
Supplementary File - Data preprocessing to mitigate bias: A maximum entropy
based approach

A. Properties of the reweighting algorithm
The prior distribution we construct has the following form.
For C ∈ [0, 1],

qwC(α) = C · u(α) + (1− C) · w(α). (1)

Here u is the uniform distribution over ω. The weight dis-
tribution w is obtained using Algorithm 1 to satisfy certain
statistical rate constraints. To establish the correctness of
Algorithm 1, we can estimate the representation rate and
statistical rate of this distribution and formally prove Theo-
rem 4.1.

Theorem A.1 (Theorem 4.1). There is an algorithm (Algo-
rithm 1) that, given the dataset S and a τ ∈ [0, 1], outputs
a probability distribution w : S → [0, 1] such that

1. The algorithm runs in time linear in N .
2. w satisfies τ -statistical rate.

As a consequence, qwC defined in (1) also satisfies τ -
statistical rate.

To prove this theorem, we will consider the uniform and
weighted part of the qwC separately and show that the convex
combination of two distributions satisfies similar fairness
properties as the two distributions. We start with the state-
ments and proofs of bounds for the uniform distribution.

Lemma A.2. Let u : Ω→ [0, 1] be the uniform distribution
on Ω. Then u satisfies the following properties.

1. For a fixed y ∈ Y ,

u(Y = y, Z = 0) = u(Y = y, Z = 1).

2. u(Z = 0) = u(Z = 1).
3. For a fixed y ∈ Y ,

u(Y = y | Z = 0) = u(Y = y | Z = 1).

Proof. (1) For any α ∈ Ω, let y(α) denote the class label of
element α and let z(α) denote the sensitive attribute value
of element α.

u(Y = y, Z = z) =
∑

α∈Ω |y(α)=y,z(α)=z

1

|Ω|

=
1

|Ω|
· |Ω|

2|Y|
=

1

2|Y|
.

Since the above term is independent of z-value, u(Y =
y, Z = z) is equal, for all z.

(2) Using

u(Z = z1) =
∑
y∈Y

u(Z = z1, Y = y).

and part (1), we get∑
y∈Y

u(Z = z1, Y = y) =
∑
y∈Y

u(Z = z2, Y = y).

This implies that

u(Z = z1) = u(Z = z2).

(3) Taking the ratio of part (1) and (2), we get

u(Y = y | Z = z1) =
u(Y = y, Z = z1)

u(Z = z1)

=
u(Y = y, Z = z2)

u(Z = z2)

= u(Y = y | Z = z2).

As expected, the uniform distribution is perfectly fair. We
next try to prove similar bounds for the weighted distribution
w.

Lemma A.3. Given dataset S and parameter τ ∈ [0, 1], let
w be the weighted distribution on samples in S obtained
from Algorithm 1 with input S and τ . Then w satisfies the
following properties.

1. For a fixed y ∈ Y ,

w(Y = y, Z = 0) = τ · w(Y = y, Z = 1).

2. w(Z = 0) = τ · w(Z = 1).
3. For a fixed y ∈ Y ,

w(Y = y | Z = 0) = w(Y = y | Z = 1).

Proof. Note that, by definition, the support of w is the ele-
ments in the dataset S. For any α ∈ Ω, let y(α) denote the
class label of element α and let z(α) denote the sensitive
attribute value of element α.

Data preprocessing to mitigate bias

(1) For any value z ∈ {0, 1},

w(Z = z, Y = y) =
∑

α∈S |y(α)=y,z(α)=z

w(α)

We will analyze the elements with sensitive attribute value
0 and 1 separately since they have different weights. From
Algorithm 1,

w(Y = y, Z = 1) =
∑

α∈S |y(α)=y,z(α)=1

w(α)

=
∑

α∈S |y(α)=y,z(α)=1

1

W

N∑
i=1

1(αi = α) · c(y)

c(y, 1)

=
1

W
· c(y, 1) · c(y)

c(y, 1)
=
c(y)

W
.

Similarly, for elements with sensitive attribute value 0,

w(Y = y, Z = 0) =
∑

α∈S |y(α)=y,z(α)=0

w(α)

=
∑

α∈S |y(α)=y,z(α)=0

1

W

N∑
i=1

1(αi = α) · τ · c(y)

c(y, 0)

=
1

W
· c(y, 0) · c(y)

c(y, 0)
=
τ · c(y)

W
.

Therefore,
w(Y = y, Z = 0)

w(Y = y, Z = 1)
= τ and

w(Y = y, Z = 1)

w(Y = y, Z = 0)
=

1

τ
≥ 1.

Hence, the ratio for z1, z2 is atleast τ .

(2) The statement of part (1) holds for all y ∈ Y . Therefore,∑
y∈Y

w(Z = z1, Y = y) ≥ τ ·
∑
y∈Y

w(Z = z2, Y = y).

This implies that

w(Z = z1) ≥ τ · w(Z = z2).

Since the probability mass assigned to all sensitive attribute
values are within a τ -factor of each other, the representa-
tion rate of w is atleast τ . In particular, using the exact
inequalities in the proof of part (1), we get∑

y∈Y
w(Z = 0, Y = y) = τ ·

∑
y∈Y

w(Z = 1, Y = y)

which implies that

w(Z = 0) = τ · w(Z = 1).

(3) Taking the ratio of part (1) and (2), we get

w(Y = y | Z = 0) =
w(Y = y, Z = 0)

w(Z = 0)
= w(Y = y | Z = 1).

Before using the above properties of uniform and weighted
distribution to prove Theorem 4.1, we will show that the

convex combination of two distributions has similar fairness
guarantees as the two distributions.

Lemma A.4 (Statistical rate of convex combination of
two distributions). Given distributions v1, v2 on domain
Ω and a parameter C ∈ [0, 1], define distribution q as

q(α) := C · v1(α) + (1− C) · v2(α).

For parameters for 0 < τ2 ≤ τ1 ≤ 1, suppose that v1, v2

satisfy the following properties:

1. v1(Z = 0) = τ1 · v1(Z = 1) and ,

v2(Z = 0) = τ2 · v2(Z = 1).

2. For a fixed y ∈ Y ,

v1(Y = y, Z = 0) = τ1 · v1(Y = y, Z = 1) and ,

v2(Y = y, Z = 0) = τ2 · v2(Y = y, Z = 1).

Then for a fixed y ∈ Y and z1, z2 ∈ {0, 1}, q satisfies the
following properties

1. q(Y = y | Z = z1) ≥ τ1τ2 · q(Y = y | Z = z2).
2.

q(Y = y, Z = 0)

q(Y = y, Z = 1)
≥ τ2 and

q(Y = y, Z = 1)

q(Y = y, Z = 0)
≥ 1.

Proof. From the definition of q,

q(Z = 0) = C · v1(Z = 0) + (1− C) · v2(Z = 0).

