
Learning to Simulate and Design for Structural Engineering

Kai-Hung Chang 1 Chin-Yi Cheng 1

1. Data Collection
This section describes the data collection process in detail.
All unit abbreviations are listed in Table 1. We adopt the
same beam spans, materials, cross-sections, and load cases
used by a structural design company.

1.1. Skeleton Creation

Building skeleton are created by a fixed sampling algorithm
due to the deficiency of real-world data. Each building
is erected on a rectangular base which edges are sampled
between 60 ft to 400 ft. A grid is created on the base and the
intervals are sampled from the set of beam spans, ranging
from 28 ft to 40 ft. A connected layout is sampled from the
grid using depth-first-search algorithm which expands to
neighboring grid cells with 0.5 probability. The same layout
is vertically stacked up to 10 stories to form a voxel-like
building geometry. Each voxel contains four columns on
four vertical sides and four beams which form a rectangle
frame on the top to support the floor panel. The story height
is fixed at 16 ft.

1.2. Structural Simulation Model in RSA

Given the geometry of the building structure, we can create
the corresponding structural simulation model in Autodesk
Robot Structural Analysis (RSA), which is an industrial
structural simulation software. All the columns on the first
story are not pinned, but fixed to the ground. Materials for
columns and beams are Steel A500-46 and Steel A992-50
respectively. For each column and beam, the cross-section
is randomly assigned from Table 2. 150 pcf Concrete floor
panels are modeled as slabs on trapezoid plates with other
parameters given in Table 3. The definition of the symbols
can be found in this link. In the graph representation, we do
not model joists (smaller beams arranged in parallel across
two beams to support floor panels). Instead, each surface
load is converted to concentrated loads at joist endpoints.

1Autodesk Research, San Francisco, California, United
States. Correspondence to: Kai-Hung Chang <kai-
hung.chang@autodesk.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Table 1. Unit Abbreviation
Abbreviation Full Unit

ft Foot
pcf Pound per cubic foot
psf Pound per square foot

Table 2. Cross-Section Library
Column Beam

HSSQ 16x16x0.375 W 21 x 44
HSSQ 16x16x0.5 W 21 x 48
HSSQ 16x16x0.625 W 21 x 50
HSSQ 16x16x0.75 W 21 x 57
HSSQ 16x16x0.875 W 21 x 62

W 21 x 68
W 21 x 73
W 21 x 83
W 21 x 93

Table 3. Floor Panel Specification
Parameter Name Value

h 6.3 in
h1 2.56 in
a 7.4 in
a1 1.73 in
a2 4.96 in
Th 7.46 in
Th 1 8.86 in
Th 2 6.3 in
Joist Direction Parallel to the shorter edge
Material Concrete
Material Resistance 3.5 ksi
Material Unit Weight 0.15 kip/ft3
Diaphragm Rigid
Load Transfer Simplified one way
Finite Element None

For each floor panel, three joists are placed across the longer
edges.

1.3. Load Cases Setup

IBC 2000 is the building code used for structural simulation.
Below lists all the load cases:

1. Self-Weight: This is the self-weight load acting in the
gravitational direction for all structure elements. The

https://www.autodesk.com/products/robot-structural-analysis/overview
https://knowledge.autodesk.com/support/robot-structural-analysis-products/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/RSAPRO-UsersGuide/files/GUID-2000B438-5453-4C90-B658-E3DE6F8AF33A-htm.html

Learning to Simulate and Design for Structural Engineering

coefficient is set to 1.1.

2. Super-Imposed Dead Load: Super-imposed dead load
accounts for the static weight of the non-structure el-
ements. Here we add 24 psf surface loads to all floor
panels except the roof.

3. Live Load: Live load refers to the load that may change
over time, such as people walking around. We consider
100 psf surface loasd on all floor panels except the roof.

4. Roof Live Load: Roof live load is set as 20 psf surface
load, different from the live load on other stories.

5. Roof Dead Load: We assign 15 psf surface load for
non-structure elements on roof panels.

6. Cladding Load: 20 psf× 16 ft (story height) + 90 lb/ft
= 410 lb/ft line load is added to all boundary beams on
each story for self-weights of cladding walls.

