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Abstract
In the current era of personalized recommenda-
tion, one major interest is to develop an optimal
individualized decision rule that assigns individ-
uals with the best treatment option according to
their covariates. Estimation of optimal decision
rules (ODR) has been extensively investigated re-
cently, however, at present, no testing procedure
is proposed to verify whether these ODRs are
significantly better than the naive decision rule
that always assigning individuals to a fixed treat-
ment option. In this paper, we propose a testing
procedure for detecting the existence of an ODR
that is better than the naive decision rule under
the randomized trials. We construct the proposed
test based on the difference of estimated value
functions using the augmented inverse probability
weighted method. The asymptotic distributions of
the proposed test statistic under the null and local
alternative hypotheses are established. Based on
the established asymptotic distributions, we fur-
ther develop a sample size calculation formula for
testing the existence of an ODR in designing A/B
tests. Extensive simulations and a real data ap-
plication to a schizophrenia clinical trial data are
conducted to demonstrate the empirical validity
of the proposed methods.

1. Introduction
In the current era of personalized recommendation, one
major interest is to develop an optimal individualized de-
cision rule that assigns individuals with the best treatment
option according to their covariates. Due to individuals’
heterogeneity in outcome to different treatment options, it
is common that there may not exist a unified best deci-
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sion for all individuals. A number of methods have been
developed for estimating optimal decision rules (ODR),
which include Q-learning (Watkins & Dayan, 1992; Zhao
et al., 2009), A-learning (Murphy, 2003; Robins, 2004; Shi
et al., 2018a), direct value search methods (Zhang et al.,
2012; 2013), outcome-weighted learning (Zhao et al., 2012;
Zhou et al., 2017), targeted minimum loss-based estimator
(TMLE) (van der Laan & Luedtke, 2015), concordance-
assisted learning (Fan et al., 2017; Liang et al., 2017), and
maximin-projection learning (Shi et al., 2018b). Although
estimation of ODRs has been extensively studied in recent
years, to the best of our knowledge, testing the existence
of an ODR that is better than the naive decision rule which
always assigning individuals to a fixed treatment has been
less studied. Moreover, it lacks a simple sample size calcu-
lation method for designing randomized trials to test such a
hypothesis.

In this paper, we propose a test for the existence of an ODR
that is better than always assigning individuals to a fixed
treatment (the naive decision rule) in terms of values and
derive its associated sample size calculation method. Here,
we are interested in the randomized trial settings where
the likelihood of assignment is assumed known as constant.
Our test statistic is constructed based on the difference of
estimated value functions under the estimated ODR and
the naive decision rule. Here, the value functions under a
given decision rule are estimated nonparametrically using
the augmented inverse probability weighted (AIPW) estima-
tor proposed by Zhang et al. (2012), and the decision rule is
searched within a class of the basis function of the baseline
covariates. However, a challenge is that the asymptotic dis-
tributions of the corresponding value difference based test
statistic may become degenerate under the null hypothesis
that there does not exist an ODR. To overcome this diffi-
culty, we modify the way of estimating the value function
under the naive decision rule so that asymptotic normal dis-
tributions of the resulting test statistic can be derived under
both the null and local alternative hypotheses. Based on
the established asymptotic distributions, we also derive the
sample size calculation method.

Our contributions can be summarized in the following as-
pects:
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• To the best of our knowledge, the proposed simple testing
procedure for detecting the existence of an ODR is the first
work that forms the hypothesis testing by proposing the non-
degenerate value difference as the test statistic, which is a
cutting edge work to the personalized recommendation; •
The propose testing has novel yet effective sample size cal-
culation method for designing studies in healthcare, which
also contributes to the policy evaluation literature from a
unique angle; • Our test method gives clear instruction on
validation of a personalized optimal decision making be-
tween two competitive treatment options, which has great
potential towards developing an automatic decision-making
system that is capable of filtering ineffective rules and plan-
ing the ODR.

The rest of the paper is organized as follows. Section 3
introduces the statistical framework for testing the existence
of an ODR. In section 4, we present the proposed test statis-
tic and establish its asymptotic distributions under both the
null and local alternative hypotheses. Section 5 gives the
sample size calculation procedure based on the established
asymptotic distributions. The finite sample performance of
the proposed test and the associated sample size calculation
method are evaluated by simulation studies in Section 6.
An application of the proposed method to a dataset from a
randomized schizophrenia study is illustrated in Section 7.
In section 8, we conclude our paper with discussions. The
proofs of all the theorems are given in the supplementary.