Using the first property of v1 and v2, we get

q(Z = 0) = C · τ1 · v1(Z = 1) + (1− C) · τ2 · v2(Z = 1)

= τ2 · (C · v1(Z = 1) + (1− C) · v2(Z = 1))

+ C · (τ1 − τ2) · v1(Z = 1)

= τ2 · q(Z = 1) + C · (τ1 − τ2) · v1(Z = 1)

≥ τ2 · q(Z = 1).

The last inequality holds because τ2 ≤ τ1. Similarly, since
τ ∈ (0, 1],

q(Z = 1) = C
1

τ1
· v1(Z = 0) + (1− C) · 1

τ2
· v2(Z = 0)

≥ 1

τ1
· q(Z = 0) + (1− C) · (1

τ2
− 1

τ1
) · v1(Z = 0)

≥ 1

τ1
· q(Z = 0).

In other words, the representation rate of q is atleast τ2.
Once again, using the definition of q,

q(Y = y, Z = 0) = C · v1(Y = y, Z = 0)

+ (1− C) · v2(Y = y, Z = 0).

Using the properties of v1, v2, we can alternately write the

Data preprocessing to mitigate bias

above expression as

q(Y = y, Z = 0) = C · τ1 · v1(Y = y, Z = 1)

+ (1− C) · τ2 · v2(Y = y, Z = 1).

Let

a = C · v1(Y = y, Z = 1) and

b = (1− C) · v2(Y = y, Z = 1).

Then,
q(Y = y, Z = 0)

q(Y = y, Z = 1)
=
aτ1 + bτ2
a+ b

= τ2 +
(τ1 − τ2)a

a+ b
≥ τ2,

since a, b, (τ1 − τ2) ≥ 0. Similarly, since τ1, τ2 ∈ [0, 1]

q(Y = y, Z = 1)

q(Y = y, Z = 0)
=

a+ b

aτ1 + bτ2
≥ 1.

Hence the ratio of the joint distributions for different values
of sensitive attributes is atleast τ . Now to prove the statis-
tical rate bound, we just need to take the ratio of the joint
distribution and marginal distribution. Taking the ratio we
get,

q(Y = y | Z = 0) =
q(Y = y, Z = 0)

q(Z = 0)

≥ τ2 · q(Y = y, Z = 1)
1
τ1
q(Z = 1)

= τ1τ2 · q(Y = y | Z = 1).

Similarly,

q(Y = y | Z = 1) =
q(Y = y, Z = 1)

q(Z = 1)

≥ q(Y = y, Z = 0)
1
τ2
· q(Z = 0)

= τ2 · q(Y = y | Z = 0).

Since τ2 ≤ τ1 ≤ 1, the minimum of the two ratios is τ1τ2.
Hence the statistical rate of q is τ1τ2.

While the first result of the above lemma bounds the statis-
tical rate of q, the second result will be useful in bounding
the statistical rate of the max-entropy distribution obtained
using q. Using Lemma A.4, we can now prove the represen-
tation rate and statistical rate bound on the prior qwC .

Proof of Theorem 4.1. Proving the first statement is simple.
Since Algorithm 1 just counts the number of elements in
S satisfying certain properties, the time taken is |Y| · N .
In case of hypercube domain, |Y| = 2. Hence the time
complexity of the re-weighting algorithm is linear in N .

For the statistical rate of qwC , plugging v1 = u and v2 = vw

in Lemma A.4, we can get the corresponding ratio for qwC .

In particular, from Lemma A.2 and Lemma A.3, we know
that τ1 = 1 for distribution u and τ2 = τ for distribution vw.
The statement of Lemma A.4 then tells us that the statistical
rate of qwC is atleast τ .

B. Bounding Box, Counting Oracles and
Sampling Oracle

In this section, we provide the proofs of the main theorems
required for run-time bound on the max-entropy optimiza-
tion program. As mentioned earlier, to show that the max-
entropy optimization can be performed in polynomial time,
we need bounds on the size of the solution of dual program
and fast gradient-oracle for the dual function. We first show
that size of dual solution can be bounded in terms of the
dimension and properties of the dataset. Then we provide
a polynomial-time algorithm for first and second-order ora-
cles.

B.1. Bound on size of optimal dual solution

Lemma B.1. Suppose θ is such that there is an η > 0 such
that, for each 1 ≤ i ≤ d, η < θi < 1− η, then the optimal
dual solution corresponding to such a θ and qwC satisfies

‖λ?‖2 ≤
d

η
log

1

C
.

The proof of this lemma is along similar lines as the proof
of bounding box in (Singh & Vishnoi, 2014). The key
difference is that the proof in (Singh & Vishnoi, 2014) does
not consider a prior on the distribution.

Proof. We are given that θ is in the η-interior of the hyper-
cube, i.e., for each 1 ≤ i ≤ d, η < θi < 1− η. Hence a ball
of radius η, centered at θ, is contained with the hypercube.

We will first provide a bound for a general prior q and then
substitute properties specific to qwC . To that end, for a prior
q let Lq denote the following quantity,

Lq := log
1

minα q(α)
.

To show the bound in Lemma 4.2, we will try to prove that
the optimal dual solution, multiplied by a factor of 1/Lq, lies
in a ball of radius 1/η centered at θ and later provide a bound
on Lq . Let

λ̂ = θ − λ?

Lq
.

Firstly, note that we can bound the objective function of
(dual-MaxEnt) as follows. Since the objective function of
(primal-MaxEnt) is the negative of KL-divergence, it’s value
is always less than zero. Hence, by strong duality we get

Data preprocessing to mitigate bias

that, for a given prior q,

log

 ∑
α∈{0,1}d

q(α)e〈α−θ,λ
?〉

 ≤ 0.

This implies that

min
α
q(α)

∑
α∈{0,1}d

e〈α−θ,λ
?〉 ≤

∑
α∈{0,1}d

q(α)e〈α−θ,λ
?〉

≤ 1.

Therefore, for all α ∈ {0, 1}d,

e〈α−θ,λ
?〉 ≤ 1

minα q(α)
.

Taking log both sides, we get

〈α− θ, λ?〉 ≤ log
1

minα q(α)
= Lq.

Substituting λ̂, we get

〈α− θ, θ − λ̂〉 ≤ 1. (1)

Note that since this inequality holds for all α ∈ {0, 1}d,
it also holds for all α ∈ conv{0, 1}d. Next we choose α
appropriately so as to bound the distance between θ and λ̂.
Choose

α = θ +
θ − λ̂
‖θ − λ̂‖

· η.

Note that ‖α− θ‖ ≤ η, hence this α lies within the hyper-
cube. Then we can apply (1) to get〈

θ − λ̂
‖θ − λ̂‖

· η, θ − λ̂

〉
≤ 1.

This directly leads to

‖θ − λ̂‖ ≤ 1

η
.

