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Abstract

In this paper, we propose a boosting algorithm
for regression problems called boosted histogram
transform for regression (BHTR) based on his-
togram transforms composed of random rotations,
stretchings, and translations. From the theoretical
perspective, we first prove fast convergence rates
for BHTR under the assumption that the target
function lies in the spaces C0,α. Moreover, if the
target function resides in the subspace C1,α, for
the first time we manage to explain the benefit-
s of the boosting procedure, by establishing the
upper bound of the convergence rate for the boost-
ed regressor, i.e. BHTR, and the lower bound for
base regressors, i.e. histogram transform regres-
sors (HTR). In the experiments, compared with
other state-of-the-art algorithms such as gradient
boosted regression tree (GBRT), Breiman’s forest,
and kernel-based methods, our BHTR algorithm
shows promising performance on both synthetic
and real datasets.

1. Introduction
Over the past two decades, boosting has become one of the
most successful algorithms in the machine learning commu-
nity (Bühlmann & Yu, 2003). When the idea of iterative
utilizations of weak learners from a certain function space
to generate a strong one, which is called boosting, first came
out in Schapire (1990); Freund (1995), it gains a lot of at-
tention, and a wealth of literature has applied it on a large
number of datasets.

During this period, many boosting algorithms with impres-
sive performance have been proposed. Perhaps the first
boosting algorithm goes back to the Adaboost for classifi-
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cation by Schapire & Freund (1995); Freund & Schapire
(1997). Another important boosting algorithm for regres-
sion called Gradient Boosted Regression Tree (GBRT) is
proposed by Friedman (2001). GBRT takes advantages
of tree-based learners to capture complex data structure.
More recently, inspired by the second order method origi-
nated from Friedman (2001), Chen & Guestrin (2016) came
up with the eXtreme Gradient Boosting (XGBoost), which
achieves excellent experimental performance against over-
fitting with the help of certain regularization terms.

Due to the great success of these boosting algorithms, a lot
of attempts have been made to establish their theoretical
foundations. First of all, theoretical margin guarantees of
Adaboost have been well studied by Freund & Schapire
(1997); Koltchinskii & Panchenko (2002). Furthermore,
based on the view of gradient descent optimization, vari-
ous versions of boosting algorithms have been shown to be
consistent in different settings, see Friedman et al. (2000);
Mannor et al. (2002); Bühlmann & Yu (2003); Lugosi &
Vayatis (2004); Zhang (2004). Moreover, Blanchard et al.
(2003) conducted a deeper investigation of the convergence
of regularized boosting classifiers through the restriction
on weights of the composite estimator. Finally, a different
method of achieving consistency and convergence rate re-
sults is through early stopping rule, which is designed to
prevent overfitting (Zhang & Yu, 2005), whereas Mease &
Wyner (2008) argued that in practice additional iterations
beyond the necessary number actually reduce the overfitting
that has already occurred.

Unfortunately, none of the above-mentioned boosting works
present a satisfactory explanation from the statistical opti-
mization view (Mease & Wyner, 2008; Wyner et al., 2017).
Nevertheless, some of the boosting variants with specif-
ic base learners are more easily accessible for statistical
analysis. For example, Bühlmann & Yu (2003) derived an
exponential bias-variance trade-off for linear regression to
illustrate the almost resistance to overfitting forL2-Boosting
in a fixed design setting. Moreover, Park et al. (2009) and
Lin et al. (2019) established the theoretical analysis of boost-
ing methods using Nadaraya-Watson kernel estimates and
kernel ridge regression estimates as base learners, respec-
tively. However, these methods are of little practical value
since they fail to capture the complex data dependencies in
applications. In addition, they did not show the benefits of
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the boosting procedure from the theoretical perspective.

Under such background, this paper aims to establish a new
boosting algorithm which not only has satisfactory perfor-
mance but also has solid theoretical foundations. To be
specific, motivated by the random rotation ensemble algo-
rithms (López-Rubio, 2013; Blaser & Fryzlewicz, 2016),
we propose boosted histogram transform for regression (B-
HTR) which takes full advantages of the high effectiveness
of the boosting procedure based on the histogram transform-
s: First of all, we generate a random histogram transform
consisting of random rotations, stretchings, and translations.
Then the input space is partitioned into non-overlapping
cells corresponding to the unit bin in the transformed space.
On those cells, we obtain base learners where piecewise
constant functions are applied. Then the iterative process
to fit residuals is started with the help of a sequence of ran-
dom histogram transforms by a natural adaption of gradient
descent boosting algorithm. Finally, by integrating the es-
timators generated by the above procedure, we obtain the
boosted histogram transform regressor. It is worth mention-
ing that BHTR enjoys two advantages which can be stated
as follows: First, the algorithm can be locally adaptive by
applying stretching matrices associated with the variance of
samples in each dimension. Second, our obtained regression
function can be globally smooth thanks to the diversity of
different base learners resulting from the random histogram
partitions. Although the benefits of ensembles for large
scale regression were explored in (Hang et al., 2019), for
the first time we attempt to reveal the benefits of boosting
procedure on single regressors equipped with histogram
transforms in this paper.

