2ED∼PnXem(Co(F), L2(D)).

Let δ := (h0/cd)
d, δ′ := 1− δ, and a := c

1/(2δ′)
1 M . Then

(A.7) together with (B.2) implies that

em(Co(F), L2(D)) ≤ (3c1)1/(2δ
′)Mi−1/(2δ

′)

Taking expectation with respect to Pn, we get

ED∼PnXem(Co(F), L2(D)) ≤ c2i−1/(2δ
′), (B.12)

where c2 := (3c1)1/(2δ
′)M . Moreover, we easily find

λ2h
−2d = Ω(h) ≤ Ωλ(f) +RL,P(f)−R∗L,P ≤ r,

which yields

h−10 ≤ (r/λ2)1/(2d).

Therefore, if h0 ≤ 1, then we have r ≥ λ2 ≥ 1 and (B.12)
can be further estimated by

ED∼PnXem(Co(FH), L2(D)) ≤ c2(r/λ2)1/(4δ
′)i−1/(2δ

′),

which leads to

ED∼PnXem(Hr, L2(D))

≤ 8c2M(rT/λ1)1/2(r/λ2)1/(4δ
′)i−1/(2δ

′).

For the least square loss, the superemum bound

L(x, y, t) ≤ 4M2, ∀ (x, y) ∈ X × Y, t ∈ [−M,M ],

and the variance bound

E(L ◦ g − L ◦ f∗L,P)2 ≤ V (E(L ◦ g − L ◦ f∗L,P))ϑ

holds for V = 16M2 and ϑ = 1. Therefore, for h ∈ Hr,
we have

‖h‖∞ ≤ 8M2, EPh
2 ≤ 16M2r.

Then Theorem 7.16 in Steinwart & Christmann (2008) with
a := 8c2M(rT/λ1)1/2(r/λ2)1/(4δ

′) yields that there exist
a constant c′0 > 0 such that

ED∼PnRadD(Hr, n)
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≤ c′0 max
{
r3/4T δ

′/2λ
−δ′/2
1 λ

−1/4
2 n−1/2,

r(2δ
′+1)/(2δ′+2)(T/λ1)δ

′/(1+δ′)

· λ1/(2+2δ′)
2 n−1/(1+δ

′)
}

=: ϕn(r).

Simple algebra shows that the condition ϕn(4r) ≤
2
√

2ϕn(r) is satisfied. Since 2
√

2 < 4, similar argu-
ments show that there still hold the statements of the
Peeling Theorem 7.7 in Steinwart & Christmann (2008).
Consequently, Theorem 7.20 in Steinwart & Christman-
n (2008) can also be applied, if the assumptions on ϕn
and r are modified to ϕn(4r) ≤ 2

√
2ϕn(r) and r ≥

max{75ϕn(r), 1152M2τ/n, r∗}, respectively. It is easy
to verify that the condition r ≥ 75ϕn(r) is satisfied if

r ≥ c′0T 2δ′λ−2δ
′

1 λ−12 n−2,

where c′0 is a constant, which yields the assertion.

B.1.3. PROOF RELATED TO SECTION 3.1

Proof [of Theorem 1] It is easy to see that fP,E defined by
(A.8) satisfies fP,E ∈ E and λ1‖fP,E‖E ≤ λ1/T . More-
over, by Jensen’s inequality and Proposition 2, we have

RL,P(fP,E)−R∗L,P =

∫
X

(
1

T

T∑
t=1

fP,Ht − f∗L,P
)2

dPX

≤ 1

T

T∑
t=1

∫
X

(fP,Ht − f∗L,P)2 dPX

=
1

T

T∑
t=1

RL,P(fP,Ht)−R∗L,P

≤ dαc−2α0 h2α0 .

Consequently we get

A(λ) = inf
f∈E

λ1‖f‖E + λ2Ω(h) +RL,P(f)−R∗L,P

≤ λ1‖fP,E‖E + λ2Ω(h) +RL,P(fP,E)−R∗L,P
≤ λ1/T + cλ

α
α+d

2 .