Hence we know that λ̂ is within a ball of radius 1/η centered
at θ. Substituting the definition of λ̂ into this bound, we
directly get that∥∥∥∥λ?Lq

∥∥∥∥ ≤ 1

η
=⇒ ‖λ?‖ ≤ Lq

η
. (2)

The above bound is generic for any given prior q. To sub-
stitute q = qwC , we simply need to calculate LqwC . Note that
the prior qwC assigns a uniform probability mass to all points
not in the dataset S. Hence, for any α ∈ {0, 1}d

qwC(α) ≥ C

|Ω|
=
C

2d
.

Therefore,

LqwC ≤ d log
1

C
.

Substituting the value of LqwC in (2), we get

‖λ?‖ ≤ d

η
log

1

C
.

B.2. Interiority of expected vector

The assumption that θ should be in η-interior the hypercube
can translate to an assumption on the “non-redundancy” of
the data set, for some natural choice of θ. For example, to
maintain consistency with the dataset S, θ can be set to be
the following:

θ =
∑
α∈S

nα
N
α.

This corresponds to the mean of the dataset. In this case, the
assumption that for each 1 ≤ i ≤ d,

η < θi

implies that more than η-fraction of the elements in the
dataset S have the i-th attribute value 1. Similarly,

θi > 1− η
implies that more than η-fraction of the elements in the
dataset S have the i-th attribute value 0.

The reason that this is a non-redundancy assumption is that
it implies that no attribute is redundant in the dataset. For
example, if for an attribute i, θi was 1 it would mean that
all elements in S have the i-th attribute 1 and in that case,
we can simply remove the attribute.

B.3. Oracles for dual objective function

Lemma B.2 (Oracles for the dual objective function).
There is an algorithm that, given a reweighted distribu-
tion w : S → [0, 1], and θ, λ ∈ Rd computes hθ,q(λ),
∇hθ,q(λ), and ∇2hθ,q(λ) in time polynomial in N, d and
the bit complexities of all the numbers involved: w(α) for
α ∈ S, and eλi , θi for 1 ≤ i ≤ d. Here, q = qwC .

Proof. For the given prior q and vector θ, let gθ,q denote the
sum, i.e.,

gq(λ) :=
∑
α∈Ω

q(α)e〈α,λ〉

Then the dual function hθ,q(λ) is

hθ,q(λ) = log (gq(λ))− 〈θ, λ〉.
The main bottleneck in computing the above quantities is
evaluating the summation terms. For all three terms, the
summation is obtained from the derivative of gq .

∇gq(λ) =
∑
α∈Ω

α · q(α)e〈α,λ〉 and

Data preprocessing to mitigate bias

(a) Data statistical rate vs C (b) KL-divergence w.r.t. raw data
vs C

(c) Classifier Statistical rate vs C (d) Classifier Accuracy vs C

Figure 1. Comparison of max-entropy distributions with different priors and expectation vectors for small version of COMPAS dataset.
Note that a value of C = 1 effectively would result in sampling uniformly at random from the entire domain. Hence, as expected, we see
fairness increase and accuracy decrease as C increases. (a) Data statistical rate for COMPAS dataset. We observe that using qw

C is better
with respect to statistical rate than using qd

C . The value of C does not significantly affect the results for qw
C ; this is expected since qwC is

constructed to be fair for all C. (b) KL-divergence between the empirical distributions as compared with the raw COMPAS data. We
observe that this value is smaller when using the expected vector θd. (c) Classifier statistical rate vs C. Similar to data statistical rate
results for COMPAS dataset, we observe that using the qw

C prior results in a fairer outcome. Here there is a slight increase in fairness as
C is increased even for qw

C . (d) Classifier accuracy vs C. We observe that there is no significant difference in accuracy across different
metrics and priors. This is surprising, especially in light of the significant differences with respect to how well they capture the raw data.

∇2gq(λ) =
∑
α∈Ω

αα> · q(α)e〈α,λ〉.

Then, the gradient and Hessian can be represented using
∇gq and ∇2gq .

∇hθ,q(λ) =
1

gq(λ)
∇gq(λ)− θ,

∇2hθ,q(λ) =
1

gq(λ)
∇2gq(λ)− 1

gq(λ)2
∇gq(λ)∇gq(λ)>.

Given the above representation of gradient and oracle,
if we are able to compute gq(λ),∇gq(λ),∇2gq(λ) effi-
ciently, then using these to compute hθ,q(λ),∇hθ,q(λ) and
∇2hθ,q(λ) just involves constant number of addition and
multiplication operations, time taken for which is linear in
bit complexities of the numbers involved. Hence we will
focus on efficiently evaluating the summations.

Recall that

q = qwC = C · u+ (1− C) · w.
Since gq(λ),∇gq(λ),∇2gq(λ) are all linear in q, we can
evaluate the summations separately for u and w.

For w, since the support of the distribution is just the dataset
S,

gw(λ) =
∑
α∈Ω

w(α)e〈α,λ〉 =
∑
α∈S

w(α)e〈α,λ〉

We can directly evaluate the summation using O(Nd) op-
erations (first compute the inner product then summation),

where each operation is linear in the bit complexity of w
and eλ. For ∇gw(λ), we can represent it as

gw(λ) =
∑
α∈S

α · w(α)e〈α,λ〉.

Once again we can evaluate all inner products using O(Nd)
operations and then compute the gradient vector in another
O(Nd) operations. In a similar manner, we can also evalu-
ate ∇2gw(λ) in O(Nd2) operations.

Next we need bounds on the number of operations required
for the uniform part of q. The main idea is that if the distribu-
tion is uniform over the entire domain, then the summation
can be separated in terms of the individual features. For the
uniform distribution, let us write λ as (λ1, . . . , λd), where
λi corresponds to ith attribute and let us define variables:

αi := αi · ei,
where ei is the standard basis vector in Rd, with 1 in the
i-th location and 0 elsewhere. Let

s0
i :=

∑
αi∈{0,1}

eλi·αi ,

s1
i :=

∑
αi∈{0,1}

αie
λi·αi ,

s2
i :=

∑
αi∈{0,1}

αiα
>
i e

λi·αi ,

for all i ∈ {1, . . . , d} and αi ∈ {0, 1}. Next, we can

Data preprocessing to mitigate bias

(a) Representation rate vs C. (b) Classifier Statistical Rate vs C. (c) Classifier Accuracy vs C.