The contributions of this paper come from both theoretical
and experimental perspectives: (i) In Section 3, we derive
the theoretical results under the assumption that the target
function resides in C0,α and C1,α, respectively. By decom-
posing the error term into approximation error and sample
error, we establish the fast convergence rates of BHTR in
the space C0,α. Moreover, for the subspace C1,α consist-
ing of smoother functions, we are able to show that BHTR
can attain the convergence rate O(n−(2(1+α))/(4(1+α)+d))
whereas the lower bound of the convergence rates for HTR
is merely of the order O(n−2/(2+d)). As a result, when
d ≥ 2(1 + α)/α, BHTR actually outperforms HTR, which
confirms the benefits of the boosting procedure. (ii) In Sec-
tion 4, several numerical experiments are designed to study
the parameters including the bin width of the histogram
transform, learning rate, and the iteration times of boost-
ing, which coincide with the theoretical analysis of these
parameters in the established convergence rates. Moreover,
to validate the performance of BHTR, we conduct exper-
iments of several algorithms including GBRT, Breiman’s
forest, and kernel-based methods on both synthetic and real
datasets. Thanks to the randomness of the histogram trans-

forms and the boosting procedure, our BHTR demonstrates
both high accuracy and strong overfitting resistance.

2. Methodology
2.1. Notations

Regression is to predict the value of an unobserved output
variable Y based on the observed input variable X , based
on a dataset D := {(x1, y1), . . . , (xn, yn)} consisting of
i.i.d. observations drawn from an unknown probability mea-
sure P on X × Y . Throughout this paper, we assume that
X ⊂ Rd and Y ⊂ R are compact and non-empty.

For any fixed R > 0, we denote BR as the centered hyper-
cube of Rd with size 2R, that is, BR := [−R,R]d := {x =
(x1, . . . , xd) ∈ Rd : xi ∈ [−R,R], i = 1, . . . , d}, and for
any r ∈ (0, R), we write B+

R,r := [−R+ r,R− r]d. Recall
that for 1 ≤ p < ∞, the Lp-norm of x = (x1, . . . , xd)
is defined by ‖x‖p := (|x1|p + · · · + |xd|p)1/p, and the
L∞-norm is defined by ‖x‖∞ := maxi=1,...,d |xi|.

Throughout this paper, we use the notation an . bn and
an & bn to denote that there exist positive constant c and c′

such that an ≤ cbn and an ≥ c′bn, for all n ∈ N. Moreover,
for any x ∈ R, let bxc denote the largest integer less than or
equal to x. In the sequel, the following multi-index notations
are used frequently. For any vector x = (xi)

d
i=1 ∈ Rd,

we write bxc := (bxic)di=1, x−1 := (x−1i )di=1, log(x) :=
(log xi)

d
i=1, x = maxi=1,...,d xi, and x = mini=1,...,d xi.

2.2. Least Square Regression

It is legitimate to consider the least square loss L : X×Y →
[0,∞) defined by L(x, y, f(x)) := (y − f(x))2 for our tar-
get of regression. Then, for a measurable decision func-
tion f : X → Y , the risk is defined by RL,P(f) :=∫
X×Y L(x, y, f(x)) dP(x, y) and the empirical risk is de-

fined byRL,D(f) := 1
n

∑n
i=1 L(xi, yi, f(xi)). The Bayes

risk, which is the smallest possible risk with respect to
P and L, is given by R∗L,P := inf{RL,P(f)|f : X →
Y measurable}.

In what follows, it is sufficient to consider predictors with
values in [−M,M ]. To this end, we introduce the con-
cept of clipping for the decision function, see also Defini-
tion 2.22 in Steinwart & Christmann (2008). Let t̃ be the
clipped value of t ∈ R at ±M defined by −M if t < −M ,
t if t ∈ [−M,M ], and M if t > M . Then, a loss is
called clippable at M > 0 if, for all (y, t) ∈ Y × R, there
holds L(x, y, t̃) ≤ L(x, y, t). According to Example 2.26
in Steinwart & Christmann (2008), the least square loss
L is clippable at M with the risk reduced after clipping,
i.e. RL,P(f̃) ≤ RL,P(f). Therefore, in the following, we
only consider the clipped version f̃D of the decision function
as well as the riskRL,P(f̃D).
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2.3. Histogram transform for Regression

To give a clear description of one possible construction
procedure of histogram transforms, we introduce a random
vector (R,S, b) where each element represents the rotation
matrix, stretching matrix and translation vector, respectively.
To be specific,

R denotes the rotation matrix which is a real-valued d×d
orthogonal square matrix with unit determinant, that is

R> = R−1 and det(R) = 1. (1)

S stands for the stretching matrix which is a positive
real-valued d× d diagonal scaling matrix with diago-
nal elements (si)

d
i=1 that are certain random variables.