7. Modal Analysis: Modal analysis determines eigenval-
ues (eigenpulsations, eigenfrequencies, or eigenperi-
ods), precision, eigenvectors, participation coefficients
and participation masses for the problem of structural
eigenvibrations. The number of modes is set to 30.

8. Seismic X: Seismic loads are automatically computed
by RSA given the building code. We consider seismic
loads in two directions: X and Y. Settings of seismic
loads are listed in Table 4. Seismic X refers to the
seismic loads in direction X.

9. Seismic Y: This is the seismic loads in direction Y.

10. Static Load Combination: Load combination linearly
combines multiple load cases. Static load combination
is defined as 1.2D+1.6L+0.5Lr, whereD is the sum
of dead loads (1+2+5+6), L is the live load (3),and Lr
is the roof live loads (4).

11. Seismic Load Combination X: Complete quadratic
combination (CQC) method is used for seismic load
combination. This is defined as 0.9D + 1.0Ex, where
Ex is the Seismic X load (8).

12. Seismic Load Combination Y: This is defined as 0.9D+
1.0Ey , where Ey is the Seismic Y load (9).

1.4. Saved Results

After running the structural simulation, we save all drift
ratios in direction X and Y for Seismic Load Combi-
nation X and Y load cases respectively. The compo-
nents of the drift ratios perpendicular to the seismic load
directions are relatively small compared to the drift ra-
tio limit. The drift ratio distribution is normalized to
[−1, 1]. The open-source data set is available under
https://github.com/AutodeskAILab/LSDSE-Dataset.

Table 4. Seismic Parameters

Parameter Name Value

Site Class D
S1 (Acceleration parameter for 1-second period) 0.6
Ss (Acceleration parameter for short periods.) 1.8
Ie (Importance factor) 0.0
Load to mass conversion for dead load 1.0
Load to mass conversion for live load 0.1
Load to mass conversion for roof live load 0.25

(a) Number of nodes distribution.

(b) Number of edges distribution.

Figure 1. Statistics of 4000 collected structural graphs.

1.5. Statistics

Figure 1 shows statistics of the collected 4000 building struc-
tural graphs. Figure 2 plots the two histograms: one for the
times to generate one datum and the other for the calculation
times spent on solving each structural simulation.

2. Models Details
2.1. NeuralSim

The input node feature of bar i in a structural graph is de-
noted as vi ∈ R19. A single layer perceptron (SLP) encoder

https://github.com/AutodeskAILab/LSDSE-Dataset

Learning to Simulate and Design for Structural Engineering

(a) Data collection time distribution.

(b) Calculation time distribution for solving struc-
tural simulations.

Figure 2. Statistics of 4000 collected structural graphs.

first maps each node feature to embedding v0i ∈ R512.

v0i = SLPencoder(vi) (1)

To perform message-passing in the propagation step, we
first compute aggregated messages then update each node
feature. The superscript t denotes the propagation step and
Ne(i) denotes the neighbor set of node i.

mt
i =Mean{SLPmessage(vti , vtj)|j ∈ Ne(i)} (2)

mpti =Mean{SLPp message([vti ,
1

d(i, j) + 1
vtj]),

j = argmax
l
{d(l, i)|l ∈ As}|∀As, s = 1 . . . S}

(3)

vt+1
i = SLPupdate(v

t
i ,mp

t
i,m

t
i) (4)

Equation 2 computes the aggregated message mi from
neighbor nodes while Equation 3 computes the position-
aware message mpi from the set of 512 anchor nodes
{As|s = 1 . . . S}. d(l, i) represents the geodesic distance
between node l and i. For more detail about position-aware
message, we refer the readers to the (You et al., 2019). Equa-
tion 4 updates each node embedding based on the current

embedding and the messages. If position-aware message
is not used, we drop mptt and change the input dimension
of SLPupdate accordingly. In the end, we apply dropout
function with 0.5 probability before the next propagation.
In total, we run T = 5 propagation steps.

