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Abstract

Selective rationalization improves neural network
interpretability by identifying a small subset
of input features — the rationale — that best
explains or supports the prediction. A typical
rationalization criterion, i.e. maximum mutual
information (MMI), finds the rationale that
maximizes the prediction performance based
only on the rationale. However, MMI can be
problematic because it picks up spurious correla-
tions between the input features and the output.
Instead, we introduce a game-theoretic invariant
rationalization criterion where the rationales
are constrained to enable the same predictor to
be optimal across different environments. We
show both theoretically and empirically that
the proposed rationales can rule out spurious
correlations and generalize better to different
test scenarios. The resulting explanations
also align better with human judgments. Our
implementations are publicly available at
https://github.com/code-terminator/
invariant_rationalization.

1. Introduction

A number of selective rationalization techniques (Lei et al.,
2016; Li et al., 2016b; Chen et al., 2018a;b; Yu et al., 2018;
Carton et al., 2018; Bastings et al., 2019; Yu et al., 2019;
Chang et al., 2019) have been proposed to explain the pre-
dictions of complex neural models. The key idea driving
these methods is to find a small subset of the input fea-
tures – rationale – that suffices on its own to yield the same
outcome. In practice, rationales that remove much of the
spurious content from the input, e.g., text, could be used and
examined as justifications for model’s predictions.

The most commonly-used criterion for rationales is the max-
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imum mutual information (MMI) criterion. In the context
of natural language processing (NLP), it defines rationale
as the subset of input text that maximizes the mutual infor-
mation between the subset and the model output, subject
to the constraint that the selected subset remains within a
prescribed length. Specifically, if we denote the random
variables corresponding to input as X, rationales as Z and
the model output as Y , then the MMI criterion finds the
explanation Z = Z(X) that yields the highest prediction
accuracy of Y .

MMI criterion can nevertheless lead to undesirable results
in practice. It is prone to highlighting spurious correlations
between the input features and the output as valid explana-
tions. While such correlations represent statistical relations
present in the training data, and thus incorporated into the
neural model, the impact of such features on the true out-
come (as opposed to model’s predictions) can change at test
time. In other words, MMI may select features that do not
explain the underlying relationship between the inputs and
outputs even though they may still be faithfully reporting
the model’s behavior. We seek to modify the rationalization
criterion to better tailor it to find causal features.

As an example, consider figure 1 that shows a beverage re-
view which covers four aspects of beer: appearance, smell,
palate, and overall. The reviewers also assigned a score
to each of these aspects. Suppose we want to find an ex-
planation supporting a positive score to smell. The correct
explanation should be the portion of the review that actually
discusses smell, as highlighted in green. However, reviews
for other aspects such as palate (highlighted in red) may
co-vary with smell score since, as senses, smell and palate
are related. The overall statement as highlighted in blue
would typically also clearly correlate with any individual
aspect score, including smell. Taken together, sentences
highlighted in green, red and blue would all be highly cor-
related with the positive score for smell. As a result, MMI
may select any one of them (or some combination) as the
rationale, depending on precise statistics in the training data.
Only the green sentence constitutes an adequate explanation.

Our goal is to design a rationalization criterion that approx-
imates finding causal features. While assessing causality
is challenging, we can approximate the task by searching
instead features that are in some sense invariant. This no-
tion was recently introduced in the context of invariant risk
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Beer - Smell Label - Positive

375ml corked and caged bottle with bottled on date november 30 2005 , poured into snifter at brouwer ’s , reviewed on 5/15/11
. aroma : pours a clear golden color with orange hues and a whitish head that leaves some lacing around glass . smell : lots of

barnyaardy funk with tons of earthy aromas , grass and some lemon peel . palate : similar to the aroma , lots of funk , lactic

sourness , really earthy with citrus notes and oak . many layers of intriguing earthy complexities . overall : very funky and

earthy gueuze , nice and crisp with good drinkability .

Figure 1. An example beer review and possible rationales explaining why the score on the smell aspect is positive. Green highlights the
review on the smell aspect, which is the true explanation. Red highlights the review on the taste aspect, which has a high correlation with
the smell. Blue highlights the overall review, which summarizes all the aspects, including smell. All three sentences have high predictive
powers of the smell score, but only the green sentence is the desired explanation.

minimization (IRM) (Arjovsky et al., 2019). The main idea
is to highlight spurious (non-causal) variation by dividing
the data into different environments. The same predictor,
if based on causal features, should remain optimal in each
environment separately.

