Supplementary Material for Better Depth-Width Trade-offs for Neural Networks
 through the lens of Dynamical Systems

Vaggos Chatziafratis ${ }^{1}$ Sai Ganesh Nagarajan ${ }^{2}$ Ioannis Panageas ${ }^{2}$

A. Proof of Claim 2

Proof. For $p=3$, the desired equation holds, since the matrix A^{\top} becomes just

$$
A^{\top}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

with characteristic polynomial $(\lambda-1) \lambda-1=\lambda^{2}-\lambda-1$. Let I denote the identity matrix of size $(p-1) \times(p-1)$. Assume $p \geq 5$. We consider the matrix:

$$
A^{\top}-\lambda I=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where $A_{11}:=\left(\begin{array}{ccccccc}1-\lambda & 0 & 0 & 0 & 0 & \ldots & 0 \\ 0 & -\lambda & 0 & 0 & 0 & \ldots & 0 \\ 0 & 0 & -\lambda & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \ldots & -\lambda\end{array}\right), A_{12}:=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & 0 & \ldots & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 1\end{array}\right)$,
$A_{21}:=\left(\begin{array}{ccccccc}0 & 1 & 0 & 0 & \ldots & 0 & 0 \\ 0 & 0 & 1 & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \ldots & 0 & 1 \\ 1 & 1 & 1 & 1 & \ldots & 1 & 1\end{array}\right)$, and $A_{22}:=\left(\begin{array}{cccccc}-\lambda & 0 & 0 & \ldots & 0 & 0 \\ 0 & -\lambda & 0 & \ldots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \ldots & -\lambda & 0 \\ 0 & 0 & 0 & \ldots & 0 & -\lambda\end{array}\right)$.
Observe that $\lambda=0$ is not an eigenvalue of the matrix A^{\top}. Suppose that $A_{11}, A_{12}, A_{21}, A_{22}$ are the four block submatrices of the matrix above. Using Schur's complement, we get that $\operatorname{det}\left(A^{\top}-\lambda I\right)=\operatorname{det}\left(A_{22}\right) \times \operatorname{det}\left(A_{11}-A_{12} A_{22}^{-1} A_{21}\right)$, where $\operatorname{det}\left(A_{22}\right)=(-\lambda)^{\frac{p-1}{2}}$ and

We can multiply the first row by $\frac{1}{\lambda(\lambda-1)}$, the second row by $\frac{1}{\lambda^{2}}+\frac{1}{\lambda^{2} \lambda(\lambda-1)}$, the third row by $\frac{1}{\lambda^{2}}+\frac{1}{\lambda^{4}}+\frac{1}{\lambda^{4} \lambda(\lambda-1)}, \ldots$, the

[^0]i-th row by $\sum_{j=1}^{i-1} \frac{1}{\lambda^{2 j}}+\frac{1}{\lambda^{2(i-1)} \cdot \lambda(\lambda-1)}$ (and so on) and add them to the last row. Let B be the resulting matrix:
\[

B=\left($$
\begin{array}{ccccccc}
\lambda-\lambda^{2} & 1 & 0 & 0 & 0 & \ldots & 0 \\
0 & -\lambda^{2} & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & -\lambda^{2} & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & K
\end{array}
$$\right)
\]

where $K=-\lambda^{2}+1+\sum_{j=1}^{\frac{p-5}{2}} \frac{1}{\lambda^{2 j}}+\frac{1}{\lambda^{p-5} \cdot \lambda(\lambda-1)}$. It is clear that the equation $\operatorname{det}(B)=0$ has the same roots as $\operatorname{det}\left(A^{\top}-\lambda I\right)=0$. Since B is an upper triangular matrix, it follows that

$$
\operatorname{det}(B)=(-1)^{\frac{p-5}{2}} \lambda(\lambda-1) \lambda^{p-5} \cdot\left(-\lambda^{2}+1+\sum_{j=1}^{\frac{p-5}{2}} \frac{1}{\lambda^{2 j}}+\frac{1}{\lambda^{p-5} \cdot \lambda(\lambda-1)}\right)
$$

We conclude that the eigenvalues of A^{\top} (and hence of A) must be roots of

$$
\begin{aligned}
& \left(\lambda^{p-3}-\lambda^{p-4}\right)\left(1-\lambda^{2}+\sum_{j=1}^{\frac{p-5}{2}} \frac{1}{\lambda^{2 j}}\right)+1=-\lambda^{p-1}+\lambda^{p-2}+\lambda^{p-3}-\lambda^{p-4}+\sum_{j=1}^{\frac{p-5}{2}} \lambda^{p-3-2 j}-\lambda^{p-4-2 j}+1 \\
= & -\lambda^{p-1}+\lambda^{p-2}+\sum_{j=0}^{p-3}(-1)^{j} \lambda^{j}=\frac{-\lambda^{p}+\lambda^{p-2}}{\lambda+1}+\frac{1+\lambda^{p-2}}{\lambda+1}=\frac{-\lambda^{p}+2 \lambda^{p-2}+1}{\lambda+1},
\end{aligned}
$$

and the claim follows.