Figure 2. The figures show the comparison of max-entropy distributions with different prior distributions and expected values. The
base dataset is the small version of COMPAS. The first figure show the representation rate of different max-entropy distribution; the
representation rate is 1 when using balanced expected vectors, such as θw or θb. The second and third figure show the statistical rate and
accuracy of Gaussian Naive Bayes classifier trained on the output distribution. While the trend across different parameters is the same as
observed using decision tree classifier, we note that in this case, the classifier statistical rate is relatively smaller for smaller values of C.

compute the gu(λ),∇gu(λ),∇2gu(λ) using these values.

gu(λ) =
1

|Ω|
∑
α∈Ω

e〈α,λ〉 =
1

|Ω|

d∏
i=1

s0
i ,

∇gu(λ) =
1

|Ω|
∑
α∈Ω

α · e〈α,λ〉 =
1

|Ω|

d∑
i=1

s1
i

∏
j 6=i

s0
j

 ,

∇2gu(λ) =
1

|Ω|
∑
α∈Ω

αα> · e〈α,λ〉

=
1

|Ω|

d∑
i=1

s2
i

∏
j 6=i

s0
j +

∑
j 6=i

s1
i (s

1
j)
>
∏
k 6=i,j

s0
k

 .
Evaluating gu(λ) involves (d−1) multiplication operations.
Similarly, evaluating∇gu(λ) involves O(d2) addition and
multiplication operations. Finally, evaluating ∇2gu(λ) in-
volves O(d3) addition and multiplications operations. Each
operation takes time polynomial in the bit complexity of eλ.

We have shown that for both parts u and w, evaluating the
above summations takes time polynomial in the bit com-
plexities of the numbers involved. Since q is a convex
combination of u and w, computing gu(λ), ∇gu(λ) and
∇2gu(λ) also takes time polynomial in the bit complexi-
ties of the numbers involved. Specifically, computing gu(λ)
requires O(Nd) operations, computing ∇gu(λ) requires
O(d(N + d)) operations and computing gu(λ) requires
O(d2(N + d)) operations.

B.4. Sampling oracle

As stated earlier, the max-entropy distribution p? can be suc-
cinctly represented using the solution of the dual program
λ?. In particular, we have that

p?(α) =
q(α)e〈λ

?,α〉∑
β∈Ω q(β)e〈λ?,β〉

.

Using the efficient counting oracles of Lemma 4.3 and
bounding box of Lemma B.1, we efficiently compute a
good approximation to the dual solution λ?. But sampling
from the distribution p? can still be difficult due to the large
domain size. In this section, we show that given λ? we
can efficiently sample from the max-entropy distribution p?

using the counting oracles described earlier.

Theorem B.3 (Sampling from counting). There is an al-
gorithm that, given a weighted distribution w : S → [0, 1]
and λ ∈ Rd, returns a sample from the distribution p, where
for any α ∈ Ω

p(α) =
qwC(α)e〈λ,α〉∑
β∈Ω q

w
C(β)e〈λ,β〉

.

The running time of this algorithm is polynomial inN, d and
bit complexities of all numbers involved: w(α) for α ∈ S
and eλi , for i ∈ {1, . . . , d}.

The equivalence of counting and sampling is well-known
and a very useful result (Jerrum et al., 1986). We provide
the proof for our setting here, for the sake of completion.

Proof. As mentioned before, the goal is to sample from the

Data preprocessing to mitigate bias

(a) Data statistical rate vs C (b) KL-divergence w.r.t. raw data
vs C

(c) Classifier Statistical rate vs C (d) Classifier Accuracy vs C

Figure 3. Comparison of max-entropy distributions with different priors and expectation vectors for small version of Adult dataset. (a)
Data statistical rate for Adult dataset. Once again using qw

C is better with respect to statistical rate than using qd
C . (b) KL-divergence

between the empirical distributions as compared with the raw Adult data. We observe that this value is smaller when using the expected
vector θd. However, in this case the gap between divergence when using qwC and divergence when using qdC is smaller than observed with
COMPAS. (c) Classifier statistical rate vs C. In this case, using even qdC achieves relatively good statistical rate. However, the statistical
rate of max-entropy distributions using qwC is slightly better in most cases. (d) Classifier accuracy vs C. As expected, classifier accuracy is
higher for distributions using qdC than distributions using qwC . This is because qwC involves weighing the samples in a manner that is not
always consistent with the frequency of the samples.

distribution

p(α) =
qwC(α)e〈λ,α〉∑
β∈Ω q

w
C(β)e〈λ,β〉

.

The primary bottleneck in sampling is evaluating the nor-
malizing term, ∑

β∈Ω

qwC(β)e〈λ,β〉.

To evaluate this sum, we have an efficient oracle, i.e, the
counting oracle from Lemma 4.3. The lemma (and the algo-
rithm) allow us to calculate the sum in O(Nd) operations,
where each operation has bit complexity polynomial in the
numbers involved: w(α) for α ∈ Ω and eλ. Hence, we can
evaluate the normalizing term efficiently.

However, we still cannot sample by enumerating all prob-
abilities since the size of the domain is exponential. To
efficiently sample from the distribution, we sample each
feature of α individually. Let A denote the random variable
with probability distribution p. Let A1 denote the element
at the first position of A.

P[A1 = 0] =

∑
α∈Ω|α1=0 q

w
C(α)e〈λ,α〉∑

β∈Ω q
w
C(β)e〈λ,β〉

=

∑
α̂∈Ω(1) qwC,1(α̂)e〈λ

(1),α̂〉∑
β∈Ω q

w
C(β)e〈λ,β〉

.

Here λ(1) is λ without the first element, Ω(1) is the subdo-
main of all feature except the first feature and qwC,1 is the

distribution qwC conditional on the first feature being always
0. Note that qwC,1 is a distribution supported on Ω(1), and we
can use the counting oracle of Lemma 4.3 to calculate the
sum ∑

α̂∈Ω(1)

qwC,1(α̂)e〈λ
(1),α̂〉

in O(N(d − 1)) operations. Hence we can calculate the
probability P[A1 = 0] in O(Nd) operations. Then we can
do a coin toss, whose tail probability is chosen to be P[A1 =
0], and set α1 = 1 if we heads and α1 = 0 otherwise. Next
depending on the value we get for α1, we can calculate the
marginal probability of α2 being 0. Say α1 = a1. Then

P[A1 = 0] =

∑
α∈Ω|α1=a1,α2=0 q

w
C(α)e〈λ,α〉∑

β∈Ω|β1=a1
qwC(β)e〈λ,β〉

.

We can repeat the above process of calculating these sum-
mations using the counting oracle and once again sample
a value of α2 using the biased coin toss. Repeating this
process d times, we get a sample from the distribution p.
The number of operations required is O(Nd2), where each
operation has bit complexity polynomial in the numbers
involved: w(α) for α ∈ Ω and eλ.

C. Fairness guarantees
In this section, we provide the proof of the statistical rate
bound (Theorem 4.5).

Theorem C.1 (Fairness guarantees). Given the dataset

Data preprocessing to mitigate bias

(a) Data statistical rate vs C (b) Utility vs C (c) Representation rate vs C

Figure 4. Comparison of statistical rate, representation rate and correlation matrix difference with respect to raw data for max-entropy
distributions with different priors and expected values. The base dataset is the large version of COMPAS.