Obviously, there holds

det(S) =

d∏
i=1

si. (2)

Moreover, we denote s = (si)
d
i=1, and the bin width

vector defined on the input space is given by

h = s−1. (3)

b ∈ [0, 1]d is a d dimensional vector named translation
vector.

Figure 1. Two-dimensional examples of histogram transforms. The
left subfigure is the original data and the other two subfigures are
possible histogram transforms of the original sample space, with
different rotating orientations and scales of stretching.

Based on the above notation, we define the histogram trans-
form H : X → X by

H(x) := R · S · x+ b. (4)

It is important to note that there is no point to consider the
bin width h0 6= 1 in the transformed space since the same
effect can be achieved by scaling the transformation matrix
H ′. Therefore, let bH(x)c be the transformed bin indices,
then the transformed bin is given by

A′H(x) := {H(x′) | bH(x′)c = bH(x)c}. (5)

The corresponding histogram bin containing x ∈ X in the
input space is

AH(x) := {x′ | H(x′) ∈ A′H(x)} (6)

and we further denote all the bins induced by H as {A′j} =
{AH(x) : x ∈ X}with the repetitive bin counted only once,
and IH as the index set for H such that for j ∈ IH , we
have A′j ∩BR 6= ∅. As a result, the set

πH := {Aj}j∈IH := {A′j ∩BR}j∈IH
forms a partition of partition of BR. For the sake of conve-
nience, we substitute A0 for BcR and then

π′H := {Aj}j∈πH∪{0}

forms a partition of Rd.

Here we describe a practical method for the construction
of histogram transforms we are confined to in this study.
Starting with a d × d square matrix M , consisting of d2

independent univariate standard normal random variates,
a Householder QR decomposition is applied to obtain a
factorization of the form M = R · W , with orthogonal
matrix R and upper triangular matrix W with positive di-
agonal elements. The resulting matrix R is orthogonal by
construction and can be shown to be uniformly distributed.
Unfortunately, if R does not feature a positive determinant
then it is not a proper rotation matrix according to definition
(1). In this case, we can change the sign of the first column
of R to construct a new rotation matrix R+ that satisfies the
condition (1).

We build a diagonal scaling matrix with the signs of the
diagonal of S where the elements sk are drawn from the
well known Jeffreys prior, that is, log(si) follows the u-
niform distribution over certain interval of real number-
s [log(s0), log(s0)] for fixed constants s0 and s0 with
0 < s0 < s0 < ∞. For simplicity and uniformity of
notations, in the sequel, we denote h0 = s−10 and h0 = s−10 ,
and then we say hi ∈ [h0, h0] = [s−10 , s−10 ], i = 1, . . . , d.
Moreover, the translation vector b is drawn from the uniform
distribution over the hypercube [0, 1]d.

Given a histogram transform H , the set πH = {Aj}j∈IH
forms a partition of BR. We consider the following function
set FH defined by

FH :=

{∑
j∈IH

cj1Aj : cj ∈ [−M,M ]

}
. (7)

In order to constrain the complexity of FH , we penalize on
the bin width h := (hi)

d
i=1 of the partition πH . Then the

histogram transform regressor (HTR) can be produced by
the regularized empirical risk minimization (RERM) over
FH , i.e.

(fD, h
∗) = arg min

f∈FH , h∈Rd
Ω(h) +RL,D(f), (8)
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where Ω(h) := λh−2d0 . It is worth pointing out that we
adopt the isotropic penalty for each dimension rather than
each element h1, . . . , hd for simplicity of computation.

2.4. Boosted histogram transform with L2 penalty

Boosting is the task of converting inaccurate weak learners
into a single accurate predictor. To be specific, we define a
restricted family of functions F be a set of base learners and
a general boosting algorithm is combining a sequence of
functions {ft}Tt=1 from F to minimize a certain empirical
loss. Then the final predictor can be represented as

F =

T∑
t=1

wtft,

where wt ≥ 0, t = 1, . . . , T , are weights and ft ∈ F ,
t = 1, . . . , T . From a functional gradient descent viewpoint
in statistics (Friedman, 2001), boosting is reformulated as
a stage-wise optimization problem with different loss func-
tions. In this scenario, gradient boosting requires computing
the negative functional gradient as the response

Ui = −∂L(yi, f(xi))

∂f(xi)

∣∣∣∣
f(xi)=f̂(xi)

and select a particular model from the allowable class of
functions at each boosting iteration to update the predictor.

In this work, we mainly focus on the boosting algorithm
equipped with histogram transform regressors as base learn-
ers since they are weak predictors and enjoy computational
efficiency. Before we proceed, we need to introduce the
function space that we are most interested in to establish our
learning theory. Assume that {Ht}Tt=1 is an i.i.d. sequence
of histogram transforms drawn from some probability mea-
sure PH and Ft := FHt , t = 1, . . . , T , are defined as in
(7). Then we define the function space E by

E :=

{
f : BR → R

∣∣∣∣ f =

T∑
t=1

wtft, ft ∈ Ft
}
. (9)

Moreover, for f ∈ E, we define

‖f‖E := inf

{ T∑
t=1

|wt|2 with f =

T∑
i=1

wtft

}
.