Since NeuralSim is generating per-story output, we com-
pute the story embedding ok by average pooling all the
embeddings in story k.

ok = AvgPool({vTi)|i ∈ Story k}) (5)
ok ← SLPrecursive{[ok, ok+1]} for k = K − 1 . . . 1 (6)

Structured Decoder is processed using Equation 6, where
each story embedding is updated in the top-down order. In
the end, the story embeddings are passed to two multi-layer
perceptron (MLP) decoders: one predicts the drift ratios
hk ∈ R2 and the other classifies if the ground-truth drift
ratios exceed the drift ratio limit lim = 0.015 or not.

hk =MLPdecoder(ok) (7)
ck = SigmoidMLPdecoder(ok) (8)

The multi-task loss is constructed by adding the L1 loss and
the binary cross-entropy (BCE) loss.

Loss =
1

K

K∑
k=1

|hk − ĥk| − w × BCE(ck, ĉk) (9)

, where ĥk is the ground-truth drift ratio , ĉk is 1 if ĥk > lim,
otherwise is 0, and w = 1 is the weight balancing the two
losses. NeuralSim is trained with 5 epochs, batch size 1,
and learning rate 1e-4 using the Adam optimizer.

2.2. NeuralSizer

The inputs of the NeuralSizer are building skeleton geome-
tries, which are represented as the same structural graphs
except that the input node features vi ∈ R10 now do not
contain cross-sections. The encoder and propagation steps
are the same as NeuralSim. Note that NeuralSizer does
not compute nor use position-aware message by virtue of a
faster training time. After 5 steps of propagation, the graph
embedding g is computed by MaxPooling all the node em-
beddings as below.

g =MaxPooling(vTi |∀i) (10)

Each node embedding together with the graph embedding
is fed into an MLP decoder to generate one-hot vectors yi ∈
R9 using hard Gumbel-Softmax function. The decoder has
leaky ReLU function with negative slope 0.01 and dropout
function in each layer.

yi = GumbelSoftmax(MLPdecoder(v
T
i , g)) (11)

Learning to Simulate and Design for Structural Engineering

NeuralSizer is trained with batch size 5 and learning rate
1e-4 using Adam optimizer. 50,000 buildings are randomly
sampled during training, and a fixed 500 data set is used
for evaluation. The drop out probability is 0.5 and linearly
decays to zero at the end of training. The loss function is
given in the main paper.

3. Dual Gradient Descent
A general constrained optimization problem with an objec-
tive function f(θ) and an equality constraint g(θ) can be
written as

min
θ
f(θ) s.t. g(θ) = 0 (12)

Changing the constrained optimization to the dual problem,
we get the Lagrangian:

L(θ, λ) = f(θ)− λg(θ) (13)

, where λ is the dual variable. Dual gradient descent al-
ternates between optimizing the Lagrangian with respect
to the primal variables to convergence, and then taking a
gradient step on the dual variables. The necessity of op-
timizing the Lagrangian to convergence is optional under
convexity. Both (Haarnoja et al., 2018) and our work found
updating one gradient step still works in practice. As a re-
sult, the primal and dual variables are iteratively updated by
the following equations.

θ′ = θ + β(∇θf(θ)− λ∇θg(θ)) (14)
λ′ = λ+ γg(θ) (15)

where β and γ are learning rates. Inequality constraints can
also be formulated similarly.

In this paper, our total loss isw0obj+w1ldr+w2lvar+w3lH .
The initial weights and their learning rates are listed in Table
5.

Table 5. Dual Gradient Descent Parameters
Loss Initial Weight Learning Rate

Mass Objective w0 = 1, 10 n/a
Drift Ratio Constraint w1 = 1e3 γ1 = 1e-1
Variety Constraint w2 = 1.0 γ2 = 5e-4
Entropy Constraint w3 = 1.0 γ3 = 1e-3

4. Learning Curves for Neural Simulators
Figure 3 and Figure 4 plot the learning curves of different
models and ablation studies.

5. User Study
We invite a structural engineer to work on a design in our
user study and compare the human design with the design

Figure 3. Learning curves of different models.

Figure 4. Learning curves of ablation studies.

output from NeuralSizer. The structural engineer has 30
minutes to iterate on a 4-story building design following
the manual design workflow. We also run NeuralSizer to
create one design. All designs are evaluated with respect to
the mass objective, the drift ratio constraint(< 0.025), and
the variety constraint(< 6). In 30 minutes, the structural
engineer is able to create five iterations, and the evaluation
results are presented in Table 6. The beam and column
usages are sorted in the descending order of strength. Using
stronger columns or beams lowers drift ratios, but leads
to a larger total mass. The yellow-colored row highlights
the most light-weighted designs that satisfy all constraints
created by the structural engineer and NeuralSizer. The
red cells indicate that the drift ratio exceeds the limit. The
designs are visualized in Figure 5.