S, protected attribute ` and parameters τ, C ∈ [0, 1], let
w : S → [0, 1] be the reweighted distribution obtained from
Algorithm 1. Suppose θ is a vector that satisfies

1

2
≤ θ` ≤

1

1 + τ
.

The max-entropy distribution p? corresponding to the prior
distribution qwC and expected value θ has statistical rate
atleast τ ′, where

τ ′ = τ − 4δ · (1 + τ)

C + 4δ
.

and δ = maxz∈{0,1}|p?(Y = y, Z = z)− qwC(Y = y, Z =
z)|; here Y is the random variable when the distribution
is restricted to Y and Z is the random variable when the
distribution is restricted to Ω`.

Proof. The proof of this theorem uses the bounds on the
distribution of qwC that are obtained from Lemma A.4. By
the definition of δ, we have that

qwC(Y = y, Z = z)− δ ≤ p?(Y = y, Z = z)

≤ qwC(Y = y, Z = z) + δ.

Using this inequality, we can bound the ratio of the above
term for different sensitive attributes as

p?(Z = z1, Y = y)

p?(Z = z2, Y = y)
≥ qwC(Y = y, Z = z1)− δ
qwC(Y = y, Z = z2) + δ

.

Next, applying Lemma A.4, with v1 = u and v2 = vw, we
have the following properties of qwC

qwC(Y = y, Z = 0) ≥ τ · qwC(Y = y, Z = 1),

and

qwC(Y = y, Z = 1) ≥ qwC(Y = y, Z = 0).

Furthermore, since qwC assigns a uniform mass to all points
in Ω, we can also get a lower bound on qwC(Y = y, Z = z2).

qwC(Y = y, Z = z) =
∑

α|y(α)=y,z(α)=z

qwC(α)

≥
∑

α|y(α)=y,z(α)=z

C

|Ω|
=

C

2|Y|
.

We can now use the fairness guarantee on qwC and lower
bound for distribution to get the ratio bounds for max-
entropy distribution.

p?(Y = y, Z = 0)

p?(Y = y, Z = 1)
≥ τ · qwC(Y = y, Z = 1)− δ

qwC(Y = y, Z = 1) + δ

= τ − δ · (1 + τ)

qwC(Y = y, Z = 1) + δ

≥ τ − δ · (1 + τ)
C

2|Y| + δ
.

By the choice of θ, we know that

1− θ` > θ` =⇒ p?(Z = 1) ≥ p?(Z = 0).

Therefore,
p?(Y = y | Z = 0)

p?(Y = y | Z = 1)
=
p?(Y = y, Z = 0)

p?(Y = y, Z = 1)
· p

?(Z = 1)

p?(Z = 0)

≥ τ − δ · (1 + τ)
C

2|Y| + δ
.

Data preprocessing to mitigate bias

(a) Classifier statistical rate vs C (b) Classifier accuracy vs C

Figure 5. Comparison of Decision Tree classifier trained on data from different max-entropy distributions with different prior distributions
and expected values. The base dataset is the large version of COMPAS.

Similarly, for the other direction of this ratio, we can get

p?(Y = y, Z = 1)

p?(Y = y, Z = 0)
≥ qwC(Y = y, Z = 0)− δ
qwC(Y = y, Z = 0) + δ

= 1− δ · 2

qwC(Y = y, Z = 0) + δ

≥ 1− δ · 2
C

2|Y| + δ
.

Once again,

1− θ` > τ · θ` =⇒ p?(Z = 0) ≥ p?(Z = 1).

Therefore,
p?(Y = y | Z = 1)

p?(Y = y | Z = 0)
=
p?(Y = y, Z = 1)

p?(Y = y, Z = 0)
· p

?(Z = 0)

p?(Z = 1)

≥ τ

(
1− δ · 2

C
2|Y| + δ

)
.

Note that

τ

(
1− δ · 2

C
2|Y| + δ

)
≥ τ − δ · (1 + τ)

C
2|Y| + δ

.

Using |Y| = 2, we get that the statistical rate is atleast

τ − 4δ · (1 + τ)

C + 4δ
.

D. Additional details and empirical results for
small COMPAS and Adult datasets

Features of Adult dataset. The demographic features
used from this dataset are gender, race, age and years of
education. The age attribute in this case is categorized by
decade, with 7 categories (the last one being age≥ 70 years).
The education years attribute is also a categorical attribute,
with the categories being (< 6), 6, 7, · · · , 12, (> 12) years.
The label is a binary marker indicating whether the annual
income is greater than $50K or not.

Features of small version of COMPAS dataset. For
this dataset, we use the features gender, race, age, priors
count, and charge degree as features, and a binary marker
of recidivism within two years as the label.

D.1. Graphical representation of results in Table 2

We present all the results in Table 2 in a graphical form in
Figure 7. This figure also includes the results for COMPAS
dataset using race as the protected attribute (encoded as
binary, i.e., “Caucasian vs Non-Caucasian”).

The plots show that, in case of race of as the protected at-
tribute, once again the statistical rate and representation rate
of max-entropy distribution is close to 1 and much better
than the raw dataset. The distance of max-entropy distri-
bution from the empirical distribution of the raw dataset is
smaller in this case, since the correction required to enforce
fairness is smaller than the case when gender is the protected
attribute.

Data preprocessing to mitigate bias

(a) Classifier statistical rate vs C (b) Classifier accuracy vs C

Figure 6. Comparison of Gaussian Naive Bayes classifier trained on data from max-entropy distributions with different prior distributions
and expected values. The base dataset is the large version of COMPAS.

D.2. Empirical results using different priors, marginal
vectors and smoothing parameters.

Given training data S, we can estimate different maximum
entropy distributions with given parameters using S. We
use two kinds of prior distributions: (1) qd

C assigns uniform
weights to the samples, i.e.,

w = {nα/N}α∈S .
(2) qw

C assigns weights returned by the Algorithm 1 (also
used for results in Table 2).

We use three kinds of expectation vectors: (a) the expected
value of the dataset S ,

θd :=

(∑
α∈S

nα
N
Xα,

∑
α∈S

nα
N
Yα,

∑
α∈S

nα
N
Zα

)
.

The resulting max-entropy distribution is our best guess
for the underlying distribution without any modification for
fairness. (b) θb and (c) θw, as defined in Remark 4.6.

This results in six distributions; we generate a synthetic
datasets from each distribution to use in our evaluation. We
compare the statistical rate, representation rate, divergence
from empirical distribution and classifier performance of
datasets from these distributions, for varying values of pa-
rameter C.

D.2.1. COMPARISON ACROSS PRIORS AND EXPECTED
VALUE VECTORS

We first evaluate the dataset generated using max-entropy
distributions with different combinations of prior weights
and expected value mentioned earlier. The results for this

evaluation are present in Figure 1 and Figure 3.