Then for any f ∈ E, by the Cauchy-Schwarz inequality, we
immediately get

‖f‖∞ ≤M
T∑
t=1

|wt| ≤M(T‖f‖E)1/2.

In fact, (E, ‖ · ‖E) is a function space that consists of mea-
surable and bounded functions.

As is mentioned above, boosting methods may be viewed
as iterative methods for optimizing a convex empirical cost
function. To simplify the theoretical analysis, following
the approach of Blanchard et al. (2003), we ignore the dy-
namics of the optimization procedure and simply consider
minimizers of an empirical cost function to establish the
oracle inequalities, which leads to the following definition.

Definition 1 Let E be the function space (9) and L be the
least square loss. Given λ1 > 0, λ2 > 0, we call a learning
method that assigns to every D ∈ (X × Y)n a function
fD,B : X → R such that

(fD,B , h
∗) = arg min

f∈E, h∈Rd
Ωλ(f) +RL,D(f) (10)

a boosted histogram transform for regression (BHTR) algo-
rithm with respect to E, where Ωλ(f) is defined by

Ωλ(f) := λ1Ω1(f) + λ2Ω2(f) := λ1‖f‖E + λ2h
−2d
0 .

The regularization term consists of two components. The
first term is motivated by the fact the early boosting methods
such as Adaboost may overfit in the presence of label noise.
It helps control the degree of overfitting by the L2-norm of
the weights of the composite estimators and helps achieve
the consistency and convergence results. The second term
is added to control the bin width of the histogram transform,
which has been discussed in subsection 2.3. In fact, it is
equivalent to adding the Lp-norm of the base learners ft.
since piecewise constant functions are applied on the cells
with volume no more than h

d

0.

To conduct the theoretical analysis, we also need the infinite
sample version of Definition 1. To this end, we fix a distri-
bution P on X ×Y and let the function space E be as in (9).
Then every fP,B ∈ E satisfying

Ωλ(fP,B) +RL,P(fP,B) = inf
f∈E

Ωλ(f) +RL,P(f)

is called an infinite sample version of BHTR with respect to
E and L. Moreover, the approximation error function A(λ)
is defined by

A(λ) = inf
f∈E

Ωλ(f) +RL,P(f)−R∗L,P. (11)

With all these preparations, we now present a general form
of algorithm for BHTR in Algorithm 1. Indeed, the random-
ness of histogram transform provides an effective procedure
for carrying out boosting. With the help of HTR, we repeat
the least squares fitting of residuals. Moreover, we introduce
the learning rate ρ to dampen the move on the gradient de-
scent update, which is related to the regularization through
shrinkage.
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Algorithm 1 Boosted Histogram Transform for Regression

Input: Training data D := {(x1, y1), . . . , (xn, yn)};
Bin width parameters h0, h0;
Learning rate ρ > 0;

Initialization: Ui = yi, i = 1, . . . , n. F̂0(x) = 0.
for t = 1 to T do

Generate random affine transform matrix Ht
n = Rn ·

Stn;
Apply data independent splitting to the transformed
sample space;
Apply constant functions to each cell, that is, fit residu-
als with function ft such that

ft = arg min
f∈Ft

1

n

n∑
i=1

L(Ui, f(xi)),

where Ft is defined as in (7) for Ht
n.

Update: F̂t(x) = F̂t−1(x) + ρft(x).
Compute residuals Ui = Ui − F̂t(xi), i = 1, . . . , n.

end for
Output: Boosted histogram transform estimator for re-
gression is fD(x) = F̂T (x).

In fact, the Gradient Boosting Algorithm 1 converges to the
empirical risk minimizer of the mean squared error with
respect to the function space E defined by (9)

1

n

n∑
i=1

(yi − F (xi))
2, (12)

which is illustrated as below:

(i) In the least-square regression setting, the goal of a gradi-
ent boosting algorithm with T stages is to fit a function F
of the form F (x) =

∑T
t=1 ft(x) to minimize (12).

(ii) At stage t(1 ≤ t ≤ T ), our algorithm should ad-
d some new estimator to improve some imperfect model
Ft−1 to correct the errors of its predecessor. For regres-
sion problems, we observe that residuals are the negative
gradients (with respect to F (x)) of the squared error loss
function (y − F (x))2/2. Then gradient boosting will fit ft
from the hypothesis space defined as in (7) to the residuals
Ui = yi − Ft−1(xi).

(iii) In other words, Algorithm 1 does so by starting with
a model F0(x) = 0, and incrementally expands it in a
greedy fashion. The main idea is to apply a (functional
gradient) descent step to this minimization problem to solve
computationally infeasible optimization problem in general.

(iv) Finally, the regularization of gradient boosting method
is realized by shrinkage which consists in modifying the
update rule with learning rate as shown in Algorithm 1 to
improve the generalization ability of the model.