Then, Theorem 11 implies that with probability P⊗PH not
less than 1− 3e−τ , there holds

λ1‖f‖E + λ2Ω(h) +RL,D(fD,B)−R∗L,P
≤ 6λ1/T + 6cλ

α
α+d

2 + 3c′0T
2δ′λ−2δ

′

1 λ−12 n−2

+ 3456M2τ/n, (B.13)

where c and c′0 are constants defined as in Proposition 2 and
Theorem 11. Minimizing the right hand side of (B.13), we

get

RL,P(fD,B)−R∗L,P ≤ c′′n
− 2α

(4−2δ)α+d ,

if we choose

λ1,n := n−
2α

(4−2δ)α+d ,

λ2,n := n−
2(α+d)

(4−2δ)α+d ,

h0,n := n−
1

(4−2δ)α+d ,

where c′′ is a constant depending on c, c′0, d, M , R and T .
Thus, the assertion is proved.

B.2. Proof for f∗L,P ∈ C1,α

B.2.1. PROOF RELATED TO SECTION A.2.1

Proof [of Lemma 12] For any x ∈ Rd, we define b′ :=
H(x) − bH(x)c ∈ Rd. Then we have b′ ∼ Unif(0, 1)d

according to the definition of H . For any x′ ∈ A′H(x), we
define

z := H(x′)−H(x) = (R · S)(x′ − x).

Then we have

x′ = x+ (R · S)−1z.

Moreover, since

bH(x′)c = bH(x)c,

we have z ∈ [−b′, 1− b′].

Proof [of Proposition 13] According to the generation pro-
cess, the histogram transforms {Ht}Tt=1 are i.i.d. Therefore,
for any x ∈ BR, the expected approximation error term can
be decomposed as follows:

EPH

(
fP,E(x)− f∗L,P(x)

)2
= EPH

(
(fP,E(x)− EPH (fP,E(x)))

+ (EPH (fP,E(x))− f∗L,P(x))
)2

= Var(fP,E(x)) + (EPH (fP,E(x))− f∗L,P(x))2

=
1

T
·VarPH (fP,H1(x)) +

(
EPH (fP,H1(x))− f∗L,P(x)

)2
.

(B.14)

In the following, for the simplicity of notations, we drop the
subscript of H1 and write H instead of H1 when there is no
confusion.

For the first term in (B.14), the assumption f∗L,P ∈ C1,α

implies

VarPH
(
fP,H(x)

)
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= EPH

(
fP,H(x)− EPH (fP,H(x))

)2
≤ EPH

(
fP,H(x)− f∗L,P(x)

)2
= EPH

(
1

µ(AH(x))

∫
AH(x)

f∗L,P(x′) dx′ − f∗L,P(x)

)2

= EPH

(
1

µ(AH(x))

∫
AH(x)

(
f∗L,P(x′)− f∗L,P(x)

)
dx′
)2

≤ EPH

(
cLdiam

(
AH(x)

))2
≤ c2Ldh

2

0. (B.15)

We now consider the second term in (B.14). Lemma 12
implies that for any x′ ∈ AH(x), there exist a random
vector u ∼ Unif[0, 1]d and a vector v ∈ [0, 1]d such that

x′ = x+ S−1R>(−u+ v). (B.16)

Therefore, we have

dx′ = det

(
dx′

dv

)
dv

= det

(
d(x+ S−1R>(−u+ v))

dv

)
dv

= det(RS−1) dv

=

( d∏
i=1

hi

)
dv. (B.17)

Taking the first-order Taylor expansion of f∗L,P(x′) at x, we
get

f∗L,P(x′)− f∗L,P(x)

=

∫ 1

0

(
∇f∗L,P(x+ t(x′ − x))

)>
(x′ − x) dt. (B.18)

Moreover, we obviously have

∇f∗L,P(x)>(x′ − x) =

∫ 1

0

∇f∗L,P(x)>(x′ − x) dt.

(B.19)

Thus, (B.18) and (B.19) imply that for any f∗L,P ∈ C1,α,
there holds∣∣f∗L,P(x′)− f∗L,P(x)−∇f∗L,P(x)>(x′ − x)

∣∣
=

∣∣∣∣∫ 1

0

(
∇f∗L,P(x+ t(x′ − x))−∇f∗L,P(x)

)>
(x′ − x) dt

∣∣∣∣
≤
∫ 1

0

cL(t‖x′ − x‖2)α‖x′ − x‖2 dt

≤ cL‖x′ − x‖1+α.