2. Related Work
In the literature, many tests and associated sample size meth-
ods have been developed for designing A/B tests to com-
pare adaptive treatment strategies. For example, Murphy
(2005) advocated the use of sequential multiple assignment
randomized trials to develop adaptive treatment strategies
and derived associated sample size method. Dawson &
Lavori (2010) derived sample size methods for evaluating
decision rules in multi-stage randomized trails. Kang et al.
(2017) proposed a score-type test statistics by using a semi-
parametric approach for detecting the existence of the sub-
group and developed a novel procedure to calculate the
sample size based on the proposed test. However, these
sample size methods were designed for comparing adaptive
treatment strategies or specified decision rules in multi-stage
randomized trails, but not for testing the existence of an op-
timal decision rule.

On the other hand, there are some recent works closely
related to the choice of test statistics. Laber et al. (2016)
developed a method to size a two-arm randomized trial for
finding a nearly optimal decision rule by using pilot data
via Q-learning. Luedtke & Van Der Laan (2016) studied the
statistical inference of the TMLE that mainly handles the
non-regular case for the online estimation. Whereas, those

methods either has very complicated asymptotic distribu-
tion or is difficult to implement in practice with additional
tuning hyperparameters. To propose an efficient test statistic
with a simple sample size calculation for healthcare studies,
we mainly focus on the doubly robust estimator studied in
Zhang et al. (2012).

3. Statistical Framework
In a randomized experiment/trial, suppose there are two
treatment options, e.g., control (treatment 0) and experi-
mental treatment (treatment 1). Let A, taking values 0 or
1 in accordance with the two options, denote the assigned
treatment. In addition, let X be a p× 1 vector of baseline
covariates and Y be the observed outcome of interest. The
observed data consist of {Oi = (Yi, Ai, Xi), i = 1, . . . , n},
which are independent and identically distributed across i.

To introduce the optimal decision rule (ODR), we de-
fine the potential outcomes Y ?(0) and Y ?(1) as the out-
comes that would be observed were a subject receiving
treatment 0 or 1, respectively. As standard in causal in-
ference (Rubin, 1978), we make the following assump-
tions: (i) stable unit treatment value assumption (SUTVA):
Y = AY ?(1) + (1 − A)Y ?(0); (ii) no unmeasured con-
founder assumption: {Y ?(1), Y ?(0)} are independent of A
conditional onX . A decision rule is a deterministic function
d(·) that maps X to {0, 1}. Define the potential outcome of
interest under d(·) as

Y ∗(d) = Y ∗(0){1− d(X)}+ Y ∗(1)d(X),

which would be observed if a randomly chosen individual
had received a treatment according to d(·), where we sup-
press the dependence of Y ∗(d) on X . We then define the
value function under d(·) as the expectation of the potential
outcome as

V (d) = E{Y ∗(d)} = E[Y ∗(0){1−d(X)}+Y ∗(1)d(X)].

Suppose the decision rule d(·) relies on a model param-
eter β, denoted as d(X,β) = I{g(X)>β > 0}, where
I(·) is an indicator function and g(·) is an unknown func-
tion. We use φX(·) to denote a set of basis functions
of X with length v, which are “rich” enough to approx-
imate the underlying function g(·). Here, for notational
simplicity, we include 1 in φX(·) so that the parameter
β ∈ Rv+1 includes intercept. Given a decision rule d(X,β),
we use a shorthand to write its value function V (d) as
V (β) = E{Y ?(d(X,β))}. As a result, we have the op-
timal decision rule (ODR) of interest defined to maximize
the value function among the class of I{φX(X)>β > 0}
as d(X,β0), where β0 = arg max||β||=1 V (β). Then, the
value function under the ODR d(X,β0) is V (β0). Here, we
make the following assumption

P (g(X)>β = 0) = 0. (1)
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That is, we only consider the regular case in this paper. Such
an assumption usually holds when covariates X contain
some continuous variables. In addition, the class of the
decision rules include the naive decision rules that assign
all individuals to treatment 1 or 0 as special cases. To see
this, setting β = (1, 0, ..., 0)> gives the naive decision rule
d(X,β) ≡ 1; while setting β = (−1, 0, ..., 0)> gives the
naive decision rule d(X,β) ≡ 0. Let V1 and V0 denote the
values under the two naive decision rules, respectively.

