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A. Technical Proofs
A.1. Proof of Lemma 1

(A.) First, we show that β̂ converges in probability to β0
as n → ∞, by checking three conditions of the Argmax
Theorem:

(a1.) By the regularity condition (C4) that the true value
function V (β) has twice continuously differentiable at an
inner point of maximum β0.

(a2.) By the consistency conclusion of Zhang et al. (2012)
that V̂ (β) = V (β) + op(1), i.e., for ∀β

V̂ (β)
p−→ V (β), as n→∞.

(a3.) Since β̂ = arg max
β

V̂ (β), we have the estimated ODR

as d(X, β̂) = I(φX(X)>β̂ > 0) and the corresponding
value function V̂ (β̂) such that

V̂ (β̂) ≥ supβ∈BV̂ (β).

Thus, we have β̂
p−→ β0 as n→∞.

(B.) Next, we show that the convergence rate of β̂ is n1/3,
i.e. n1/3||β̂ − β0||2 = Op(1), where || · ||2 is L2 norm,
via checking three conditions of the Theorem 14.4: Rate
of convergence in (Kosorok, 2008). Here, we first proof
the result for the inverse probability weighted estimator,
which can be trivially extended to the augmented inverse
probability weighted estimator.

(b1.) For every β in a neighborhood of β0, i.e. ||β−β0||2 <
δ, by Assumption (10), we take the second order Taylor
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expansion of V (β) at β = β0,

V (β)− V (β0) =V ′(β0)||β − β0||2

+
1

2
V ′′(β0)||β − β0||22 + o{||β − β0||22}

(by V ′(β0) = 0) =
1

2
V ′′(β0)||β − β0||22 + o{||β − β0||22}.

Since V ′′(β0) < 0, there exist c1 = − 1
2V
′′(β0) > 0 such

that V (β)− V (β0) ≤ c1||β − β0||22 holds.

(b2.) First, define

fi(β) =
I{Ai = d(Xi, β)}

πAi + (1− π)(1−Ai)
Yi.

With the fact that

I{Ai = d(Xi, β)} − I{Ai = d(Xi, β0)}
=AiI(φX(Xi)

>β > 0) + (1−Ai){1− I(φX(Xi)
>β > 0)}

− [AiI(φX(Xi)
>β0 > 0) + (1−Ai){1− I(φX(Xi)

>β0 > 0)}]
=(2Ai − 1){I(φX(Xi)

>β > 0)− I(φX(Xi)
>β0 > 0)},

(1)

we have,

V̂ (β)− V̂ (β0) =
1

n

n∑
i=1

{fi(β)− fi(β0)}

=
1

n

n∑
i=1

Yi{I(Ai = d(Xi;β))− I(Ai = d(Xi;β0))}
πAi + (1− π)(1−Ai)

=
1

n

n∑
i=1

Yi(2Ai − 1){I(φX(Xi)
>β > 0)− I(φX(Xi)

>β0 > 0)}
πAi + (1− π)(1−Ai)}

.

(2)

Then, we define a class of function

F1
β(x, a, y) =

{
y(2a−1)

aπ+(1−a){1−π}{(I(φX(x)>β > 0) −

I(φX(x)>β0 > 0)} : ||β − β0||2 < δ

}
.

LetM1 = sup
∣∣ y(2a−1)
aπ+(1−a){1−π}

∣∣, by the regularity condition
(C1) that Y is bounded, we have M1 <∞. Then, we define
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the envelope of F1
β as F1 = M1 · I(1− δ ≤ φX(x)>β0 ≤

1 + δ); by by Assumption (6) that the density function of
covariate fX(x) is bounded away from 0 and∞, thus,

||F1||P,2 =M1

√
P (1− δ ≤ φX(x)>β0 ≤ 1 + δ)

=M1

√
fX(β0) · 2δ = M1

√
2fX(β0)δ

1
2 <∞.

Since F1
β is an indicate function, by the conclusion of the

Lemma 2.6.15 and Lemma 2.6.18 (iii) in (Wellner et al.,
2013), F1

β is a VC (and hence Donsker) class of func-
tions. Thus, the entropy of the class function F1

β denoted as
J∗[](1,F

1) is finite, i.e., J∗[](1,F
1) <∞.

Next, we consider the following empirical process indexed
by β,

GnF1
β =

1√
n

n∑
i=1

{F1
β(Xi, Ai, Yi)− EF1

β(Xi, Ai, Yi)}.

Note that GnF1
β =
√
n[V̂ (β)− V̂ (β0)−{V (β)−V (β0)}]

by Equation (2). Therefore, by applying Theorem 11.2 in
(Kosorok, 2008), we have,

E∗ sup
||β−β0||2<δ

√
n
∣∣∣V̂ (β)− V (β)− {V̂ (β0)− V (β0)}

∣∣∣
=E∗ sup

||β−β0||2<δ

∣∣∣GnF1
β

∣∣∣ ≤ c1J∗[](1,F1)||F1||P,2

=c1J
∗
[](1,F

1)M1

√
2fX(β0)δ

1
2 ,

where E∗ is the outer expectation, and c1 is a finite constant.