This together with (B.16) yields∣∣f∗L,P(x′)− f∗L,P(x)−∇f∗L,P(x)>S−1R>(−u+ v)
∣∣

≤ cLh
1+α

0

and consequently there exists a constant cα ∈ [−cL, cL]
such that

f∗L,P(x′)− f∗L,P(x)

= ∇f∗L,P(x)>S−1R>(−u+ v) + cαh
1+α

0 . (B.20)

Therefore, there holds

fP,H(x) =
1

PX(AH(x))

∫
AH(x)

f∗L,P(x′) dx′

=
1

µ(AH(x))

∫
AH(x)

f∗L,P(x′) dx′.

This together with (B.20) and (B.17) yields

fP,H(x)− f∗L,P(x)

=
1

µ(AH(x))

∫
AH(x)

f∗L,P(x′) dx′ − f∗L,P(x)

=
1

µ(AH(x))

∫
AH(x)

(
f∗L,P(x′)− f∗L,P(x)

)
dx′

=

∏d
i=1 hi

µ(AH(x))

∫
[0,1]d

(
∇f∗L,P(x)>S−1R>(−u+ v)

+ cαh
1+α

0

)
dv

=

(∫
[0,1]d

(−u+ v)> dv

)
RS−1∇f∗L,P(x) + cαh

1+α

0

=

(
1

2
− u
)>

RS−1∇f∗L,P(x) + cαh
1+α

0 . (B.21)

Since the random variables (ui)
d
i=1 are independent and

identically distributed as Unif[0, 1], we have

EPH

(
1

2
− ui

)
= 0, i = 1, . . . , d. (B.22)

Combining (B.21) with (B.22), we obtain

EPH

(
fP,H(x)− f∗L,P(x)

)
= cαh

1+α

0 (B.23)

and consequently(
EPH (fP,H1

(x))− f∗L,P(x)
)2 ≤ c2Lh2(1+α)0 . (B.24)

Combining (B.14) with (B.24) and (B.15), we obtain

EPH

(
fP,E(x)− f∗L,P(x)

)2 ≤ c2Lh2(1+α)0 +
1

T
· dc2Lh

2

0.

Taking expectation with respect to PX , we get

EPH

(
RL,P(fP,E)−R∗L,P

)
≤ c2Lh

2(1+α)

0 +
1

T
· dc2Lh

2

0,

which completes the proof.
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B.2.2. LOWER BOUND OF APPROXIMATION ERROR FOR
HTR

Proof [of Proposition 14] Recall that the regression model is
defined as Y = f(X)+ε. Considering the case whenX fol-
lows the uniform distribution, for any x = (x1, . . . , xd) ∈
X , we have

fP,H(x) =
1

PX(AH(x))

∫
AH(x)

f(x′) dx′

=
1

µ(AH(x))

∫
AH(x)

f(x′) dx′.

Then we get

(fP,H(x)− f(x))2

=

(
f(x)− 1

µ(AH(x))

∫
AH(x)

f(x′) dx′
)2

=
1

µ(AH(x))2

(∫
AH(x)

f(x′)− f(x) dx′
)2

.

Lemma 12 implies that for any x′ ∈ AH(x), there exists
a random vector u ∼ Unif[0, 1]d and a vector v ∈ [0, 1]d

such that

x′ = x+ S−1R>(−u+ v). (B.25)

Therefore, we have

dx′ = det

(
dx′

dv

)
dv

= det

(
d(x+ S−1R>(−u+ v))

dv

)
dv

= det(RS−1) dv

=

( d∏
i=1

hi

)
dv.

Moreover, (B.20) yields that there exists a constant cα ∈
[−cL, cL] such that

f(x′)− f(x) = ∇f(x)>S−1R>(−u+ v) + cαh
1+α

0 .

Taking expectation with regard to PH and PX , we get

EPX

(
fP,H(X)− f(X)

)2
≥ EPX

(
fP,H(X)− f∗L,P(X)

)2
1B+

R,
√
d·h0

(X)

=

∫
B+

R,
√
d·h0

(
fP,H(x)− f∗L,P(x)

)2
dPX

=

∫
B+

R,
√
d·h0

1

µ(AH(x))2

(∫
AH(x)

∇f(x)>S−1R>(−u+ v) + cαh
1+α

0 dy

)2

dPX

=

∫
B+

R,
√
d·h0

(
∏d
i=1 hi)