In summary, in accordance with the empirical risk mini-
mization principle, gradient boosting algorithm tries to find
an approximation F (x) that minimizes the average value
of the loss function on the training set, i.e., minimizes the
empirical risk with respect to the space E defined by (9).

3. Theoretical Results
In this paper, the theoretical analysis is built on Hölder space
Ck,α consisting of (k, α)-Hölder continuous functions of
different order of smoothness.

Definition 2 Let k ∈ N, α ∈ (0, 1], andR > 0. We say that
a function f : BR → R is (k, α)-Hölder continuous, if there
exists a finite constant cL > 0 such that ‖∇`f‖ ≤ cL for all
` ∈ {1, . . . , k} and ‖∇kf(x)−∇kf(x′)‖ ≤ cL‖x− x′‖α
for all x, x′ ∈ BR. The set of such functions is denoted by
Ck,α(BR).

From Definition 2 we see that the functions contained in the
space Ck,α with larger k enjoy high level of smoothness.
In particular, for the special case k = 0, the corresponding
function space C0,α(BR) coincides with the commonly
used α-Höder continuous function space Cα(BR).

Throughout this paper, we make the following assumptions
on the bin width h.

Assumption 1 Let the bin width h ∈ [h0, h0] be defined as
in (3), assume that there exists some constant c0 ∈ (0, 1)
such that c0h0 ≤ h0 ≤ c−10 h0. Moreover, if the bin width h
depends on the sample size n, that is, hn ∈ [h0,n, h0,n],
assume that there exist constants c0 ∈ (0, 1) such that
c0h0,n ≤ h0,n ≤ c−10 h0,n for all n.

Assumption 1 requires that the upper and lower bounds of
the bin width h are assumed to be of the same order. In
other words, the extent of stretching in each dimension can
not vary too much.

Finally, to leave out the boundary effect on the convergence
rate, we denoteLh0

(x, y, t) as the least squares loss function
restricted to B+

R,
√
d·h0

, that is,

Lh0
(x, y, t) := 1B+

R,
√
d·h0

(x)L(x, y, t), (13)

where L(x, y, t) is the least squares loss.

3.1. Convergence Rates for BHTR in C0,α

Theorem 1 Let the histogram transform Hn be defined as
in (4) with bin width hn satisfying Assumption 1, and fD,B
be defined in (10). Furthermore, suppose that the Bayes de-
cision function f∗L,P ∈ C0,α. Moreover, let {λ1,n}, {λ2,n}
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and {h0,n} be chosen as

λ1,n := n−
2α

(4−2δ)α+d , λ2,n := n−
2(α+d)

(4−2δ)α+d ,

h0,n := n−
1

(4−2δ)α+d ,

where δ := (h0,n/cd)
d, then for all τ > 0, we have

RL,P(fD,B)−R∗L,P . n−
2α

(4−2δ)α+d ,

holds with probability Pn ⊗ PH at least 1− 3e−τ .

3.2. Convergence Rates for BHTR in C1,α

Theorem 2 Let the histogram transform Hn be defined as
in (4) with bin width hn satisfying Assumption 1 and Tn be
the number of iterations. Furthermore, let fD,B be defined
in (10) and suppose that the Bayes decision function f∗L,P ∈
C1,α and PX is the uniform distribution. Moreover, let
Lh0

(x, y, t) be the restricted least squares defined as in (13)
and the sequences {Tn}, {λ1,n}, {λ2,n}, and {h0,n} be
chosen as

λ1,n := n−
2

2(1+α)(2−δ)+d , λ2,n := n−
2(α+d+1)

2(1+α)(2−δ)+d ,

h0,n := n−
1

2(1+α)(2−δ)+d , Tn := n
2α

2(1+α)(2−δ)+d ,

where δ := (h0,n/cd)
d with cd depending only on d. Then,

for all τ > 0, the boosted histogram transform regressor
satisfies

RLh0 ,P(fD,B)−R∗Lh0 ,P . n−
2(1+α)

2(1+α)(2−δ)+d (14)

with probability Pn not less than 1− 3e−τ in expectation
with respect to PH .

Note that as n→∞, we have h0,n → 0, and thus the upper
bound for our BHTR attains asymptotically convergence
rate which is slightly faster than

n−
2(1+α)

4(1+α)+d . (15)

Moreover, the excess risk decreases as Tn increases at the
beginning, and when Tn achieves a certain level, the algo-
rithm achieves the optimal learning rate.

Compared to kernel regression or orthonormal basis regres-
sion, the convergence rates for BHTR are suboptimal. We
conjecture that this is mainly due to the fact that the entropy
number estimate (B.12) in the supplementary material may
not be tight enough. As a result, we are able to show that
only when d > 2(1 +α)/α, BHTR outperforms single base
estimators.