In the first two iterations, the structural engineer prioritizes

Learning to Simulate and Design for Structural Engineering

the constraint satisfaction by choosing two designs using
mostly the strongest columns and beams. The simulation
results of the first two designs provide not only a baseline,
but also a vague idea about the relation between the cross-
section decisions and the drift ratio changes. The third
design is the first attempt to optimize the mass objective
and has a significantly smaller mass. However, when the
structural engineer tries to further decrease the mass in the
fourth and fifth iteration, both designs violate the drift ra-
tio constraint. Compared to the best human design in the
third iteration, NeuralSizer outputs a design that has a lower
mass while satisfying the constraints. Note that the 4-story
building example is relatively simple. As the building be-
comes more massive (10 stories with more than 500 bars for
example), the performance of human designs can degrade.

Potentially, human might still be able to create more optimal
designs given more iterations. As a result, we claim that
NeuralSizer can save the time and effort by providing a
better initial design to structural engineers.

References
Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,

S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018.

You, J., Ying, R., and Leskovec, J. Position-aware graph
neural networks. arXiv preprint arXiv:1906.04817, 2019.

Ta
bl

e
6.

U
se

rS
tu

dy
R

es
ul

ts

E
xp

er
im

en
t

M
as

s
To

nn
ag

e
B

ea
m

U
sa

ge
C

ol
um

n
U

sa
ge

D
ri

ft
R

at
io

s
in

Se
is

m
ic

X
(L

im
it
=

0.
0
2
5

)
D

rif
tR

at
io

s
in

Se
is

m
ic

Y
(L

im
it
=

0.
0
2
5

)
St

or
y

1
St

or
y

2
St

or
y

3
St

or
y

4
St

or
y

1
St

or
y

2
St

or
y

3
St

or
y

4

H
um

an
It

er
at

io
n

1
42

2.
06

18
8
,0
,0
,0
,0
,0
,0
,0
,0

6
2
,6
2,
0
,0
,0

0.
02

09
0.

01
74

0.
01

5
0.

00
94

0.
02

07
0.

01
73

0.
01

49
0.

00
93

It
er

at
io

n
2

43
2.

47
18
8
,0
,0
,0
,0
,0
,0
,0
,0

1
2
4
,0
,0
,0
,0

0.
02

13
0.

01
78

0.
01

35
0.

00
84

0.
02

11
0.

01
77

0.
01

34
0.

00
83

It
er

at
io

n
3

27
9.

41
0,
0,
0
,0
,0
,0
,0
,0
,1
8
8

6
2
,6
2,
0
,0
,0

0.
02

08
0.

01
73

0.
01

49
0.

00
93

0.
02

06
0.

01
72

0.
01

48
0.

00
93

It
er

at
io

n
4

20
1.

86
0,
0,
0
,0
,0
,0
,0
,0
,1
8
8

0
,0
,0
,0
,1
2
4

0.
03

05
0.

02
53

0.
01

92
0.

01
19

0.
03

02
0.

02
51

0.
01

91
0.

01
19

It
er

at
io

n
5

26
7.

95
47
,0
,4
7,
0,
0
,4
7
,0
,0
,4
7

0
,0
,0
,0
,1
2
4

0.
03

06
0.

02
53

0.
01

93
0.

01
19

0.
03

03
0.

02
51

0.
01

91
0.

01
19

N
eu

ra
lS

iz
er

O
bj

ec
tiv

e
W

ei
gh

t1
0

25
7.

47
0,
0,
0
,0
,0
,0
,0
,0
,1
8
8

7
1
,7
,2
,4
,4
0

0.
01

96
0.

01
72

0.
01

49
0.

01
65

0.
01

92
0.

01
98

0.
01

46
0.

01
61

Learning to Simulate and Design for Structural Engineering

Figure 5. Visualization of NeuralSizer design and human designs.