In this paper, we propose invariant rationalization (INVRAT),
a novel rationalization scheme that incorporates the invari-
ance constraint. We extend the IRM principle to neural
predictions by resorting to a game-theoretic framework
to impose invariance. Specifically, the proposed frame-
work consists of three modules: a rationale generator, an
environment-agnostic predictor as well as an environment-
aware predictor. The rationale generator generates rationales
Z from the input X, and both predictors try to predict Y
from Z. The only difference between the two predictors
is that the environment-aware predictor also has access to
which environment each training data point is drawn from.
The goal of the rationale generator is to restrict the ratio-
nales in a manner that closes the performance gap between
the two predictors while still maximizing the prediction
accuracy of the environment-agnostic predictor.

We show theoretically that INVRAT can solve the invariant
rationalization problem, and that the invariant rationales gen-
eralize well to unknown test environments in a well-defined
minimax sense. We evaluate INVRAT on multiple datasets
with false correlations. The results show that INVRAT does
significantly better in removing false correlations and find-
ing explanations that better align with human judgments.
Both data and code will become publicly available.

2. Preliminaries: MMI and Its Limitation

In this section, we will formally review the MMI crite-
rion and analyze its limitation using a probabilistic model.
Throughout the paper, upper-cased letters, X and X, denote
random scalars and vectors respectively; lower-cased letters,
x and x, denote deterministic scalars and vectors respec-
tively; H(X) denotes the Shannon entropy of X; H(Y |X)

denotes the entropy of Y conditional on X; I(Y ;X) denotes
the mutual information. Without causing ambiguities, we

X3

EY

X1 X2

Figure 2. A probabilistic model illustrating different parts of an
input that have different probabilistic relationships with the model
output Y . A sentence X can be divided into three variables X1,
X2 and X3. All X1, X2 and X3 can be highly correlated with
Y , but only X1 is regarded as a plausible explanation.

use pX(·) and p(X) interchangeably to denote the proba-
bilistic mass function of X.

2.1. Maximum Mutual Information Criterion

The MMI objective can be formulated as follows. Given the
input-output pairs (X, Y ), MMI aims to find a rationale Z,
which is a masked version of X, such that it maximizes the
mutual information between Z and Y . Formally,

max
m2S

I(Y ;Z) s.t. Z = m�X, (1)

where m is a binary mask and S denotes a subset of {0, 1}N
with a sparsity and a continuity constraints. N is the to-
tal length in X. We leave the exact mathematical form of
the constraint set S abstract here, and it will be formally
introduced in section 3.5. � denotes the element-wise mul-
tiplication of two vectors or matrices. Since the mutual
information measures the predictive power of Z on Y , MMI
essentially tries to find a subset of input features that can
best predict the output Y .

2.2. MMI Limitations

The biggest problem of MMI is that it is prone to picking
up spurious probabilistic correlations, rather than finding
the causal explanation. To demonstrate why this is the case,
consider a probabilistic graph in figure 2, where X is di-
vided into three variables, X1, X2 and X3, which represents
the three typical relationship with Y : X1 influences Y ; X2
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is influenced by Y ; X3 has no direction connections with Y .
The dashed arrows represent some additional probabilistic
dependencies among X. For now, we ignore E.

As observed from the graph, X1 serves as the valid explana-
tion of Y , because it is the true cause of Y . Neither X2 nor
X3 are valid explanations. However, X1, X2 and X3 can
all be highly predicative of Y , so the MMI criterion may
select any of the three features as the rationale. Concretely,
consider the following toy example with all binary variables.
Assume pX1(1) = 0.5, and

pY |X1(1|1) = pY |X1(0|0) = 0.9, (2)

which makes X1 a good predictor of Y . Next, define the
conditional prior of X2 as

pX2|Y (1|1) = pX2|Y (0|0) = 0.9.

According to the Bayes rule,

pY |X2(1|1) = pY |X2(0|0) = 0.9, (3)

which makes X2 also a good predictor of Y . Finally, assume
the conditional prior of X3 is

pX3|X1,X2(1|1, 1) = pX3|X1,X2(0|0, 0) = 1, and
pX3|X1,X2(1|0, 1) = pX3|X1,X2(1|1, 0) = 0.5.

It can be computed that

pY |X3(1|1) = pY |X3(0|0) = 0.9. (4)

In short, according to equations (2), (3) and (4), we have
constructed a set of priors such that the predictive power of
X1, X2 and X3 is exactly the same. As a result, there is no
reason for MMI to favor X1 over the others.

In fact, X1, X2 and X3 correspond to the three highlighted
sentences in figure 1. X1 corresponds to the smell review
(green sentence), because it represents the true explanation
that influences the output decision. X2 corresponds to the
overall review (blue sentence), because the overall summary
of the beer inversely influenced by the smell score. Finally,
X3 corresponds to the palate review (red sentence), because
the palate review does not have a direct relationship with the
smell score. However, X3 may still be highly predicative
of Y because it can be strongly correlated with X1 and
X2. Therefore, we need to explore a novel rationalization
scheme that can distinguish X1 from the rest.