Theorem 3 Let the histogram transform Hn be defined as
in (4) with bin width hn satisfying Assumption 1 with h0,n ≤

1. Furthermore, let the histogram transform regressor fD
be defined as in (8) and the regression model be defined
by Y := f(X) + ε, where PX is the uniform distribution
over BR and ε is independent of X such that E(ε|X) = 0
and Var(ε|X) = σ2 < ∞. Moreover, assume that f ∈
C1,α and there exists a constant cf ∈ (0,∞) such that
‖∇f‖∞ ≥ cf . Then for all n > N1, there holds

RL,P(fD)−R∗L,P & n−2/(2+d) (16)

in expectation with respect to Pn ⊗ PH , where the constant
N1 is specified in the proof.

Note that for any α ∈ (0, 1], if d ≥ 2(1 + α)/α, then the
upper bound of the convergence rate (14) for BHTR will be
smaller than the lower bound (16) for HTR, which explains
the benefits of the boosting procedure.

The theoretical analysis above implies that under restriction
on the hypothesis space, or equivalently, with the additional
regularization terms in Definition 1, the empirical functional
minimization is equivalent to minimizing the generalization
error, similar discussion can be found in (Lugosi & Vayatis,
2004). As a result, according to Theorems 1 and 2, if we
feed Algorithm 1 with appropriate h0, h0, T , and ρ, we
then obtain a linear combination of base learners which
minimizes the empirical risk with respect to the space (9).

We mention that all the proofs in this paper can be found in
supplementary material.

4. Numerical Experiments
4.1. Experimental Setup

We generate the random rotation matrix R in the manner
described in Section 2.3 and apply the well-known Jef-
freys prior for scale parameters (Jeffreys, 1946). To be
specific, we draw log(si) from the uniform distribution over
intervals [log(s0), log(s0)]. Recall that h = s−1 stands
for the bin width vector measured in the input space, we
choose s0 and s0, recommended by (López-Rubio, 2013), as
ĥ = 3.5σn−1/(2+d), where σ :=

√
trace(V )/d is the stan-

dard deviation defined by V := 1
n−1

∑n
i=1(xi−x)(xi−x)>

and x := 1
n

∑n
i=1 xi. Then we can transform the bin

width vector to obtain this scale parameter ŝ = (ĥ)−1 =

(3.5σ)−1n
1

2+d , which can be further refined as

log(s0) := smin + log(ŝ), log(s0) := smax + log(ŝ),

where smin < smax are tunable parameters. Finally, to mea-
sure the performance for regression estimators, we adop-
t the mean squared error (MSE) defined by MSE(f̂) =
1
n

∑n
j=1(yj − f̂(xj))

2 over test set {(xj , yj)}nj=1.
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4.2. Parameter Analysis for Histogram Transforms

In this subsection, we mainly conduct experiments dealing
with the parameters of histogram transform for our BHTR
algorithm, namely the lower and upper scale parameters
smin, smax ∈ R. To this end, we consider the following
model:

Y = sin(16X) + ε, (17)

where X ∼ Unif[0, 1] and ε ∼ N (0, 1). Recall that the
scale parameters smin and smax of the stretching matrix S
control the size of histogram bins. For the regions with
complex data structure, smaller bins are required while
those with simple structure calls for larger bins. A nar-
rower range of bin sizes are accommodated to cope with the
varying scales while to preserve a homogeneous structure.
We perform experiments with n = 500 training data and
then predict 2000 test observations with four pairs of scale
parameter (smin, smax) ∈ {(−2, 0), (−1, 1), (0, 2), (1, 3)}.
In addition, we select ρ = 0.01 and T = 500. The results
are shown in Figure 2.

(a) (smin, smax) = (−2, 0). (b) (smin, smax) = (−1, 1).

(c) (smin, smax) = (0, 2). (d) (smin, smax) = (1, 3).

Figure 2. Red points represent the training sample and green ones
denote the predictive values on the test sample.

As we can see, lower values of these parameters lead to a
coarser approximation for the underlying Bayes decision
function, which results in the loss of precision. From Figure
2(a) we can see that the regressor is underfitting when the
bin width is too large. On the contrary, with the bin width
being too small, there are few samples lying in most of
the histogram bins and thus resulting in overfitting, as is
shown in Figure 2(d). Therefore, it is of great importance
to properly choose the values of smin and smax, where the
grid search procedure can be adopted.

4.3. Learning Rate

From the theory of boosting, it is well-known that weak
learners should be underfitting, then the bias and variance
will be decreased and increased accordingly during the iter-
ations. For an estimator with high-level underfitting, more
boosting iterations are needed in order to achieve a com-
petitive performance compared with other efficient learning
algorithms. Therefore, if HTRs are used as base learners,
then we should select a relatively small learning rate ρ in
Algorithm 1. In this subsection, we conduct simulations to
verify this argument and show the relationship between the
generalization ability and the learning rate in Algorithm 1.