Our goal here is to test whether there exists an ODR that is
better than the two naive decision rules in terms of values.
Without loss of generality, we assume that treatment 1 is
no worse than treatment 0 on average, i.e. V1 ≥ V0. This
can be easily validated by conducting the two-sample t-test.
Then, the considered null and alternative hypotheses can be
described as follows

H0 : V (β0) = V1 vs. Ha : V (β0) > V1. (2)

Note that the true optimal decision rule may not fall in the
class of the basis function. For example, consider the fol-
lowing regression model E(Y |A,X) = U(X) + AC(X),
where U(·) is the baseline mean function and C(·) is the
contrast function that describes the treatment-covariates in-
teraction. Under the SUTVA and no unmeasured confounder
assumptions, it can be shown that the true optimal decision
rule is given by dopt(X) = I{C(X) > 0}, which may not
be contained in the class of I{φX(X)>β > 0} if the basis
function is not chosen appropriately. The null hypothesis
may then correspond to the following two situations. First,
the contrast function C(X) ≥ 0. Under such a situation, the
naive decision rule with d(X) ≡ 1 is the best and the ODR
is obtained by choosing β0 = (1, 0, ..., 0)>. Second, the
contrast function C(X) has a positive probability to be pos-
itive and negative across X , where the true optimal decision
rule is given by dopt(X) = I{C(X) > 0}. However, there
dose not exist an ODR within a class of I{φX(X)>β > 0}
that is strictly better than always assigning all individuals
to treatment 1. To better approximate the true ODR, we
use cross-validation to choose an appropriate set of basis
function, under which we obtain an ODR that achieves the
highest empirical value function (See details in Section 6.2).

4. Proposed Test
Define the propensity score π = P (A = 1) as the likelihood
of assignment, which is assumed known as constant in a
randomized trial. To test the hypotheses given in (2), it is
natural to construct test statistics based on the difference
of estimated value functions under the estimated ODR and
the naive decision rule. Here, the value functions under
a given decision rule can be estimated nonparametrically
using the augmented inverse probability weighted (AIPW)
estimator proposed by Zhang et al. (2012). Given a decision

rule d(X,β), its value function V (β) can be consistently
estimated by

V̂ (β) =
1

n

n∑
i=1

I{Ai = d(Xi, β)}
πAi + (1− π)(1−Ai)

{Yi − µ̂(Xi, β)}

+ µ̂(Xi, β),

where the augmented term µ̂(X,β) is an estimator for
µ(X,β) ≡ E{Y |A = d(X,β), X} by a regression model
or nonparametric model such as the random forest. De-
fine β̂ = arg max||β||=1 V̂ (β), which can be calculated by
the direct value search through a global optimization algo-
rithm. The estimated value function under the estimated
ODR d(X, β̂) is then given by V̂ (β̂). Similarly, the value
V1 under the naive decision rule d(X) ≡ 1 can be estimated
by

V̂ 1 =
1

n

n∑
i=1

I(Ai = 1){Yi − µ̂1(Xi)}
πAi + (1− π)(1−Ai)

+ µ̂1(Xi)

=
1

n

n∑
i=1

Ai
π
{Yi − µ̂1(Xi)}+ µ̂1(Xi),

where µ̂1(X) is an estimator for µ1(X) ≡ E(Y |A = 1, X).
A natural test statistic can be obtained as

√
n{V̂ (β̂)− V̂ 1}.

However, under the assumption (1), it can be shown that
the asymptotic distribution of

√
n{V̂ (β̂) − V̂ 1} is degen-

erate under the null, i.e.
√
n{V̂ (β̂) − V̂ 1} converges in

distribution to 0 (see the proof in the supplementary article).
Such test statistic becomes invalid as the type I error cannot
maintain the nominal level. Here, we provide more intuition
of the degeneration issue as follows. Under H0, treatment
1 is the optimal choice (d(X,β0) ≡ 1), which leads to the
highest value (V (β0) = V1). When sample size n increases
to infinity, the estimated ODR will become closer and closer
to the true ODR, which will assign everyone to treatment 1
with probability one under the regular setting considered in
this work. Thus, the statistics will become 0 with probability
one when n is large (i.e. degenerate).

To overcome this difficulty and also keep the good proper-
ties of the AIPW estimator under the estimated ODR, we
consider the following modified estimator for V1, i.e.

V̂1 =
1

n

n∑
i=1

AiYi
π

,

which can be viewed as the inverse probability weighted
estimator of the value function under the naive decision rule.
Then, our test statistic can be constructed as

∆̂n =
√
n{V̂ (β̂)− V̂1}

=
1√
n

n∑
i=1

[
I{Ai = d(Xi, β̂)}

πAi + (1− π)(1−Ai)
{Yi − µ̂(Xi, β̂)}

+ µ̂(Xi, β̂)− AiYi
π

]
.