3. Adversarial Invariant Rationalization

In this section, we propose invariant rationalization, a ratio-
nalization criterion that can exclude rationales with spurious
correlations, utilizing the extra information provided by an
environment variable. We will introduce INVRAT, a game-
theoretic approach to solving the invariant rationalization
problem. We will then theoretically analyze the convergence
property and the generalizability of invariant rationales.

3.1. Invariant Rationalization

Without further information, distinguishing X1 from X2

and X3 is a challenging task. However, this challenge can
be resolved if we also have access to an extra piece of
information: the environment. As shown in figure 2, an
environment is defined as an instance of the variable E

that impacts the prior distribution of X (Arjovsky et al.,
2019). On the other hand, we make the same assumption
as in IRM that the p(Y |X1) remains the same across the
environments (hence there is no edge pointing from E to Y

in figure 2), because X1 is the true cause of Y . A general
guidance on how to choose the environments is presented in
appendix A. As we will show soon, p(Y |X2) and p(Y |X3)

will not remain the same across the environments, which
distinguishes X1 from X2 and X3.

Back to the binary toy example in section 2.2, suppose there
are two environments, e1 and e2. In environment e1, all the
prior distributions are exactly the same as in section 2.2.
In environment e2, the priors are almost the same, except
for the prior of X1. For notation ease, define qX(·) as the
probabilities under environment e2, i.e. pX|E(·|e2). Then,
we assume that

qX1(1) = 0.6.

It turns out that such a small difference suffices to expose
X2 and X3. In this environment, q(Y |X1) is the same as in
equation (2) as assumed. However, it can be computed that

qY |X2(1|1) ⇡ 0.926, qY |X2(0|0) ⇡ 0.867,

qY |X3(1|1) ⇡ 0.912, qY |X3(0|0) ⇡ 0.883,

which are different from equations (3) and (4). Notice that
we have not yet assumed any changes in the priors of X2

and X3, which will introduce further differences. The fun-
damental cause of such differences is that Y is independent
of E only when conditioned on X1, so pY |X1(·|·) would not
change with E. We call this property invariance. However,
the conditional independence does not hold for X2 and X3.

Therefore, given that we have access to multiple environ-
ments during training, i.e. multiple instances of E, we
propose the invariant rationalization objective as follows:

max
m2S

I(Y ;Z) s.t. Z = m�X, Y ? E | Z, (5)

where ? denotes probabilistic independence. The only dif-
ference between equations (1) and (5) is that the latter has
the invariance constraint, which is used to screen out X2 and
X3. In practice, finding an eligible environment is feasible.
In the beer review example in figure 1, a possible choice
of environment is the brand of beer, because different beer
brands have different prior distributions of the review in
each aspect – some brands are better at the appearance, oth-
ers better at the palate. Such variations in priors suffice to
expose the non-invariance of the palate review or the overall
review in terms of predicting the smell score.
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3.2. The INVRAT Framework

The constrained optimization in equation (5) is hard to solve
in its original form. INVRAT introduces a game-theoretic
framework, which can approximately solve this problem.
Notice that the invariance constraint can be converted to a
constraint on entropy, i.e.,

Y ? E | Z , H(Y |Z, E) = H(Y |Z), (6)

which means if Z is invariant, E cannot provide extra infor-
mation beyond Z to predict Y . Guided by this perspective,
INVRAT consists of three players, as shown in figure 3:

• an environment-agnostic/-independent predictor fi(Z);
• an environment-aware predictor fe(Z, E); and
• a rationale generator, g(X).

The goal of the environment-agnostic and environment-
aware predictors is to predict Y from the rationale Z. The
only difference between them is that the latter has access to
E as another input feature but the former does not. Formally,
denote L(Y ; f) as the cross-entropy loss on a single instance.
Then the learning objective of these two predictors can be
written as follows.

L⇤
i = min

fi(·)
E[L(Y ; fi(Z))], L⇤

e = min
fe(·,·)

E[L(Y ; fe(Z, E))],

(7)
where Z = g(X). The rationale generator generates Z by
masking X. The goal of the rationale generator is also to
minimize the invariance prediction loss L⇤

i . However, there
is an additional goal to make the gap between L⇤

i and L⇤
e

small. Formally, the objective of the generator is as follows:

min
g(·)

L⇤
i + �h(L⇤

i � L⇤
e), (8)

where h(t) a convex function that is monotonically increas-
ing in t when t < 0, and strictly monotonically increasing
in t when t � 0, e.g., h(t) = t and h(t) = ReLU(t).

3.3. Convergence Properties

This section justifies that equations (7) and (8) can solve
equation (5) in its Lagrangian form. If the representation
power of fi(·) and fe(·, ·) is sufficient, the cross-entropy loss
can achieve its entropy lower bound, i.e.,

L⇤
i = H(Y |Z), L⇤

e = H(Y |Z, E).