2

µ(AH(x))2

(∫
[0,1]d

(−u+ v)T dv

·RS−1∇f(x) + cαh
1+α

0

)2

dPX

=

∫
B+

R,
√
d·h0

((
1

2
− u
)T

RS−1∇f(x) + cαh
1+α

0

)2

dPX

=

∫
B+

R,
√
d·h0

( d∑
i=1

(
1

2
− ui

) d∑
j=1

Rijhj
∂f

∂xj

+ cαh
1+α

0

)2

dPX . (B.26)

Since the random variables (ui)
d
i=1 are i.i.d. as Unif[0, 1],

we have

EPH

(
1

2
− ui

)
= 0, i = 1, . . . , d, (B.27)

and

EPH

(
1

2
− ui

)2

=
1

12
, i = 1, . . . , d. (B.28)

Consequently, we have

EPHEPX

(
fP,H(X)− f(X)

)2
=

∫
B+

R,
√
d·h0

EPH

d∑
i=1

(
1

2
− ui

)2( d∑
j=1

Rijhj
∂f

∂xj

)2

dPX .

Moreover, the orthogonality (1) of the rotation matrix R
tells us that

d∑
i=1

RijRik =

{
1, if j = k,

0, if j 6= k
(B.29)

and consequently we have

d∑
i=1

∑
j 6=k

RijRikhjhk ·
∂f(x)

∂xj
· ∂f(x)

∂xk

=
∑
j 6=k

hjhk ·
∂f(x)

∂xj
· ∂f(x)

∂xk

d∑
i=1

RijRik = 0. (B.30)

For any n > N1 with N1 as in (A.15), we have

(R− 2
√
d · h0)d ≥ (R/2)d.

Consequently, (B.29) and (B.30) imply that∫
B+

R,
√
d·h0

EPH

d∑
i=1

(
1

2
− ui

)2( d∑
j=1

Rijhj
∂f

∂xj

)2

dPX



Boosted Histogram Transform for Regression (Supplementary Material)

=

∫
B+

R,
√
d·h0

d∑
i=1

1

12
EPR

d∑
j=1

R2
ijh

2
j

(
∂f

∂xj

)2

dPX

≥
∫
B+

R,
√
d·h0
∩Af

1

12
h20c

2
f dPX

≥ 1

12

(
R

2

)d
c20PX(Af )c2f · h

2

0. (B.31)

Thus, the assertion is proved.

B.2.3. LOWER BOUND OF SAMPLE ERROR FOR HTR

Proof [of Proposition 15] For any fixed j ∈ IH , we define
the random variable Zj by

Zj :=

n∑
i=1

1Aj (Xi).

Since the random variables {1Aj (Xi)}ni=1 are i.i.d. Bernoul-
li distributed with parameter P(X ∈ Aj), elementary proba-
bility theory implies that the random variableZj is Binomial
distributed with parameters n and P(X ∈ Aj). Therefore,
for any j ∈ IH , we have

E(Zj) = n · P(X ∈ Aj).

Moreover, the HTR regressor fD,H can be defined by

fD,H(x) =


∑n
i=1 Yi1Aj (Xi)∑n
i=1 1Aj (Xi)

· 1Aj (x) if Zj > 0,

0 if Zj = 0.

By the law of total probability, we get

EPX

(
fD,H(X)− fP,H(X)

)2
=
∑
j∈IH

EPX

((
fD,H(X)− fP,H(X)

)2∣∣X ∈ Aj)
· P(X ∈ Aj)

=
∑
j∈IH

EPX

((
fD,H(X)− fP,H(X)

)2∣∣X ∈ Aj , Zj > 0
)

· P(Zj > 0) · P(X ∈ Aj) (B.32)

+
∑
j∈IH

EPX

((
fD,H(X)− fP,H(X)

)2∣∣X ∈ Aj , Zj = 0
)

· P(Zj = 0) · P(X ∈ Aj). (B.33)

For the term (B.32), we have∑
j∈IH

EPX

(
(fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj > 0
)

· P(Zj > 0)P(X ∈ Aj)

=
∑
j∈IH

(∑n
i=1 Yi1Aj (Xi)∑n
i=1 1Aj (Xi)

− E(f∗L,P(X)|X ∈ Aj)
)2

· P(Zj > 0)P(X ∈ Aj)

=
∑
j∈IH

( n∑
i=1

1Aj (Xi)
(
Yi − E(f∗L,P(X)|X ∈ Aj)