Let C∗1 ≡ c1J
∗
[](1,F

1)M1

√
2fX(β0), since J∗[](1,F

1),
M1, and fX(·) are bounded, we have C∗1 <∞.

Thus, for all n large enough and sufficiently small δ, the
centered process V̂ − V satisfies

E∗ sup
||β−β0||2<δ

√
n|V̂ (β)− V (β)− {V̂ (β0)− V (β0)}|

≤C∗1δ
1
2 .

Let φn(δ) = C∗1δ
1
2 , and α = 3

2 < 2, check
φn(δ)
δα = δ

1
2

δ
3
2

= δ−1 is decreasing not depending on
n. Therefore, condition B holds.

(b3.) By β̂
p−→ β0 as n → ∞ and V̂ (β̂) ≥ supβ∈BV̂ (β)

shown previously, choose rn = n1/3, then rn satisfies

r2nφn(r−1n ) = n2/3φn(n−1/3)

=n2/3(n−1/3)1/2 = n2/3−1/6 = n1/2.

Thus, condition C holds.

By the Theorem 14.4 in (Kosorok, 2008), we have n1/3||β̂−
β0||2 = Op(1).

�

A.2. Proof of Proposition 1

To show
√
n
{
V̂ (β̂)− V̂ (β0)

}
= op(1),

is sufficient to show
√
n
{
V (β̂) − V (β0)

}
= op(1) and

√
n
[
{V̂ (β̂)− V̂ (β0)} − {V (β̂)− V (β0)}

]
= op(1).

(a1.) First, by n1/3||β̂ − β0||2 = Op(1) and the regularity
condition (C4), we take the second order Taylor expansion
of V (β̂) at β0, then

√
n{V (β̂)− V (β0)

}
=
√
n
[
V ′(β0)||β̂ − β0||2 +

1

2
V ′′(β0)||β̂ − β0||22

+ op{||β̂ − β0||22}
]

(by V ′(β0) = 0) =
√
n
{1

2
V ′′(β0)OE(n−

2
3 ) + op(n

− 2
3 )
}

=
1

2
V ′′(β0)OE(n−

1
6 ) = op(1).

(3)

(a2.) Next, recall the result in the proof of Lemma 1 that

E∗ sup
||β−β0||2<δ

√
n|V̂ (β)−V (β)−{V̂ (β0)−V (β0)}| ≤ C∗1δ

1
2 ,

where C∗1 is a finite constant. Since ||β̂ − β0||2 =

Op(n
−1/3), i.e., ||β̂− β0||2 = c4n

−1/3, where c4 is a finite
constant, we have,

√
n
[
{V̂ (β̂)− V̂ (β0)} − {V (β)− V (β0)}

]
≤E∗ sup

||β−β0||2<c4n−1/3

√
n|V̂ (β)− V (β)− {V̂ (β0)− V (β0)}|

≤C∗1
√
c4n−1/3 = C∗1

√
c4n
−1/6 = op(1).

(4)

(a3.) Thus, from the results of (3) and (4), we have,

√
n
{
V̂ (β̂)− V̂ (β0)

}
=
√
n
[
{V̂ (β̂)− V̂ (β0)} − {V (β̂)− V (β0)}

]
+
√
n
{
V (β̂)− V (β0)

}
=op(1) + op(1) = op(1).

�
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A.3. Proof of Theorem 1: Asymptotic distribution of
the test statistic under H0

Under H0, we have d(X,β0) ≡ 1 and V (β0) = V1. Based
on Lemma 1 and Proposition 1, we have

∆̂n =
√
n{V̂ (β̂)− V̂1}

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β̂)}

πAi + (1− π)(1−Ai)
{Yi − µ̂(Xi, β̂)}

+ µ̂(Xi, β̂)− AiYi
π

]
=

1√
n

n∑
i=1

[
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− AiYi
π

]
+op(1)

=
1√
n

n∑
i=1

[
I{Ai = 1}

πAi + (1− π)(1−Ai)
{Yi − µ1(Xi)}

+ µ1(Xi)−
AiYi
π

]
+op(1)

=
1√
n

n∑
i=1

[
Ai
π
{Yi − µ1(Xi)}+ µ1(Xi)−

AiYi
π

]
+op(1)

=
1√
n

n∑
i=1

{
Ai
π
− 1

}
µ1(Xi) + op(1).

By Central Limit Theorem, we have ∆̂n converges in dis-
tribution to a normal random variable with mean 0 and
variance σ2

0 = 1−π
π V ar{E(Y |A = 1, X)}.