Notice that the environment-aware loss should be no greater
than the environment-agnostic loss, because of the avail-
ability of more information, i.e., H(Y |Z) � H(Y |Z, E).
Therefore, the invariance constraint in equation (6) can be
rewritten as an inequality constraint:

H(Y |Z) = H(Y |Z, E) , H(Y |Z)  H(Y |Z, E). (9)

1

Env-ag

fi( � )

YEnv-aw

fe( � , � )

Generator

 g( � ) ZX

E

Y

Figure 3. The INVRAT framework with three players: the rationale
generator, environment-agnostic and -aware predictors.

Finally, notice that I(Y ;Z) = H(Y ) � H(Y |Z). Thus the
objective in equation (8) can be regarded as the Lagrange
form of equation (5), with the constraint rewritten as an
inequality constraint

h(H(Y |Z)�H(Y |Z, E))  h(0). (10)

According to the KKT conditions, � > 0 when equation (10)
is binding. Moreover, the objectives in equations (7) and (8)
can be rewritten as a minimax game

min
g(·),fi(·)

max
fe(·,·)

Li(g, fi) + �h(Li(g, fi)� Le(g, fe)), (11)

where

Li(g, fi) = E[L(Y ; fi(Z))], Le(g, fe) = E[L(Y ; fe(Z, E))].

Therefore, the generator plays a co-operative game with the
environment-agnostic predictor, and an adversarial game
with the environment-aware predictor. The optimization can
be performed using alternate gradient descent/ascent.

3.4. Invariance and Generalizability

In our previous discussions, we have justified the invari-
ant rationales in the sense that it can uncover consistent
and causal explanations and leave out spurious statistical
correlations. In this section, we further justify invariant
rationale in terms of generalizability. We consider two sets
of environments, a set of training environments {et} and
a test environment ea. Only the training environments are
accessible during training. The prior distributions in the
test environment are completely unknown. The question
we want to ask is: does keeping the invariant rationales and
dropping the non-invariant rationales improve the generaliz-
ability in the unknown test environment?

Assume that 1) the training data are sufficient, 2) the predic-
tor is environment-agnostic, 3) the predictor has sufficient
representation power, and 4) the training converges to the
global optimum. Under these assumptions, any predictor
is able to replicate the training set distribution (with all the
training environments mixed) p(Y |Z, E 2 {et}), which is
optimal under the cross-entropy training objective. In the
test environment ea, the cross-entropy loss of this predictor
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is given by

L⇤
test(Z) = H(p(Y |Z, ea); p(Y |Z, {et})).

where p(Y |Z, {et}) is short for p(Y |Z, E 2 {et}). L⇤
test(Z)

cannot be evaluated because the prior distribution in the test
environment is unknown. Instead, we consider the worst
scenario. For notational ease, we introduce the following
shorthand for the test environment distributions:

⇡1(x1) = pX1|E(x1|ea),
⇡2(x2|x1, y) = pX2|X1,Y,E(x2|x1, y, ea),

⇡3(x3|x1,x2) = pX3|X1,X2,E(x3|x1,x2, ·, ea).

For the selected rationale Z, we consider an adversarial test
environment (hence the notation ea), which chooses ⇡1, ⇡2

and ⇡3 to maximize L⇤
test(Z;⇡1,⇡2,⇡3) (note that L⇤

test(Z) is
a function of ⇡1, ⇡2, and ⇡3). The following theorem shows
that the minimizer of this adversarial loss is the invariant
rationale X1.

Theorem 1. Assume the probabilistic graph in figure 2 and
that there are two environments et and ea. Z = X1 achieves
the saddle point of the following minimax problem

min
Z2X

max
⇡1,⇡2,⇡3

L⇤
test(Z;⇡1,⇡2,⇡3),

where X denotes the power set of [X1,X2,X3].

The proof is provided in the appendix B. Theorem 1 shows
the nice property of the invariance rationale that it minimizes
the risk under the most adverse test environment.

3.5. Incorporating Sparsity and Continuity Constraints

The sparsity and continuity constraint m 2 S (equation (5))
stipulates that the total number of 1’s in m should be upper
bounded and contiguous. There are two ways to implement
the constraints.

Soft constraints: Following Chang et al. (2019), we can
add another two Lagrange terms to equations (11):

µ1

����
1
N

E[kmk1]� ↵

����+ µ2E
 NX

n=2

|mn �mn�1|
�
, (12)

where mn denotes the n-th element of m; ↵ is a predefined
sparsity level. m is produced by an independent selection
process (Lei et al., 2016). This method is flexible, but
requires sophisticated tuning of three Lagrange multipliers.