Figure 1a and Figure 3a show that for both COMPAS and
Adult datasets, the max-entropy distributions obtained using
prior qw

C achieve higher statistical rate than the distributions
obtained using qd

C . However, the KL-divergence of the max-
entropy distributions obtained using expected value θw or
θb are higher as well. As the samples in the raw dataset are
unbalanced with respect to gender, the distributions using
balanced marginal distributions (i.e., qwC) are expected to
have a larger divergence from the empirical distribution of
raw data than the distributions using the expected value of
data.

Note that, according to the application, one can aim to
achieve high representation rate or high statistical rate or
both in the final distribution. The max-entropy distribution
using qw

C and θd achieves high statistical rate and low repre-
sentation rate, while the max-entropy distribution using qw

C

and θb achieves high statistical rate and high representation
rate.

D.2.2. COMPARISON OF CLASSIFIER TRAINED USING
DIFFERENT MAX-ENTROPY DISTRIBUTION
DATASETS

For the decision tree classifier trained on the generated data,
we compute the statistical rate using the predictions to eval-
uate the effects of different training data on the fairness of
the classifier. In addition, we report the classifier accuracy
when trained on each output dataset. The classifier results
are presented in Figure 1c,d and Figure 3c,d.

Once again the the max-entropy distributions obtained using

Data preprocessing to mitigate bias

prior distribution qw
C achieve better classifier statistical rate

than the distributions obtained using qd
C . The accuracy

of the classifiers trained on datasets obtained using prior
distribution qw

C is slightly lower than the accuracy of the
classifiers trained on distributions obtained using sample
uniform weights. However, it is interesting to note that
the significant difference in “accuracy” of the data all but
disappears when passed through the classifier. Importantly,
the accuracy drops sharply as the value of C increases as
C = 1 assigns equal probability mass to all points in the
domain and ignores the original samples. This suggests
a C value in the low-to-mid range would likely optimize
accuracy and statistical rate simultaneously.

Figure 2b,c presents the Gaussian Naive Bayes classifier
statistical rate and accuracy, when trained using different
max-entropy distributions on the COMPAS dataset.

D.2.3. COMPARISON OF REPRESENTATION RATE

Figure 2a shows the variation of representation rate. As
expected, distributions obtained using expected value θb or
θw have representation rate close to 1.

E. Additional empirical results on larger
COMPAS dataset

In this section, we present additional empirical results on
the larger version of the COMPAS dataset. In the small
version of the dataset, the features used were sex, race, age,
priors count, and charge degree as features, and uses a binary
marker of recidivism within two years as the label. The age
attribute was categorized into three categories, younger than
25, between 25 and 45, and older than 45, and the priors
count attribute is categorized in to three categories (no prior
crime, between 1 and 3, and more than 3). Further, we only
considered data for convicted criminals labelled as being
either White or Black.

The large dataset consists of attributes sex, race, age, ju-
venile felony count, juvenile misdemeanor count, juvenile
other count, months in jail, priors count, decile score, charge
degree, violent crime, violent recidivism, drug related crime,
firearm involved, minor involved, road safety hazard, sex
offense, fraud and petty crime, with recidivism as the label.
We did not exclude any samples and we did not categorize
any attributes. The original data contains samples from 6 dif-
ferent races whose age ranged from 18 to 96 with at most 40
prior counts, juvenile felony count, juvenile misdemeanor
count, and juvenile other count.

We model the domain ΩL for this version as
{0, 1}8 ×{0, 1, 2}3 ×{0, 1, . . . 5}×∆6 ×{0, 1, . . . 7}2 ×
{0, 1, . . . 10}2 × {0, 1, . . . 11} × {0, 1, . . . 13}. Overall the
domain contains approximately 1.4× 1011 different points.

E.1. Evaluating the statistical rate and accuracy of
generated dataset

We evaluate the dataset generated using different max-
entropy algorithms. We run the algorithm with different
combinations of prior weights and expected value men-
tioned earlier. We vary the C value for our framework and
measure the statistical rate of the output distribution.

For this dataset, calculating the KL-divergence from em-
pirical distribution is difficult due to the large domain size.
Hence we consider another metric to check how well the
max-entropy distribution preserves the pairwise correla-
tion between features. To calculate this, we first calculate
the covariance matrix of the output dataset, say Covoutput
and the original raw dataset Covdata, and then report the
Frobenius norm of the difference of these matrices, i.e.,
‖Covoutput−Covdata‖2F . The lower the value of the norm, the
better the output distribution preserves the pairwise correla-
tion. The results for this evaluation are present in Figure 4.
Here again the first part of the figure shows that the max-
entropy distributions obtained using prior qw

C and expected
value θw or θb achieve higher statistical rate values than
the distributions obtained from max-entropy distribution
obtained using uniform weights on samples. Similarly the
representation rate of max-entropy distributions using prior
distribution qw

C and expected value θw or θb are close to 1.0.

E.2. Evaluating the statistical rate and accuracy of
classifier trained on generated dataset

As mentioned earlier, we use the generated datasets to train
a Gaussian Naive Bayes and the Decision Tree Classifier
and evaluate the fairness and the accuracy of the resulting
classifier.

Firstly, we again vary the C value for our framework and
measure the statistical rate of the output of the classifier as
well as the accuracy. The results for this evaluation using
Gaussian Naive Bayes are present in Figure 6 and using De-
cision Tree Classifier are present in Figure 5. As expected,
once again the the max-entropy distributions obtained using
prior distribution qw

C achieve higher statistical rate values
than the distributions obtained from max-entropy distribu-
tion obtained using uniform weights on samples. The accu-
racy also drops as the value of C tends to 1. This is again
because the prior distribution in case of C = 1 assigns equal
probability mass to all points in the domain.

F. Full algorithm for max-entropy
optimization

In this section, we state the full-algorithm for max-entropy
optimization. The algorithm is based on the second-order
framework of (Allen Zhu et al., 2017; Cohen et al., 2017).

Data preprocessing to mitigate bias

Algorithm 1 Value-Oracle: Computing dual function
value at any point λ

1: Input: samples S := {αi}i∈N ⊆ {0, 1}
n, weights

w ∈ ∆N−1, smoothing parameter C ∈ [0, 1] expected
vector θ and vector λ

2: g1 ← 1
3: for j ∈ {1, . . . , n} do
4: s0

j ← eλj/2

5: g1 ← g1 · s0
j

6: end for
7: g2 ← 0
8: for i ∈ {1, . . . , N} do
9: g2 ← g2 + wi · e〈αi,λ〉

10: end for
11: g ← Cg1 + (1− C)g2

12: return log(g)− 〈θ, λ〉

We start with a complete algorithm for value, gradient and
Hessian oracles for hθ,qwC , constructed along similar lines as
the proof of Lemma 4.3.