))2

· P(X ∈ Aj)
(
∑n
i=1 1Aj (Xi))2

· P(Zj > 0),

which yields that for a fixed j ∈ IH , there holds

E
(∑
j∈IH

( n∑
i=1

1Aj (Xi)
(
Yi − E(f∗L,P(X)|X ∈ Aj)

))2

· P(X ∈ Aj)
(
∑n
i=1 1Aj (Xi))2

∣∣∣∣Xi ∈ Aj
)

=
∑
j∈IH

n∑
i=1

12
Aj (Xi)E

((
Y − fP,H(X)

)2∣∣X ∈ Aj)
· P(X ∈ Aj)

(
∑n
i=1 1Aj (Xi))2

=
∑
j∈IH

P(X ∈ Aj)∑n
i=1 1Aj (Xi)

· E
((
Y − fP,H(X))2

∣∣X ∈ Aj).
(B.34)

Obviously, for any fixed j ∈ IH , there holds

E(fP,H(X)|X ∈ Aj) = E(f∗L,P(X)|X ∈ Aj)

and consequently we obtain

E
(
(Y − fP,H(X))2

∣∣X ∈ Aj)
= E

(
(Y − f∗L,P(X))2

∣∣X ∈ Aj)
+ E

(
(f∗L,P(X)− fP,H(X))2

∣∣X ∈ Aj)
= σ2 + E

(
(f∗L,P(X)− fP,H(X))2

∣∣X ∈ Aj).
Taking expectation over both sides of (B.34) with respect to
Pn, we get

ED∼PnEPX

(
fD,H(X)− fP,H(X)

)2
= ED∼Pn

(
E
(
EPX

(
fD,H(X)− fP,H(X))2

∣∣Xi ∈ Aj
))

=
(
σ2 + E(f∗L,P(X)− fP,H(X))2

)
·
∑
j∈IH

(
P(X ∈ Aj)ED∼Pn

(( n∑
i=1

1Aj (Xi)

)−1∣∣∣∣Zj > 0

))
· P(Zj > 0)

=
(
σ2 + E(f∗L,P(X)− fP,H(X))2

)
·
∑
j∈IH

(
P(X ∈ Aj)ED∼Pn(Z−1j |Zj > 0)

)
P(Zj > 0)

= n−1
(
σ2 + E(f∗L,P(X)− fP,H(X))2

)
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·
∑
j∈IH

(
E(Zj) · E(Z−1j |Zj > 0)

)
P(Zj > 0).

Clearly, x−1 is convex for x > 0. Therefore, by Jensen’s
inequality, we get

E(Zj) · E(Z−1j |Z > 0)P(Zj > 0)

≥ E(Zj) · E(Zj |Zj > 0)−1P(Zj > 0)

= E(Z) · E(Z1{Z>0})
−1P(Z > 0)P(Z > 0)

= P(Z > 0)2 = (1− P(Z = 0))2

=
(
1− (1− P(X ∈ Aj))n

)2
≥ 1− 2e−nP(X∈Aj),

where the last inequality follows from (1 − x)n ≤ e−nx,
x ∈ (0, 1).

We now turn to estimate the term (B.33). By the definition
of fD,H , we have∑
j∈IH

EPX

((
fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj = 0
)

· P(Zj = 0) · P(X ∈ Aj)

=
∑
j∈IH

EPX

((
fP,H(X)

)2∣∣X ∈ Aj) · P(Zj = 0)

· P(X ∈ Aj)
≥ 0.

Let us denote

I(1)H := {j ∈ IH : Aj ∩BR = Aj}

and

I(2)H := IH \ I(1)H .

Then we obviously have P(X ∈ Aj) = µ(Aj) ≥ hd0 for all
j ∈ I(1)H . Combing the above results, we obtain

ED∼PnEPX

(
fD,H(X)− fP,H(X)

)2
=
∑
j∈IH

EPX

(
(fD,H(X)− fP,H(X))2|X ∈ Aj , Zj > 0

)
· P(Zj > 0) · P(X ∈ Aj)

+
∑
j∈IH

EPX

(
(fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj = 0
)

· P(Zj = 0) · P(X ∈ Aj)

≥
∑
j∈IH

EPX

(
(fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj > 0
)

· P(Zj > 0) · P(X ∈ Aj)

=
∑
j∈I(1)H

EPX

(
(fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj > 0
)

· P(Zj > 0) · P(X ∈ Aj)

+
∑
j∈I(2)H

EPX

(
(fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj > 0
)

· P(Zj > 0) · P(X ∈ Aj)

≥
∑
j∈I(1)H

EPX

(
(fD,H(X)− fP,H(X))2

∣∣X ∈ Aj , Zj > 0
)

· P(Zj > 0) · P(X ∈ Aj)

≥ 1

n

∑
j∈I(1)H

(
1− 2e−nP(X∈Aj)

)
·
(
E(f∗L,P(X)− fP,H(X))2 + σ2

)
≥ σ2

n

(
|I(1)H | −

∑
j∈I(1)H

2e−nP(X∈Aj)
)
.