Hard constraints: An alternative approach is to force g(·)
to select one chunck of text with a pre-specified length l.
Instead of predicting the mask directly, g(·) produces a score
sn for each position n, and predicts the start position of the
chunk by choosing the maximum of the score. Formally

n
⇤ = argmax

n
sn, mn = [n 2 [n⇤

, n
⇤ + l � 1]], (13)

where denotes the indicator function, which equals 1 if
the argument is true, and 0 otherwise. Equation (13) is
not differentiable, so when computing the gradients for the
back propagation, we apply the straight-through technique
(Bengio et al., 2013) and approximate it with the gradient of

ŝ = softmax(s), m = CausalConv(ŝ),

where CausalConv(·) denotes causal convolution, and the
convolution kernel is an all-one vector of length l.

4. Experiments

4.1. Datasets

To evaluate the invariant rationale generation, we consider
the following two binary classification datasets with known
spurious correlations.

IMDB (Maas et al., 2011): The original dataset consists
of 25,000 movie reviews for training and 25,000 for testing.
The output Y is the binarized score of the movie. We con-
struct a synthetic setting that manually injects tokens with
false correlations with Y , whose prior varies across artificial
environments. The goal is to validate if the proposed method
excludes these tokens from rationale selections. Specifically,
we first randomly split the training set into two balanced
subsets, where each subset is considered as an environment.
At the beginning of each review, we randomly append one
punctuation, S 2 {“,” , “.”}, with the following distributions:

p(S = “,” |Y = 1, ei) = p(S = “.” |Y = 0, ei) = ↵i

Here i is the environment index taking values on {0, 1}.
Specifically, we set ↵0 and ↵1 to be 0.9 and 0.7, respectively,
for the training set. For the purpose of model selection and
evaluation, we randomly split the original test set into two
balanced subsets, which are our new validation and test sets.
To test how different rationalization techniques generalize
to unknown environments, we also inject the punctuation to
the test and validation set, but with ↵0 and ↵1 set as 0.5 for
the validation set, and 0.1, 0.3 for the testing set. According
to equation (4.1), these manually injected “,” and “.” can
be thought of as the X2 variable in the figure 2, which have
strong correlations to the label. It is worth mentioning that
the environment ID is only provided in the training set.

Multi-aspect beer reviews (McAuley et al., 2012): This
dataset is commonly used in the field of rationalization (Lei
et al., 2016; Bao et al., 2018; Yu et al., 2019; Chang et al.,
2019). It contains 1.5 million beer reviews, each of which
evaluates multiple aspects of a beer. These aspects include
appearance, aroma, smell, palate and overall. Each aspect
has a rating at the scale of [0, 1]. The goal is to provide ratio-
nales for these ratings. There is a high correlation among the
rating scores of different aspects in the same review, making
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it difficult to directly learn a rationalization model from the
original data. Therefore only the decorrelated subsets are
selected as training data in the previous usages (Lei et al.,
2016; Yu et al., 2019).

However, the high correlation among rating scores in the
original data provides us a perfect evaluation benchmark
for INVRATon its ability to exclude irrelevant but highly
correlated aspects, because these highly correlated aspects
can be thought of as X2 and X3 in figure 2, as discussed in
section 2.2. To construct different environments, we cluster
the data based on different degree of correlation among the
aspects. To gauge the correlation among aspect, we train
a simple linear regression model to predict the rating of
the target aspect given the ratings of all the other aspects
except the overall. A low prediction error of the data implies
high correlation among the aspects. We then assign the data
into different environments based on the linear prediction
error. In particular, we construct two training environments
using the data with least prediction error, i.e. highest cor-
relations. The first training environment is sampled from
around the lowest 25 percentile of the prediction error1,
while the second one is from around 25 to 50 percentile. On
the contrary, we construct a validation set and a subjective
evaluation set from data with the highest prediction error
(i.e. around the highest 50 percentile). Following the same
evaluation protocol (Bao et al., 2018; Chang et al., 2019),
we consider a classification setting by treating reviews with
ratings  0.4 as negative and � 0.6 as positive. Each train-
ing environment is further sub-sampled to contain a total
5,000 label-balanced examples, which makes the size of
the training set as 10,000. The validation set is similarly
sub-sampled into size 2,000. The size of the subjective
evaluation set is 400. Same as almost all previous work
in rationalization, we focus on the appearance, aroma, and
palate aspects only.

Also, this dataset includes sentence-level annotations for
about 1,000 reviews. Each sentence is annotated with one or
multiple aspects label, indicating which aspect this sentence
belonging to. We use this set to automatically evaluate the
precision of the extracted rationales.

4.2. Baselines

We consider the following two baselines:

RNP: A generator-predictor framework proposed by Lei
et al. (2016) for rationalizing neural prediction (RNP). The
generator selects text spans as rationales which are then
fed to the predictor for label classification. The selection
optimizes the MMI criterion shown in equation (1).