In the simulation, we choose the pair of scale parameter
(smin, smax) to be (−1, 1) and the learning rate ρ over the
set {0.01 + 0.03k, k = 0, . . . , 33}. Then we perform exper-
iments with 350 training data and 150 validation data for the
model (17) with ε independently drawn from the Gaussian
distribution N (0, 1). For each learning rate parameter, we
run BHTR with training set until T reaches 500. We repeat
this procedure for 30 times, denote the corresponding es-
timator as {F̂ iT (x)}30i=1, and compute the average of these
estimators, that is, F̂T (x) = 1

30

∑30
i=1 F̂

i
T (x). For each ρ,

we estimate the error over the validation set {(xj , yj)}150j=1

by 1
150

∑150
j=1(yj − F̂T (xj))

2. Then we record the optimal
T with respect to the validation data and the corresponding
test error on 2000 data. Figure 3 reports test errors and
iteration numbers versus learning rate parameters.

(a) (b)

Figure 3. Figure (a) shows test errors of BHTR versus learning rate
parameters, while Figure (b) shows the optimal iteration numbers.

From Figure 3 we see that the test error grows as the learning
rate ρ increases from 0.01 to 1. Furthermore, when ρ is
larger than some value, e.g. 0.2 in this simulation, then
BHTR needs nearly the same number of steps to achieve
the optimal test error. Moreover, Figure 3 shows that the
more underfitted HTR is, the more boosting iterations are
required. Therefore, it is reasonable to use HTR to build
weak learners for boosting. And in this case, a smaller
learning rate ρ is necessary to achieve better experimental
performance.
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4.4. Behavior of BHTR

In this subsection, we give a more comprehensive under-
standing of the behavior of BHTR. Since BHTR focuses on
fixed learning rate parameter and varying iteration times,
we perform the following experiment to study how the test
error would behave as a function of iteration times.

In this simulation, The learning rate ρ is picked from the
set {0.002, 0.01, 0.25, 0.5} and other experimental setups
are the same as those in Section 4.3. In Figure 4, test error
versus iteration times for each learning rate is plotted. It
can be apparently seen that the test error typically decreases
until iteration times increases to certain value, and then it
increases slowly, which reflects the trade-off between the
approximation error and the sample error of the theoretical
results in Section 3.

Note that a too small ρ are likely to make the test error
converge too slowly and bring about the additional bur-
den of computation. Therefore, it is necessary to select an
appropriate learning rate. Furthermore, Figure 4 shows a
stable relation between the generalization performance and
iteration numbers for some small ρ, e.g. ρ < 0.05 in this
experiment. This tells us that overfitting does not seem to
occur even though we run the boosting with plentiful of
iterations. In addition, it is easily seen that the number T
of iterations at which the test error achieves the minimal
value would increase as ρ increases. Last but not least, lower
test error implies better performance of BHTR than HTR in
terms of accuracy for a wide range of ρ.

Figure 4. Test errors versus the number of iterations for different
learning rates. The horizontal line indicates the test error for HTR.

4.5. Synthetic and Real Data Analysis

In this section, our experiments are carried out on three
benchmark synthetic datasets and eight real datasets.

For our BHTR, We first scale each feature individually to
the range [0, 1] on the training set, and then impose a gird
of size 4 on learning rate ρ ∈ {0.2, 0.1, 0.05, 0.01}, a grid
of size 3 on smin ∈ {−4,−3,−2} and a grid of size 2 on
smax − smin ∈ {1, 2}. For each element from the Cartesian
product of these grids, we run BHTR with iteration times
T = 3000. The optimal iteration times t ≤ T and optimal

parameters ρ, smin and smax are chosen by 5-fold cross-
validation. The comparisons are conducted among

• Gradient Boosting Regression Tree (GBRT): proposed
by Friedman (2001). We utilize the parkage sklearn
in python with iteration times n_estimators =
3000 and other parameters being default.

• Random Forest (RF): proposed by Breiman (2001).
The sklearn package in python is applied with
n_estimators = 100 and other parameters being
default.

• Boosted Kernel Ridge Regression (BKRR): proposed
by Lin et al. (2019). They combine L2-Boosting with
the kernel ridge regression. The regularization pa-
rameter λ is chosen from grid np.logspace(0,
4, 5) and the bandwidth σ is chosen from grid
np.logspace(-1, 1, 3). The iteration times
are set to be 3000 and the hyper-parameters is chosen
by 5-fold cross-validation.

Comparisons on Synthetic Datasets

We choose Friedman’s benchmark functions (Friedman,
1991), which are widely and frequently employed models
in regression problems (Smola & Schölkopf, 2004; Brown
et al., 2005; Feng et al., 2015), listed as follows:

1.f1(x) = sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5;

2.f2(x) =
√

(x1)2 + (x2x3 − 1/(x2x4))2;

3.f3(x) = arctan(1/x1(x2x3 − 1/(x2x4))).