(3)
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To establish the asymptotic distribution of ∆̂n, we give
Lemma 1 and Proposition 1 under the following regular-
ity conditions (see the proofs in the supplementary article):
(C1.) The support of X and Y are bounded; (C2.) The den-
sity function of the population covariates fX(·) is bounded
away from 0 and∞ and is twice continuously differentiable
with bounded derivatives; (C3.) Mean function µ(x, β) are
smooth bounded functions with its first derivative exist and
bounded; (C4.) The true value function V (β) is twice con-
tinuously differentiable at a neighborhood of β0.

Lemma 1 Under the regularity conditions (C1-C4), we
have

n
1
3 (β̂ − β0) = Op(1), (4)

where Op(1) means the random variable is stochastically
bounded.

The above lemma shows that the convergence rate of β̂ is
n1/3 through a global optimization algorithm, which leads
to the proposition below.

Proposition 1 Under the regularity conditions (C1-C4)
and Lemma 1, we have

√
n{V̂ (β̂)− V̂ (β0)} = op(1), (5)

where op(1) means the random variable converges in prob-
ability to zero.

Using the above results, we next derive the analytical form
of the standard deviation of the proposed test statistics under
both null and alternative hypothesis, which, to the best of
our knowledge, is new to the literature, and can be used for
deriving the sample size formula and confidence interval
further.

The following theorem shows the asymptotic distribution of
∆̂n under the null hypothesis (see the proof in the supple-
mentary article).

Theorem 1 Under H0, ∆̂n converges in distribution to a
normal random variable with mean 0 and variance

σ2
0 =

1− π
π

V ar{E(Y |A = 1, X)},

as n→∞.

Here, σ2
0 can be consistently estimated by

σ̂2
0 =

1− π
π

V̂ ar{µ̂1(X)}.

At level α, we reject the null hypothesis when ∆̂n/σ̂0 ≥ zα,
where zα is an upper α-quantile of the standard normal dis-
tribution. Therefore, a two-sided 1− α confidence interval
(CI) for the difference V (β0)−V1 under the null is given
by V̂ (β̂)− V̂1 ± zα/2σ̂0/

√
n.

Next, we establish the asymptotic distribution of ∆̂n under
the local alternative Ha,n : V (β0) = V1 + ∆/

√
n, where

∆ > 0. The proof is given in the supplementary article.

Theorem 2 Under Ha,n, we have

∆̂n = ∆ +
1√
n

n∑
i=1

φi + op(1),

where

φi =
I{Ai = d(Xi, β0)}

πAi + (1− π)(1−Ai)
{Yi − µ(Xi, β0)}

+ µ(Xi, β0)− V (β0)−
(
Ai
π
Yi − V1

)
.

It follows that ∆̂ converges in distribution to a random
variable with mean ∆ and variance σ2

φ = E(φ2i ).

Moreover, σ2
φ can be consistently estimated by σ̂2

φ =

n−1
∑n
i=1 φ̂

2
i , where

φ̂i =
I{Ai = d(Xi, β̂)}

πAi + (1− π)(1−Ai)
{Yi − µ̂(Xi, β̂)}

+ µ̂(Xi, β̂)− V̂ (β̂)−
(
Ai
π
Yi − V̂1

)
.

Based on Theorems 1 and 2, the asymptotic power of the
proposed α-level test under the local alternative hypothesis
Ha,n is given by 1 − Φ{(zασ̂0 − ∆)/σ̂φ}, where Φ(·) is
the cumulative distribution function of the standard normal
variable. Similarly, a one-sided 1− α CI for the difference
V (β0)− V1 under the local alternative is given by [V̂ (β̂)−
V̂1 − zασ̂φ/

√
n,∞].

5. Sample Size Calculation
Based on the established asymptotic power under the local
alternative, we are able to derive a sample size formula to
detect a pre-specified important difference δa = V (β0)−V1
with a desired power at least 1− β for a one-sided level-α
test. Specifically, setting 1−Φ{(zασ̂0 −∆)/σ̂φ} = 1− β,
we have the required sample size as follows

n? =
(Zασ0 + Zβσφ)2

δ2a
. (6)

In practice, based on a pilot study data, which is assumed to
follow the same model as the follow-up study we are trying
to size, we could obtain the estimated value difference δ̂a,
and the variance estimates σ̂2

0 and σ̂2
φ. Then, the estimated

sample size n̂? is given by

n̂? =
(Zασ̂0 + Zβ σ̂φ)2

δ̂2a
. (7)



On Validation and Planning of An Optimal Decision Rule with Application in Healthcare Studies

6. Simulation Study
We have conducted extensive simulation studies to inves-
tigate the finite sample performance of the proposed test
for the existence of an ODR. We consider a randomized
trial with underlying linear and nonlinear decision rules
separately in the following two subsections. The comput-
ing infrastructure used is a Linux cluster with 32 processor
cores and 300GB quota. Source code can be found in the
supplementary material.