1For each aspect, the exact percentile needs to be adjusted such
that there are sufficient positive and negative examples to form a
label-balanced subset of a given size. This also holds for the other
environment partitions.

3PLAYER: The improvement of RNP from Yu et al. (2019),
which aims to alleviate the degeneration problem of RNP.
The model consists of three modules, which are the gen-
erator, the predictor and the complement predictor. The
complement predictor tries to maximize the predictive ac-
curacy from unselected words. Besides the MMI objective
optimized between the generator and predictor, the gener-
ator also plays an adversarial game with the complement
predictor, trying to minimize its performance.

There exist other differentiable selective rationalization
methods with good performance, e.g., Bastings et al. (2019).
These methods rely on the properties of distributions for
binary selection of rationale words, which falls to a degen-
erated mode in our more challenging settings. Appendix C
gives the studies of the out-of-box algorithm from (Bastings
et al., 2019). Adapting these algorithms to span selection is
non-trivial, and we leave it to future work.

4.3. Implementation Details

For all experiments, we use bidirectional gated recurrent
units (Chung et al., 2014) with hidden dimension 256 for
the generator and both of the predictors. All the methods
are initialized with 100-dimension Glove embeddings (Pen-
nington et al., 2014). We use the Adam optimizer (Kingma
& Ba, 2014) with a learning rate of 0.001. The batch size
is set to 500. To seek fair comparisons, we try to keep the
settings of both RNP and 3PLAYER the same to ours. We
adapted the open-source implementations of the RNP2 and
3PLAYER3. The only major difference between these mod-
els is that both RNP and INVRAT use the straight-through
technique (Bengio et al., 2013) to deal with the problem of
non-differentiability in rationale selections while 3PLAYER
is based on the policy gradient (Williams, 1992).

For the IMDB dataset, we follow a standard setting (Lei
et al., 2016; Chang et al., 2019) to use the soft constraints
to regularize the selected rationales for all methods. For
the beer review task, we find the baseline methods perform
much worse using soft constraints compared to the hard
one. This might be because the review of each aspect is
highly correlated in the training set. Thus, we consider
the hard constraints (equation (13)) with different length
in generating rationales. We also find that training with
multiple random initializations can prevent being trapped in
poor local optima. Hyperparameters (i.e., µ1, µ2 in equation
(12) for the IMDB experiment, � and h(·) in equation (8),
the number of consecutive gradient ascent/descent steps for
each player during one iteration, and the number of training
epochs for both experiments) are determined based on the

2https://github.com/YujiaBao/R2A/tree/
master/rationalization.

3https://github.com/Gorov/three_player_
for_emnlp.

https://github.com/YujiaBao/R2A/tree/master/rationalization
https://github.com/YujiaBao/R2A/tree/master/rationalization
https://github.com/Gorov/three_player_for_emnlp
https://github.com/Gorov/three_player_for_emnlp
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Table 1. Results on the synthetic IMDB dataset. The last column
is the percentage of testing examples with the injected punctuation
selected as a part of the rationales. The best test results are bolded.
We also list the result of the black-box model with full texts as
inputs for reference.

Dev Acc Test Acc Bias Highlighted
RNP 78.90 72.25 78.24
INVRAT 86.65 87.05 0.00

Full Text 82.90 78.00 100.00

best performance on the validation set.

4.4. Results

IMDB: Table 1 shows the results on the synthetic IMDB
dataset. As we can see, RNP selects the injected punctua-
tion in 78.24% of the testing samples, while INVRAT, as
expected, does not highlight any. This result verifies our
theoretical analysis in section 3. Moreover, because RNP
relies on these injected punctuation, whose probabilistic
distribution varies drastically between training set and test
set, its generalizability is poor, which leads to low predictive
accuracy on the testing set. Specifically, there is a large gap
of around 15% between the test performance of RNP and
the proposed INVRAT. As a reference, table 1 also reports
the result on full text, i.e. the entire text as the rationale.
Similar to Rnp, the full text also has poor generalizability
to the test set, because it also includes the non-invariant
punctuation as rationales. It is worth pointing out that, by
the dataset construction, 3PLAYER will obviously fail by
including all punctuation as rationales. This is because oth-
erwise, the complement predictor will have a clear clue to
guess the predicted label. Thus, we exclude 3PLAYER from
the comparison.

Beer Review: We conduct both objective and subjective
evaluations for the beer review dataset. We first compare
the generated rationales against the human annotations and
report precision, recall and F1 score in table 2. Similarly, the
reported performances are based on the best performance
on the validation set, which is also reported. We consider
the highlight lengths of 10, 20 and 30.