F.1. Oracle algorithm

Algorithm 1 shows how to compute the dual function hθ,qwC
value at any point λ, Algorithm 2 shows how to compute the
gradient of the dual function at any point λ, and Algorithm 2
shows how to compute the Hessian of the dual function at
any point λ.

F.2. Max-entropy optimization algorithm

With the first and second order oracles, we can now state
our entire algorithm for the hypercube domain. Algo-
rithm 4 presents the approach to optimizing the dual of
the max-entropy program. The inner optimization problem
(inner-Opt) is a normal quadratic optimization problem and
can be solved in polynomial time using standard interior-
point methods (Karmarkar, 1984; Wright, 2005).

F.3. Time complexity of Algorithm 4

To provide a time complexity bound for Algorithm 4, we
will invoke the bounds proved by (Cohen et al., 2017) for
optimization of second-order robust functions. In particular,
the algorithm runs in time polynomial in d, N and the bit
complexity of the number, provided

1. there is a bound on the size of dual solution, λ?,
2. efficient first and second-order oracles for the dual func-

tion,
3. the dual function is second-order robust.

We have already shown that ‖λ?‖ is bounded (Lemma 4.2)
as well as provided fast first and second-order oracles
(Lemma 4.3). To establish to polynomial time complexity

Algorithm 2 Gradient-Oracle: Computing gradient of
dual function at any point λ

1: Input: samples S := {αi}i∈N ⊆ {0, 1}
n, weights

w ∈ ∆N−1, smoothing parameter C ∈ [0, 1] expected
vector θ and vector λ

2: g1 ← 0
3: for j ∈ {1, . . . , n} do
4: s0

j ← eλj/2

5: s1
j ← ej · eλj/2 {ej is standard basis vector with 1

in j-th location}
6: end for
7: for j ∈ {1, . . . , n} do
8: t← 1
9: for k ∈ {1, . . . , n} \ {j} do

10: t← t · s0
k

11: end for
12: g1 ← g1 + s1

j · t
13: end for
14: g2 ← 0
15: for i ∈ {1, . . . , N} do
16: g2 ← g2 + α · wi · e〈αi,λ〉
17: end for
18: g ← Cg1 + (1− C)g2

19: v ←Value-Oracle (S,w,C, θ, λ) + 〈θ, λ〉
20: v2 ← ev

21: return 1
v2
g − θ

of this algorithm, we just need to prove that dual function
is second-order robust. A convex function f : Rn → R is
said to be α-second order robust, if for all x, y ∈ Rn with
‖y‖∞ ≤ 1 satisfies∣∣D3f(x)[y, y, y]

∣∣ ≤ αD2f(x)[y, y]

where Dkf(x)[y, . . . , y] := dk

dtk
f(x+ ty)

∣∣∣
t=0

. The fol-
lowing lemma establishes the second-order robustness of
the dual function hθ,q.

Lemma F.1 (Second-order robustness of the dual–
MaxEnt function). Given Ω = {0, 1}n, prior q :
Ω → [0, 1] and the target expected vector θ ∈
conv(Ω), the dual maximum entropy function hθ,q(λ) :=
log
(∑

α∈Ω q(α)e〈λ,α−θ〉
)

is 4n-second order robust.

Using this second-order robustness property, bound on ‖λ?‖,
gradient, Hessian oracles and interior point method to solve
the inner-optimization problem (inner-Opt), as a corollary
of Theorem 3.4 in (Cohen et al., 2017), it follows that Algo-
rithm 4 runs in time polynomial in d,N and bit complexities
of all the numbers involved.

Before proving the lemma, we state and prove the following
general claim in the proof.

Claim F.2. Let X be a real valued random variable over

Data preprocessing to mitigate bias

Algorithm 3 Hessian-Oracle: Computing hessian of dual
function at any point λ

1: Input: samples S := {αi}i∈N ⊆ {0, 1}
n, weights

w ∈ ∆N−1, smoothing parameter C ∈ [0, 1] expected
vector θ and vector λ

2: g1 ← 0
3: for j ∈ {1, . . . , n} do
4: s0

j ← (e(1−θj)λj + e−θjλj)/2

5: s1
j ← ej · (e(1−θj)λj)/2 {ej is standard basis vector

with 1 in j-th location}
6: s2

j ← eje
>
j · (e(1−θj)λj)/2

7: end for
8: for j ∈ {1, . . . , n} do
9: t1 ← 1

10: t2 ← 0
11: for k ∈ {1, . . . , n} \ {j} do
12: t1 ← t1 · s0

k

13: t3 ← 1
14: for l ∈ {1, . . . , n} \ {j, k} do
15: t3 ← t3 · s0

l

16: end for
17: t2 ← t2 + s1

js
1
k
> · t3

18: end for
19: g1 ← g1 + s2

i · t1 + t2
20: end for
21: g2 ← 0
22: for i ∈ {1, . . . , N} do
23: g2 ← g2 + αα> · wi · e〈αi−θ,λ〉
24: end for
25: g ← Cg1 + (1− C)g2

26: v1 ←Value-Oracle (S,w,C, θ, λ)
27: v2 ←Gradient-Oracle (S,w,C, θ, λ)
28: v3 ← 1

v1
g − (v2 + θ)(v2 − θ)>

29: return v3

the discrete set Ω with |X| ≤ r for some constant r ∈ R+.
Then,

|E
[
X3
]
− E

[
X2
]
E [X]| ≤ 2r(E

[
X2
]
− E [X]

2
).

Proof. Let us denote the probability mass function of X

Algorithm 4 Full algorithm to compute max-entropy distribu-
tions

1: Input: samples S := {(Xi, Yi, Zi)}i∈N ⊆ {0, 1}
n, param-

eter C ∈ [0, 1], target expected value θ, weights {wi}Ni=1 ∈
∆N−1 and ε > 0

2: qwC ← Prior distribution constructed using {wi}Ni=1 and C
3: R← 8n log 1/Cε

4: T ← 16nR log 1/Cε

5: λ← 0
6: for i = 1 to T do
7: g ← Gradient-Oracle (S,w,C, θ, λ)
8: H ← Hessian-Oracle (S,w,C, θ, λ)
9: yε ← ε

8nR
-approximate minimizer of the following convex

quadratic program (using primal path following algorithm
(Karmarkar, 1984; Wright, 2005)),

inf
y∈Rn
〈g, y〉+

1

2e
y>Hy

s.t. ‖y‖∞ ≤
1

8n
and ‖λ+ y‖∞ ≤ R (inner-Opt)

10: λ← λ+ yε/e2

11: end for
12: return λ

with p. Then,

E
[
X3
]
− E

[
X2
]
E [X]

=
∑
α∈Ω

X(α)3p(α)−
∑
α,β∈Ω

X(α)2X(β)p(α)p(β)

=
1

2

∑
α,β∈Ω

(X(α)3 −X(α)2X(β))p(α)p(β)

+
1

2

∑
α,β∈Ω

(X(β)3 −X(α)X(β)2)p(α)p(β)

=
1

2

∑
α,β∈Ω

(X(α)−X(β))2(X(α) +X(β))p(α)p(β).