Therefore, we have

ED∼PnEPX

(
fD,H(X)− fP,H(X))2

≥ σ2

n

(
|I(1)H | −

∑
j∈I(1)H

2e−nP(X∈Aj)
)

=
σ2

n

(
|I(1)H | − 2|I(1)H | exp

(
−nhd0

))
≥ σ2

n

(
2R−

√
d · h0

h0

)d(
1− 2

e

)
≥ 4Rdσ2(1− 2e−1)h

−d
0 n−1, (B.35)

where the last inequality follows from Assumption 1.

B.2.4. PROOF RELATED TO SECTION 3.2

Proof [of Theorem 2] Theorem 11 together with Proposition
13 implies

RLh0 ,P(fD,B)−R∗Lh0 ,P

. λ1/T + λ2h
−2d
0 + h

2(1+α)

0 + T−1h
2

0

+ (T/λ1)2δ
′
λ−12 n−2,

where δ′ := 1− δ and δ := (h0/cd)
d. Choosing

λ1,n := n−
2

2(1+α)(2−δ)+d ,

λ2,n := n−
2(α+d+1)

2(1+α)(2−δ)+d ,

h0,n := n−
1

2(1+α)(2−δ)+d ,

Tn := n
2α

2(1+α)(2−δ)+d ,

we obtain

RLh0 ,P(fD,B)−R∗Lh0 ,P . n−
2(1+α)

2(1+α)(2−δ)+d .
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with probability Pn not less than 1− 3e−τ in expectation
with respect to PH . This completes the proof.

Proof [of Theorem 3] Recall the error decomposition (A.11).
Using the estimates (B.31) and (B.35) and choosing h0,n :=

n−
1
d+2 , we get

Eνn
(
RL,P(fD,Hn)−R∗L,P

)
= EνnEPX

(
fD,Hn(X)− f∗L,P(X)

)2
≥ d

12

(
R

2

)d
c20PX(Af )c2f · h

2

0,n +
4R2σ2

n
(1− 2e−1)h

−d
0,n

& n−
2

2+d .

Consequently we have

Eνn(RL,P(fD)−R∗L,P) & n−
2

2+d ,

which proves the assertion.

C. Description of Real Datasets
ABA: The Abalone dataset originally comes from a biology
study (Tarbath, 2003) which focused on the relationship
between the age of an abalone and its other features. Now
accessible on UCI datasets, abalone dataset consists 4, 177
observations on abalone ages with 8 attributes, including
physical measurements on abalones and the environment.

BOD: The Body-fat dataset is available on Libstat of CMU,
containing 252 observations with 13 attributes of physical
measurement of human body, and each observation contains
two targeted variables, body density and the percentage of
body fat.

HOU: The Housing-Boston dataset can be acquired from
LibSVM datasets of NTU, which is comprised of 506 ob-
servations with 13 features. The dataset is used to predict
the price of an house in Boston.

MG: This dataset can be traced back to Flake & Lawrence
(2002). It consists of 1, 385 observations of dimension 6.

MPG: The Auto MPG dataset is a modified version of MPG
dataset in Libstat of CMU, containing 398 instances with 8
attributes. Compared with its original version, 8 instances
are deleted since their missing mpg target value.

PYR: The Pyrimidines dataset is a subset of Qualitative
Structure Activity Relationships dataset on UCI datasets.
This sub-dataset has 74 instances of dimension 27.

SPA: The Geographical Analysis Spatial dataset is accessi-
ble in Libstat of CMU, originally uploaded by Pace & Barry
(1997). It comprises 3, 107 observations of dimension 6.

TRI: The Triazines dataset is another subset of Qualitative
Structure Activity Relationships dataset on UCI datasets.
This part consists 186 instances of dimension 60.
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