We observe that INVRAT consistently surpass the other two
baselines in finding rationales that align with human an-
notation for most of the rationale lengths and the aspects.
In particular, although the best accuracies among all three
methods on validation sets have only small variations, the
improvements are significant in terms of finding the correct
rationales. For example, INVRAT improves over the other
two methods for more than 20 absolute percent in F1 for
the appearance aspect. Two baselines methods fail to dis-
tinguish the true clues for different aspects, which confirms
that the previous MMI objective is insufficient for ruling out

Figure 5. Subjective performances of generated rationales. Sub-
jects are asked to guess the target aspect (i.e. which aspect of the
model is trained on) based on the generated rationales. We report
the case of preset rationale length of 10, 20 and 30.

the spurious words.

In addition, we also visualize the generated rationales of our
method with a preset length of 20 in figure 4. We observe
that the INVRAT is able to produce meaningful justifications
for all three aspects. By reading these selected texts alone,
humans will easily predict the aspect label. To further verify
that the rationales generated by INVRAT align with human
judgment, we present a subjective evaluation via Amazon
Mechanical Turk. Recall that for each aspect we preserved
a hold-out set with 400 examples (total 1,200 examples
for all three aspects). We generate rationales with different
lengths for all methods. In each subjective test, the subject is
presented with the rationale of one aspect of the beer review,
generated by one of the three methods (unselected words
blocked), and asked to guess which aspect the rationale
is talking about. We then compute the accuracy as the
performance metric, which is shown in figure 5. Under this
setting, a generator that picks spurious correlated texts will
have a low accuracy. As can be observed, INVRAT achieves
the best performances in all cases.

5. Related Work

Selective rationalization Selective rationalization is one
of the major categories of model interpretability in machine
learning. Lei et al. (2016) first propose a generator-predictor
framework for rationalization. The framework is formally
a co-operative game that maximizes the mutual informa-
tion between the selected rationales and labels, as shown
in (Chen et al., 2018a). Following this work, Chen et al.
(2018b) improves the generator-predictor framework by
proposing a new rationalization criterion by considering
the combinatorial nature of the selection. Yu et al. (2019)
point out the communication problem in co-operative learn-
ing and proposes a new three-player framework to control
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Table 2. Experimental results on the multi-aspect beer reviews. We compare with the baselines on highlight lengths of 10, 20 and 30. For
each aspect and length, we report the best accuracy on the validation set and its corresponding performance on the human annotation set.
The best precision (P), recall (R) and F1 score are bolded.

Methods Len Appearance Aroma Palate
Dev Acc P R F1 Dev Acc P R F1 Dev Acc P R F1

RNP 10 75.20 13.51 5.75 8.07 75.30 30.30 15.26 20.30 75.00 28.20 17.24 21.40
3PLAYER 10 77.55 15.84 6.78 9.50 80.75 48.85 24.43 32.57 76.60 14.15 8.54 10.65
INVRAT 10 75.65 49.54 20.93 29.43 77.95 48.21 24.36 32.36 76.10 32.80 20.01 24.86

RNP 20 77.70 13.54 11.29 12.31 78.85 34.32 34.18 34.25 77.10 19.80 23.78 21.60
3PLAYER 20 82.56 15.63 13.47 14.47 82.95 35.73 35.89 35.81 79.75 20.73 24.91 22.63
INVRAT 20 81.30 58.03 49.59 53.48 81.90 42.72 42.52 42.62 80.45 44.04 52.75 48.00

RNP 30 81.65 26.26 33.10 29.29 83.10 39.97 60.13 48.02 78.55 19.18 33.81 24.47
3PLAYER 30 80.55 12.56 15.90 14.03 84.40 33.02 49.66 39.67 81.85 21.98 39.27 28.18
INVRAT 30 82.85 54.03 69.23 60.70 84.40 44.72 67.35 53.75 81.00 26.51 46.91 33.87

Beer - Appearance Rationale Length - 20

into a pint glass , poured a solid black , not so much head but enough , tannish in color , decent lacing down the glass . as for
aroma , if you love coffee and beer , its the best of both worlds , a very fresh strong full roast coffee blended with ( and almost
overtaking ) a solid , classic stout nose , with the toasty , chocolate malts . with the taste , its even more coffee , and while its
my dream come true , so delicious , what with its nice chocolate and burnt malt tones again , but i almost say it <unknown> any
<unknown> , and takes away from the beeriness of this beer . which is n’t to say it is n’t delicious , because it is , just seems a bit
unbalanced . oh well ! the mouth is pretty solid , a bit light but not all that unexpected with a coffee blend . its fairly smooth , not
quite creamy , well carbonated , thoroughly , exceptionally drinkable .