6.1. Testing and evaluation with linear decision rule

Suppose each element of the covariates X =
[X1, X2, · · · , Xp]

> is generated independently from
a uniform distribution on [−1, 1] and the treatment
assignment indicator A is from a Bernoulli distribution with
the success probability π = 0.5. Assume that the outcome
Y follows a regression model,

Y = hU(X) + γAC(X) + E, (8)

where U(·) is the baseline function, C(·) is the contrast
function that describes the treatment-covariates interaction,
E∼N(0, 0.5) is the random error, and h and γ are the tuning
parameters that control the effect of the baseline and the
treatment-covariates interaction, respectively. In the clinical
trials, we usually have a dataset that has a few covariates
to construct the decision rule, as described in our real data
analysis section. Therefore, we set the dimension of the
covariates as p = 4 in our simulation study for a better
visual illustration (See details in Section 7). We consider
U(X) = 2 + 0.5X1 − 0.2X3 − 0.3X4, and C(X) = 2 +
X3 − X4 − c, where c is chosen from the set {0, 1, 1.5},
denoted as Scenarios 1 to 3, respectively. And we choose
γ = 1 or 2, and h = 0.5 or 1.

For Scenario 1 (c = 0), the ODR is the same as the naive
decision rule, d(X,β0) ≡ 1. However, for Scenarios 2
and 3 (c ∈ {1, 1.5}), it can be shown that they are from
the alternative hypothesis, where the corresponding true
ODRs can be obtained directly from their contrast functions:
I(0.577 + 0.577x3 − 0.577x4 > 0) for Scenarios 2, and
I(0.333 + 0.667x3 − 0.667x4 > 0) for Scenarios 3. The
true values of the ODR (V (β0)) and the naive decision rule
(V1) can be calculated using the Monte Carlo simulations,
and reported in Table 1.

For each setting, we conduct 500 replications with sample
size n = 1000. In our estimation, we use three different
heuristic optimization algorithms, the Nelder-Mead Method
(NM), the Simulated Annealing (SA), and the Genetic Al-
gorithm (GA), to search for the ODR within a class of
d(X,β) = I(X>β > 0) subjecting to ||β||2 = 1. Both
the ‘NM’ and ‘SA’ methods and are implemented in the R
package optimization, while the ‘GA’ method is im-
plemented in the R package GA. We set the search domain

Table 1. Simulation results of the proposed test under the Genetic
Algorithm.

SCEN. RESULTS
h = 0.5 h = 1

γ = 1 γ = 2 γ = 1 γ = 2

1 V1 3.00 5.00 4.00 6.00
V (β0) 3.00 5.00 4.00 6.00
ERR. 5.4% 5.8% 5.8% 5.4%

2 V1 2.00 3.00 3.00 4.00
V (β0) 2.04 3.08 3.04 4.08
POW. 24.0% 27.4% 15.8% 22.2%
β̂1 0.598 0.589 0.595 0.587
β̂2 0.007 -0.001 0.003 -0.001
β̂3 -0.001 0.001 -0.001 -0.001
β̂4 0.569 0.570 0.570 0.573
β̂5 -0.564 -0.573 -0.566 -0.572

3 V1 1.50 2.00 2.50 3.00
V (β0) 1.64 2.28 2.64 3.28
POW. 91.8% 99.2% 60.6% 90.8%
β̂1 0.364 0.353 0.364 0.352
β̂2 -0.004 -0.001 0.007 -0.002
β̂3 0.002 -0.001 0.003 0.002
β̂4 0.655 0.661 0.659 0.663
β̂5 -0.662 -0.662 -0.658 -0.661

as [-10,10] and the starting values as a zero vector. Here,
the augmented term is estimated through a linear regression.
The simulation results under the ‘GA’ are summarized in
Table 1, including the type I error under the null (‘ERR.’),
the power under the alternative (‘POW.’), and the mean of
the estimates β̂ in the ODR. For comparison, the results
under the ‘NM’ and the ‘SA’ method are also reported in
the supplementary article Section B, which are shown close
to the results based on the ‘GA’ method.