�

A.4. Proof of Theorem 2: Asymptotic distribution of
the test statistic under Ha,n

Under Ha,n, we have
√
n{V (β0) − V1} = ∆. Based on

Lemma 1 and Proposition 1, we have

∆̂n =
1√
n

n∑
i=1

[
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− AiYi
π

]
+op(1)

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− V (β0)− AiYi
π

+ V1

]
+
√
n{V (β0)− V1}+ op(1)

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− V (β0)−
(
Ai
π
Yi − V1

)]
+ ∆ + op(1)

=∆ +
1√
n

n∑
i=1

φi + op(1),

where

φi =
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− V (β0)−
(
Ai
π
Yi − V1

)
.

Therefore, ∆̂ converges in distribution to a random random
variable with mean ∆ and variance σ2

φ = E(φ2i ).

�

A.5. The degenerate distribution of
√
n{V̂ (β̂)− V̂ 1}

under H0

Following the proof of Theorem 1, by replacing V̂1 with V̂ 1,
we have

∆̂n =
√
n{V̂ (β̂)− V̂ 1}

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β̂)}

πAi + (1− π)(1−Ai)
{Yi − µ̂(Xi, β̂)}

+ µ̂(Xi, β̂)− Ai
π
{Yi − µ̂1(Xi)} − µ̂1(Xi)

]
(By Lemma 1 and Proposition 1)

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− Ai
π
{Yi − µ1(Xi)} − µ1(Xi)

]
+op(1)

(Under H0, we have d(X,β0) ≡ 1)

=
1√
n

n∑
i=1

[
I{Ai = 1}

πAi + (1− π)(1−Ai)
{Yi − µ1(Xi)}

+ µ1(Xi)−
Ai
π
{Yi − µ1(Xi)} − µ1(Xi)

]
+op(1)

(With all the terms cancel out, we have) = op(1).

Therefore, under the null and the regular assumption,√
n{V̂ (β̂)− V̂ 1} asymptotically converges in distribution

to 0. One may also conclude that the IPW estimators for
β̂ and the naive rule are asymptotically identical under the
null by a similar proof.
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Table S1. Simulation results of the proposed test under the Nelder-
Mead Method.

SCEN. RESULTS
h = 0.5 h = 1

γ = 1 γ = 2 γ = 1 γ = 2

1 V1 3.00 5.00 4.00 6.00
V (β0) 3.00 5.00 4.00 6.00
ERR. 5.4% 5.4% 5.4% 5.4%

2 V1 2.00 3.00 3.00 4.00
V (β0) 2.04 3.08 3.04 4.08
POW. 19.2% 25.8% 14.4% 19.2%
β̂1 0.667 0.615 0.663 0.610
β̂2 0.042 0.018 0.038 0.015
β̂3 0.026 0.027 0.037 0.022
β̂4 0.543 0.570 0.545 0.577
β̂5 -0.507 -0.544 -0.511 -0.543

3 V1 1.50 2.00 2.50 3.00
V (β0) 1.64 2.28 2.64 3.28
POW. 92.4% 99.4% 59.8% 89.6%
β̂1 0.340 0.332 0.344 0.336
β̂2 0.002 -0.001 0.007 0.001
β̂3 0.010 0.003 0.006 -0.004
β̂4 0.628 0.652 0.630 0.647
β̂5 -0.700 -0.681 -0.696 -0.685

B. Additional Results
B.1. Testing and evaluation with linear decision rule

under the Nelder-Mead Method.

B.2. Testing and evaluation with linear decision rule
under the Simulated Annealing.

Table S2. Simulation results of the proposed test under the Simu-
lated Annealing.

SCEN. RESULTS
h = 0.5 h = 1

γ = 1 γ = 2 γ = 1 γ = 2

1 V1 3.00 5.00 4.00 6.00
V (β0) 3.00 5.00 4.00 6.00
ERR. 5.4% 5.8% 5.2% 5.4%

2 V1 2.00 3.00 3.00 4.00
V (β0) 2.04 3.08 3.04 4.08
POW. 19.0% 23.6% 12.2% 17.2%
β̂1 0.599 0.593 0.597 0.590
β̂2 -0.011 -0.005 -0.003 -0.002
β̂3 -0.010 0.001 0.007 0.010
β̂4 0.566 0.570 0.566 0.572
β̂5 -0.566 -0.569 -0.568 -0.570

3 V1 1.50 2.00 2.50 3.00
V (β0) 1.64 2.28 2.64 3.28
POW. 85.8% 97.8% 51.4% 85.8%
β̂1 0.359 0.351 0.356 0.350
β̂2 -0.007 0.006 -0.009 0.006
β̂3 -0.004 0.003 0.009 0.001
β̂4 0.656 0.659 0.663 0.661
β̂5 -0.664 -0.665 -0.659 -0.664
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