For f1 we have x = (x1, . . . , x10), where xj ∼ Unif[0, 1],
j = 1, . . . , 5, and xj , j = 6, . . . , 10, are noise variables.
For f2 and f3, we have x = (x1, . . . , x4), where x1 ∼
Unif[0, 100], x2 ∼ Unif[40π, 560π], x3 ∼ Unif[0, 1], and
x4 ∼ Unif[1, 11]. Moreover, we assume that the noise
added to the function f is drawn from the standard normal
distribution. For each function, 1000 observations are gen-
erated for training and another 1000 are for testing. The
cross-validation procedure is adopted for hyper-parameter
selection.

Table 1. Average MSE over synthetic datasets

Dataset BHTR GBRT RF BKRR
Fried 1 3.55 2.01 3.87 9.41
Fried 2 258.81 313.76 310.08 10448
Fried 3 1.09 1.43 1.10 1.03

* The best results are marked in bold, and the second best
are marked in italic.

Table 1 shows that on the second dataset Fried 2, BHTR
performs the best while on the remaining two datasets, it
ranks the second.
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Comparisons on Real Datasets

Eight real datasets are listed in Table 2. Further information
can be found in the supplementary material.

Table 2. Description of real datasets
DATASET N d DATASET N d

ABA 4177 8 MPG 392 7
BOD 252 14 PYR 74 27
HOU 506 13 SPA 3107 6
MG 1385 6 TRI 186 60

Table 3. Average MSE over real datasets

Dataset BHTR GBRT RF BKRR
ABA 4.60 5.73 4.83 6.43
BOD 1.65e− 05 9.51e-06 9.53e-06 3.56e− 04
HOU 13.03 10.03 12.33 46.39
MG 0.016 0.017 0.015 0.021
MPG 6.98 8.47 7.67 11.54
PYR 0.0063 0.0067 0.0065 0.010
SPA 0.0123 0.0120 0.0137 0.061
TRI 0.021 0.019 0.016 0.023

* The best results are marked in bold, and the second best
are marked in italic.

Table 3 shows that on three datasets ABA, MPG, and PYR,
our BHTR has the best accuracy and on another two datasets
MG and SPA, BHTR ranks the second.

From the results in Tables 1 and 3 we come to the conclusion
that our method shows promising performance compared to
the efficient algorithms GBRT and RF.

Note that BKRR using kernel functions always works worse
than other methods. Experimental results in the simulation
reveal that when the feature variables are continuous and
the regression function is smoothness, the BKRR algorithm
may have better performance. However, in real data appli-
cations, the feature variables are usually categorical and the
smoothness of the regression function cannot be guaranteed.

We mention that our BHTR requires less running time than
BKRR, since we only need to carry out the QR decompo-
sition of the matrix instead of computing the inverse of the
kernel matrix. We need a bit more time than other tree-based
methods.

Significance Test

We apply the Wilcoxon signed-rank test (Wilcoxon, 1946)
to find out whether the performance of our method and
competing methods are significantly different. The results
are shown in Table 4.

From the results in Tables 1, 3 and 4, we come to the con-
clusion that our method shows promising performance com-
pared to the efficient algorithms GBRT and RF. At a signif-

Table 4. P-values under Wilcoxon Signed-rank Test

Dataset GBRT RF BKRR
Freid 1 0.000089 0.000120 0.000089
Freid 2 0.000254 0.001162 0.000089
Freid 3 0.000089 0.765198 0.000254
ABA 0.000089 0.000120 0.000089
BOD 0.000120 0.000089 0.000089
HOU 0.000892 0.262722 0.000089
MG 0.000681 0.575486 0.000089
MPG 0.000163 0.001325 0.000089
PYR 0.681322 0.550292 0.000449
SPA 0.370261 0.000089 0.000089
TRI 0.022769 0.000219 0.000892

icance level of 0.05, our method is significantly different
from other methods in many cases. To be specific, in three
of four datasets that our method performs the best, our
method shows pronounced difference. Moreover, for the
datasets that BHTR ranks the second, most of the results are
significant.

We mention that to improve the performance, (Friedman,
2002) proposed the stochastic gradient boosting algorith-
m using subsampling to reduce the variance of the base
learners. Therefore, in the future work, we believe that to
further improve the performance of BHTR, the combination
of BHTR with subsampling should be explored.

5. Conclusion
In the present paper, we propose the boosting algorith-
m called boosted histogram transform regression (BHTR)
based on histogram transforms consisting of random rota-
tions, stretchings, and translations. By conducting a theoret-
ical analysis within the framework of regularized empirical
risk minimization in learning theory, we are able to prove
the fast convergence rates of BHTR when the target func-
tion f∗L,P lies in the Hölder space C0,α. Moreover, when
f∗L,P ∈ C1,α, it is the first time that we successfully derive
the upper bound of convergence rates for the boosted pre-
dictor BHTR and the lower bound for the base predictor
HTR, which further demonstrate the benefits of the boosting
procedure. In the experiments, numerical simulations and
real data comparisons with other state-of-the-art methods
including GBRT, random forest, and kernel-based boosting
algorithms are provided to support the theoretical results
and justify the performance of BHTR.
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