From Table 1, we observe that type I errors are generally
close to the nominal level. In addition, the proposed test
has reasonable power, especially when the constant c in-
creases. For example, when c = 1.5 in Scenario 3, the
power increases to above 90% except for the setting with
h = 1 and γ = 1. This may be partly due to the fact that
the treatment-covariate effect is less informative compared
with the baseline mean effect in this setting than other con-
sidered settings. Moreover, under the alternative hypothesis
(Scenarios 2 and 3), the estimated optimal rule is close to
the true optimal rule in all cases. Finally, we plot the den-
sity function of the standardized proposed test statistics in
Figure 1 for the three scenarios under the Genetic Algo-
rithm. From the plot, it can be seen that the density curves
are close to the standard normal distribution under the null
(Scenario 1) and shift toward the right with some scaling
under the alternative (Scenarios 2 and 3). These findings are
consistent with our Theorems 1 and 2. In addition, when
the treatment-covariate effect is more informative compared
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Figure 1. The density function of the standardized proposed test
statistics under the Genetic Algorithm: the red, green, and blue
filled curves present the cases when C(X) = X3−X4+2, X3−
X4+1, X3−X4+0.5, respectively; and the black curves presents
the standard normal density. The top two panels stand for the cases
when γ = 1 (h = 0.5, and h = 1, respectively), and the bottom
two panels shows the results for γ = 2 (h = 0.5, and h = 1,
respectively).

with the baseline (i.e. under h = 0.5 and γ = 2), we can
observe that the density curves for the three scenarios are
easier to be separated.

6.2. Testing and evaluation with nonlinear decision rule

Next, we consider a randomized trial with nonlinear decision
rule and π = 0.5. We use the same model (8) but with
U(X) = log{(X1 + 2)(X2 + 2)} and C(X) = (X3 −
1)2− 2X4 + 2− c, where c is chosen from the set {0, 1, 2},
denoted as Scenarios 4 to 6, respectively. Since (X3−1)2−
2X4 + 2 ≥ 0, Scenario 4 is from the null hypothesis. It can
be shown that Scenarios 5 and 6 are all from the alternative
hypothesis. And as c increases, the alternative hypothesis
moves further away from the null. Under the alternatives,
the corresponding ODRs can be similarly obtained from
their contrast functions by I{C(X) > 0}. The values of
the obtained ODR (V (β0)) and the naive decision rule (V1)
are also calculated and reported in Table 2.

For each setting, we conduct 500 replications with sample
size n = 1000, and apply the proposed testing procedure
with the polynomial basis of the covariates as φX(·). The
degree (∈ {1, 2, 3}) for the polynomial basis are selected
based on five-fold cross validation to maximum the value
function. Here, the augmented term is fitted with the se-
lected basis function, and the decision rule are searched
within a class of I{φX(X)>β > 0}. We apply three dif-
ferent optimization algorithms (the ‘NM’, the ‘SA’, and the
‘GA’ method, respectively), and report the simulation results

Table 2. Simulation results of the proposed test with nonlinear
decision rule.

SCEN. RESULTS
h = 0.5 h = 1

γ = 1 γ = 2 γ = 1 γ = 2

4 V1 3.98 7.31 4.63 7.96
V (β0) 3.98 7.31 4.63 7.96

BIAS(NM) 0.01 0.03 0.01 0.03
BIAS(SA) 0.01 0.03 0.01 0.03
BIAS(GA) 0.01 0.03 0.01 0.03
ERR.(NM) 5.4% 5.0% 4.8% 5.0%
ERR.(SA) 5.4% 5.2% 5.2% 5.2%
ERR.(GA) 5.4% 5.0% 5.0% 5.2%

5 V1 2.98 5.31 3.63 5.96
V (β0) 3.01 5.38 3.66 6.03

BIAS(NM) 0.02 0.05 0.02 0.05
BIAS(SA) 0.01 0.01 0.01 0.01
BIAS(GA) 0.01 0.01 0.01 0.01
POW.(NM) 5.0% 5.2% 4.8% 5.2%
POW.(SA) 7.8% 7.4% 7.4% 7.2%
POW.(GA) 10.2% 10.4% 8.6% 9.6%

6 V1 1.98 3.31 2.63 3.96
V (β0) 2.17 3.67 2.82 4.34

BIAS(NM) 0.18 0.34 0.18 0.36
BIAS(SA) 0.04 0.05 0.04 0.07
BIAS(GA) 0.01 0.02 0.01 0.01
POW.(NM) 6.0% 6.0% 5.6% 5.8%
POW.(SA) 64.8% 75.6% 46.6% 66.0%
POW.(GA) 80.0% 86.6% 63.4% 79.6%

in Table 2 for comparison, including the bias between the es-
timated value under the estimated ODR (V̂ (β̂)) and the true
value, the type I error under the null (‘ERR.’), and the power
under the alternative (‘POW.’). In addition, we plot the bias
of the estimated value, and the type I error / power of the
proposed test statistics under three optimization methods
with h = 0.5 and γ = 1 for illustration as Figure 2.