Beer - Aroma Rationale Length - 20

into a pint glass , poured a solid black , not so much head but enough , tannish in color , decent lacing down the glass . as for aroma

, if you love coffee and beer , its the best of both worlds , a very fresh strong full roast coffee blended with ( and almost overtaking
) a solid , classic stout nose , with the toasty , chocolate malts . with the taste , its even more coffee , and while its my dream come
true , so delicious , what with its nice chocolate and burnt malt tones again , but i almost say it <unknown> any <unknown> , and
takes away from the beeriness of this beer . which is n’t to say it is n’t delicious , because it is , just seems a bit unbalanced . oh
well ! the mouth is pretty solid , a bit light but not all that unexpected with a coffee blend . its fairly smooth , not quite creamy ,
well carbonated , thoroughly , exceptionally drinkable .

Beer - Palate Rationale Length - 20

into a pint glass , poured a solid black , not so much head but enough , tannish in color , decent lacing down the glass . as for aroma
, if you love coffee and beer , its the best of both worlds , a very fresh strong full roast coffee blended with ( and almost overtaking
) a solid , classic stout nose , with the toasty , chocolate malts . with the taste , its even more coffee , and while its my dream come
true , so delicious , what with its nice chocolate and burnt malt tones again , but i almost say it <unknown> any <unknown> , and
takes away from the beeriness of this beer . which is n’t to say it is n’t delicious , because it is , just seems a bit unbalanced . oh
well ! the mouth is pretty solid , a bit light but not all that unexpected with a coffee blend . its fairly smooth , not quite creamy
, well carbonated , thoroughly , exceptionally drinkable .

Figure 4. Examples of INVRAT generated rationales on the multi-aspect datasets. Human annotated words are underlined. Appearance,
aroma and palate rationales are in bold text and highlighted in green, red, and blue respectively.

the unselected texts. Chang et al. (2019) aim to generate
rationales in all possible classes instead of the target label
only, which makes the model perform counterfactual rea-
soning. In all, these models deal with different challenges
in generating high-quality rationales. However, they are
still insufficient to distinguish the invariant words from the
correlated ones.

Self-explaining models beyond selective rationalization

Besides selective rationalization, other approaches also im-
prove the interpretability of neural predictions. For example,
module networks (Andreas et al., 2016a;b; Johnson et al.,

2017) compose appropriate modules following the logical
program produced by a natural language component. The
restriction to a small set of pre-defined programs currently
limits their applicability. Other lines of work include evaluat-
ing feature importance with gradient information (Simonyan
et al., 2013; Li et al., 2016a; Sundararajan et al., 2017) or
local perturbations (Kononenko et al., 2010; Lundberg &
Lee, 2017); and interpreting deep networks by locally fitting
interpretable models (Ribeiro et al., 2016; Alvarez-Melis &
Jaakkola, 2018). However, these methods aim at providing
post-hoc explanations of already-trained models, which is
not able to find invariant texts.
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Learning with biases Our work also relates to the topic
of discovering dataset-specific biases. Specifically, neural
models have shown remarkable results in many NLP appli-
cations, however, these models sometimes prone to fit some
dataset-specific patterns or biases. For example, in natural
language inference, such biased clues can be the word over-
lap between the input sentence pair (McCoy et al., 2019)
or whether the negative word ”not” exists (Niven & Kao,
2019). Similar observations have been found in multi-hop
question answering (Welbl et al., 2018; Min et al., 2019). To
learn with biased data but not fully rely on it, Lewis & Fan
(2018) use generative objectives to force the QA models to
make use of the full question. Agrawal et al. (2018); Wang
et al. (2019) propose carefully designed model architectures
to capture more complex interactions between input clues
beyond the biases. Ramakrishnan et al. (2018); Belinkov
et al. (2019) propose to add adversarial regularizations that
punish the internal representations that cooperate well with
bias-only models. Clark et al. (2019); He et al. (2019);
Karimi Mahabadi et al. (2020) propose to learn ensemble
models that fit the residual from the prediction with bias
features. However, all these works assume that the biases
are known. Our work instead can rule out unwanted features
without knowing the exact pattern a priori.

Finally, Feng et al. (2018) discovered nonsensical clues by
removing uninformative words recognized by pre-trained
neural models, indicating that these models are not always
learning human-understandable causes for the predictions,
which may partially because of the fit of data biases.

6. Conclusion

In this paper, we propose a game-theoretic approach to
invariant rationalization, where the method is trained to con-
strain the probability of the output conditional on the ratio-
nales be the same across multiple environments. The frame-
work consists of three players, which competitively rule
out spurious words with strong correlations to the output.
We theoretically demonstrate the proposed game-theoretic
framework drives the solution towards better generalization
to test scenarios that have different distributions from the
training. Extensive objective and subjective evaluations
on both synthetic and multi-aspect sentiment classifica-
tion datasets demonstrate that INVRAT performs favorably
against existing algorithms in rationale generation.
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