We also note that, |X(α) + X(β)| ≤ 2r for any α, β ∈ Ω
as |X| ≤ r. Therefore,

|E
[
X3
]
− E

[
X2
]
E [X]|

=
1

2

∣∣∣∣∣∣
∑
α,β∈Ω

(X(α)−X(β))2(X(α) +X(β))p(α)p(β)

∣∣∣∣∣∣
≤ r

∑
α,β∈Ω

(X(α)−X(β))2p(α)p(β)

= 2r(E
[
X2
]
− E [X]

2
).

Proof of Lemma F.1. Let us fix a point λ0 ∈ Rn and a di-
rection λ1 ∈ Rn with ‖λ1‖∞ ≤ 1. We need to verify that

∣∣D3hθ,q(λ0)[λ1, λ1, λ1]
∣∣ ≤ 4nD2hθ,q(λ0)[λ1, λ1] (2)

to show that hθ,q is 4n-second order robust.

Data preprocessing to mitigate bias

For any k ∈ Z, let g(k)
q denote the following function.

g(k)
q (λ0, λ1) =

∑
α∈Ω

q(α) · 〈λ1, α〉k · e〈λ0,α〉,

Then the derivative D2hθ,q(λ0)[λ1, λ1] can be written as

D2hθ,q(λ0)[λ1, λ1] =
g

(2)
q (λ0, λ1)

g
(0)
q (λ0, λ1)

− g
(1)
q (λ0, λ1)2

g
(0)
q (λ0, λ1)2

Similarly,

D3hθ,q(λ0)[λ1, λ1, λ1] =
g

(3)
q (λ0, λ1)

g
(0)
q (λ0, λ1)

+
2g

(1)
q (λ0, λ1)3

g
(0)
q (λ0, λ1)3

− 3g
(2)
q (λ0, λ1)g

(1)
q (λ0, λ1)

g
(0)
q (λ0, λ1)2

We begin by dividingD3hθ,q(λ0)[λ1, λ1, λ1] into two parts,
and prove upper bounds on each part individually. Firstly
note that using Cauchy-Swartz, we can bound g(1)

q using
g

(0)
q in the following way,

g(1)
q (λ0, λ1) =

∑
α∈Ω

q(α) · 〈λ1, α〉 · e〈λ0,α〉

≤
∑
α∈Ω

q(α) · ‖λ1‖∞‖α‖1 · e
〈λ0,α〉

≤ max
α∈Ω
‖α‖1 · g

(0)
q (λ0, λ1)

≤ n · g(0)
q (λ0, λ1)

since ‖λ1‖∞ ≤ 1 and maxα∈Ω‖α‖1 ≤ n, as all features in
Ω are binary. Now using this property, we get that∣∣∣∣∣2g(1)

q (λ0, λ1)3

g
(0)
q (λ0, λ1)3

− 2g
(2)
q (λ0, λ1)g

(1)
q (λ0, λ1)

g
(0)
q (λ0, λ1)2

∣∣∣∣∣
=

∣∣∣∣∣2g(1)
q (λ0, λ1)

g
(0)
q (λ0, λ1)

∣∣∣∣∣ ·D2hθ,q(λ0)[λ1, λ1]

≤ 2n ·D2hθ,q(λ0)[λ1, λ1]. (3)

Next we try to bound the second part of
D3hθ,q(λ0)[λ1, λ1, λ1]. To do so, let pλ0

: Ω → [0, 1]
denote the following distribution

pλ0
(α) =

q(α)e〈λ0,α〉

g
(0)
q (λ0, λ1)

.

Then using Claim F.2 and the fact maxα∈Ω‖α‖1 ≤ n, we
get ∣∣∣∣∣g(3)

q (λ0, λ1)

g
(0)
q (λ0, λ1)

− g
(2)
q (λ0, λ1)g

(1)
q (λ0, λ1)

g
(0)
q (λ0, λ1)2

∣∣∣∣∣
=
∣∣∣Epλ0 [〈λ1, α〉3]− Epλ0 [〈λ1, α〉2]Epλ0 [〈λ1, α〉]

∣∣∣
≤ 2n

(
Epλ0 [〈λ1, α〉2]− Epλ0 [〈λ1, α〉]2

)
= 2n ·D2hθ,q(λ0)[λ1, λ1]. (4)

Combining 3 and 4 using the triangle inequality, we get that∣∣D3hθ,q(λ0)[λ1, λ1, λ1]
∣∣ ≤ 4nD2hθ,q(λ0)[λ1, λ1].

Therefore, hθ,q is 4n-second order robust.

References
Allen Zhu, Z., Li, Y., Oliveira, R., and Wigderson, A. Much

faster algorithms for matrix scaling. In FOCS’17: Pro-
ceedings of the 58th Annual IEEE Symposium on Foun-
dations of Computer Science, 2017.

Calmon, F., Wei, D., Vinzamuri, B., Ramamurthy, K. N.,
and Varshney, K. R. Optimized pre-processing for dis-
crimination prevention. In Advances in Neural Informa-
tion Processing Systems, pp. 3992–4001, 2017.

Cohen, M. B., Madry, A., Tsipras, D., and Vladu, A. Ma-
trix scaling and balancing via box constrained Newton’s
method and interior point methods. In FOCS’17: Pro-
ceedings of the 58th Annual IEEE Symposium on Foun-
dations of Computer Science, 2017.

Jerrum, M. R., Valiant, L. G., and Vazirani, V. V. Random
generation of combinatorial structures from a uniform
distribution. Theoretical Computer Science, 43:169–188,
1986.

Karmarkar, N. A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual
ACM symposium on Theory of computing, pp. 302–311,
1984.

Singh, M. and Vishnoi, N. K. Entropy, optimization and
counting. In Proceedings of the 46th Annual ACM Sym-
posium on Theory of Computing, pp. 50–59. ACM, 2014.

Wright, M. The interior-point revolution in optimization:
history, recent developments, and lasting consequences.
Bulletin of the American mathematical society, 42(1):
39–56, 2005.

Data preprocessing to mitigate bias

Figure 7. The figures represent the fairness (measured using data SR or classifier SR or representation rate) vs accuracy (measured using
KL-divergence or covariance matrix difference norm or classifier accuracy) tradeoff for our method and baselines. “SR” denotes statistical
rate. For all metrics, we plot the mean across all folds and repetitions, with the standard deviation as error bars. Note that the approach of
(Calmon et al., 2017) is infeasible for larger domains, such as the large version of COMPAS datasets, and hence we do not present their
results on that dataset. These results are also presented in tabular form in Table 2 in the supplementary material.