Based on the results, we observe that type I errors of the
proposed test are all close to the nominal level. Among
all three optimization algorithms, the Genetic Algorithm
performs the best while the Nelder-Mead Method is the
worst. Under the Genetic Algorithm, the estimated values
for the estimated ODRs are all close to the true and the
power increase as c increases. In particular, when c = 1,
the alternative is very close to the null (the value difference
V (β0) − V1 ≤ 0.07), so the power is slightly larger than
the nominal level. On the other hand, when c = 2, there is
a relatively large value difference and the power achieves
86.6% with h = 0.5 and γ = 2. It is shown in both Table
2 and Figure 2 that the estimated values by the ‘NM’ and
the ‘SA’ methods are much smaller compared to the true
values, which indicates that both methods fail to find the
ODR under the nonlinear setting. The poor performance of
the Nelder-Mead Method may be due to the curse of dimen-
sionality when using high order basis function to search the
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Figure 2. The bias between the estimated value under the estimated
ODR and the true value, and the type I error / power of the proposed
test statistics, under three optimization methods with h = 0.5 and
γ = 1: the red, green, and blue bars present the results for the
Genetic Algorithm, the Nelder-Mead Method, and the Simulated
Annealing, respectively. Note the y-axis in the figure is in a relative
scale.

decision rule; while for the Simulated Annealing, the reason
can be the existence of multiple local optimums since our
underlying true ODR is nonlinear.

6.3. Power and sample size calculation

In this section, we examine the performance of the proposed
sample size calculation method for testing the existence of
an ODR. Here, we consider the same model as in Section
6.2, i.e.

Y =h log{(X1 + 2)(X2 + 2)}
+ γA{(X3 − 1)2 − 2X4 + 2− c}+ E,

where c is chosen as 2 or 2.5, h is chosen as 0, 0.1, 0.2 or
0.4, and γ = 1 or 2.

Based on a pilot data, which is generated from the true
model above, we first obtain the estimated value difference
δ̂a, and the variance estimates σ̂2

0 and σ̂2
φ. Then, we compute

the required sample size n̂? based on equation (6). We
choose α = 0.05 and β = 0.1, and apply the same testing
procedure as described in Section 6.2 through the Genetic
Algorithm with the degree of the polynomial basis set as 2.
The sample size results are shown in Table 3.

It can be seen from the results that as h increases, the re-
quired sample size increases; while as γ increases, the re-
quired sample size decreases. This is expected since when h
is larger of γ is smaller, the treatment-covariate interaction

Table 3. The result of the theoretical sample size and the related
empirical power.

SCEN. h =
γ = 1 γ = 2

n? POW. n? POW.
c = 2.5 0 248 92.1% 235 89.1%

0.1 270 94.6% 249 92.3%
0.2 289 90.8% 253 87.2%
0.4 336 92.3% 275 92.6%

c = 2 0 956 95.5% 942 91.8%
0.1 1073 93.2% 982 91.1%
0.2 1162 92.8% 1019 89.3%
0.4 1378 91.3% 1114 89.1%

effect is weaker compared with the baseline mean effect. In
addition, the case with c = 2 requires much larger sample
size than c = 2.5 since the former is more closer to the
null. Based on the estimated sample size, we conduct 500
replications for each setting to compute the empirical power
of the proposed test. The powers are also reported in Table
3. We observe that the empirical powers are generally close
to the nominal level of 90%, which shows the validity of
our proposed sample size method.

7. A Data Application
Here, we illustrate our method with application in a health-
care study: a schizophrenia data. Due to privacy, we do not
provide the source data, but a full data description can be
found in Tarrier et al. (2004), where they specifically con-
ducted a randomized trial with an 18 month follow-up period
to examine the effectiveness of cognitive-behavioral ther-
apy for schizophrenia. The Positive and Negative Syndrome
Scale (PANSS, (Kay et al., 1987)) was employed to measure
the symptoms of individuals. Patients were randomized to
three treatment options, including the cognitive-behavioral
therapy plus treatment as usual (CBT) as treatment group
1 with 44 subjects, supportive counseling plus treatment as
usual (SC) as treatment group 2 with 41 subjects and treat-
ment as usual (TAU) as treatment group 0 with 70 subjects.
The reduction of PANSS score at 18th month’s visit was
set as patient’s outcome Y . Two major information of sub-
jects related to the schizophrenia are used as the covariates
X = (X1, X2), where X1 is the log duration of untreated
psychosis at baseline, and X2 is the PANSS score at the
baseline visit. The proposed test is conducted for comparing
two treatments at a time: CBT vs. TAU, SC vs. TAU, and
CBT vs. SC.

First, we compute treatment-specific means for the three
treatment groups, and get µ̂TAU = 21.96, µ̂CBT = 27.34
and µ̂SC = 28.76. So, on average, treatment SC is the
best while treatment TAU is the worst. Moreover, the mean
outcomes of SC and CBT are comparable, which are much
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Table 4. Data analysis on the schizophrenia study.

TEST PAIR CBT VS. TAU SC VS. TAU CBT VS. SC
SUPERIOR CBT SC SC

V̂1 27.34 28.76 28.76
V̂ (β̂) 30.35 33.06 34.70

P -VALUE 0.190 0.125 0.039

larger than that of TAU. In our pairwise comparison, we
denote the treatment with the larger mean outcome as treat-
ment 1 (i.e. the superior treatment in Table 4) and the
other as treatment 0. Then, the estimated value V̂1 under
the naive decision rule d(X) ≡ 1 is the same as the mean
outcome of treatment 1. We also compute the estimated
value V̂ (β̂) under the estimated ODR. We apply the pro-
posed test for checking whether there is an ODR that is
better than the naive decision rule d(X) ≡ 1 in all three
pairwise comparisons. Here, we use the random forest
to fit the augmented term, and use the tensor-product B-
splines as the basis function, where the degree and knots
(∈ {3, 4, 5, 6}) of B-splines are chosen via five-fold cross
validation to maximum the value function as described in
Section 6.2. The decision rule is searched within the class
of I{φX(X)>β > 0} through the Genetic Algorithm. We
report the corresponding p-values for each test in Table 4.

Based on the results, we observe the following findings.
First, when comparing CBT vs. TAU and SC vs. TAU, the
p-values are not significant. This implies that there doesn’t
exist an ODR that is better than assigning all individuals
to CBT or SC when comparing with TAU. This finding
is consistent with the literature because CBT and SC are
known to be better treatments than TAU for all individu-
als. Second, when comparing CBT and SC, the p-value
is significant (< 0.05). This implies that SC is not a uni-
formly better treatment than CBT and there exists an optimal
treatment that is better than assigning all individuals to SC.
Under such a situation, the estimated value difference is
V̂ (β̂)− V̂1 = 34.70− 28.76 = 5.94.

In addition, in Figure 3, we plot the treatment assignment
given by the estimated ODR d̂(X) when comparing SC
and CBT. From the figure, we can see that individuals with
median log durations of untreated psychosis at baseline and
median PANSS score at baseline will benefit more from
the CBT treatment (a total of 20 assignments under β̂).
However, patients with extreme low or high log durations
and PANSS score should receive the SC treatment (a total
of 65 assignments under β̂). Finally, based on the data
for comparing CBT and SC, we design an A/B test with
the sample size calculation for testing the existence of an
ODR. Here, we consider one-sided test with α = 0.05
and a desired power at least 1 − β = 90%. Based on the
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Figure 3. The plot for the treatment assignment given by the esti-
mated optimal decision rule.

pilot study, we can compute the standard error estimates
σ̂0 = 31.17 and σ̂φ = 38.95, and the value difference
δ̂a = V̂ (β̂) − V̂1 = 5.94. Therefore, the required sample
size for detecting such a value difference can be calculated
by equation (7), which is n̂? = 290.

8. Discussion
We conclude our paper by following possible extensions.
First, the proposed test only consider randomized trials. We
may follow the studies of Kallus (2018) and Ozery-Flato
et al. (2018) to use the generative adversarial networks to ex-
tend the proposed test for the observational studies. Second,
the Assumption (1) usually holds when covariates X con-
tain some continuous variables. However, we may extend
the proposed test to incorporate the nonregular case by using
some sample splitting method. Third, we may consider a
more general test with multiple treatment options or contin-
uous treatment. Specifically, for cases with multiple treat-
ments where A could take multiple values, our framework
can be easily extended by replacing the current decision
class, i.e. the indicator function d(X) = I{C(X) > 0},
with a general classification function that maps features X
to a treatment a ∈ A. Athey & Wager (2017) addressed the
theoretical properties of the AIWP estimator under multi-
ple treatments and restricted policy class in decision trees.
Finally, we can extend the proposed test for detecting the
existence of a dynamic ODR in multiple stage studies.
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