B. Proof of Corollary 3.5

Proof. We first need to relate the spectral radius with the number of oscillations. We follow the idea from (Chatziafratis et al., 2020) which concludes that $\delta_{0}^{t} \geq\left\|A^{t}\right\|_{\infty} \geq \operatorname{spec}\left(A^{t}\right)=\operatorname{spec}(A)^{t}=\rho_{p}^{t}$ (where $\operatorname{spec}(A)$ denotes the spectral radius), that is the growth rate of the number of oscillations of compositions of f is at least ρ_{p}.
Assume $1<p$ be an odd number. It suffices to show that $\rho_{p+2}<\rho_{p}$ (and then use induction). Observe that $\lambda^{p+2}-2 \lambda^{p}-1=$ $\lambda^{2}\left(\lambda^{p}-2 \lambda^{p-2}-1\right)+\lambda^{2}-1$. Therefore

$$
0=q_{p+2}\left(\rho_{p+2}\right)=\rho_{p+2}^{2} q_{p}\left(\rho_{p+2}\right)+\rho_{p+2}^{2}-1
$$

hence since $\rho_{p+2}>1$ we conclude that $q_{p}\left(\rho_{p+2}\right)<0$. Since $\lim _{\lambda \rightarrow \infty} q_{p}(\lambda)=+\infty$, by Bolzano's theorem it follows that q_{p} has a root in the interval $\left(\rho_{p+2},+\infty\right)$. Thus $\rho_{p}>\rho_{p+2}$. One can also see that $\sqrt{2}^{p}-2 \sqrt{2}^{p-2}-1=-1<0$ and $2^{p}-2 \cdot 2^{p-2}-1>0$, thus from Bolzano's again, it follows that $\rho_{p}>\sqrt{2}$ for all p.

C. Proof of Lemma 3.6

Proof. It suffices to show that f has period p (the Lipschitz constant is trivially ρ_{p}). We start from $z_{0}=0$ and we get $z_{t}=f\left(z_{t-1}\right)=\rho_{p}\left|z_{t-1}\right|-1$ for $1 \leq t \leq p$. Observe that $z_{1}=-1, z_{2}=\rho_{p}-1>0$. Set $q_{i}(\lambda)=\frac{\lambda^{i}-2 \lambda^{i-2}-1}{\lambda+1}$. First, we shall show that for $t \in\{3, \ldots, p-1\}$, we have $z_{t} \leq 0$ and that $z_{t}=q_{t}\left(\rho_{p}\right)$, whereas for t even, we have $z_{t}=-q_{t-1}\left(\rho_{p}\right) \rho_{p}-1$ in the interval above.
For $t=3$ we get that $z_{3}=\rho_{p}^{2}-\rho_{p}-1=q_{3}\left(\rho_{p}\right) \leq 0$ because we showed ρ_{p} is decreasing in p and moreover holds $q_{3}\left(\rho_{3}\right)=0$. Since $z_{3} \leq 0$ we get that $z_{4}=-\rho_{p} z_{3}-1=q_{3}\left(\rho_{p}\right) \rho_{p}-1$. Let us show that $z_{4} \leq 0$. Observe that $z_{4}=-\rho_{p}^{3}+\rho_{p}^{2}+\rho_{p}-1=\left(\rho_{p}-1\right)\left(1-\rho_{p}^{2}\right)<0\left(\right.$ since $\left.\rho_{p}>\sqrt{2}\right)$.
We will use induction. Assume now, that we have the result for some t even, we need to show that $z_{t+1}=q_{t+1}\left(\rho_{p}\right), z_{t+2}=$ $-q_{t+1}\left(\rho_{p}\right) \rho_{p}-1$ and moreover $z_{t+1}, z_{t+2} \leq 0$.
By induction, we have that $z_{t-1}, z_{t} \leq 0$ and $z_{t}=-q_{t-1}\left(\rho_{p}\right) \rho_{p}-1$, hence $z_{t+1}=-\rho_{p}\left(-q_{t-1}\left(\rho_{p}\right) \rho_{p}-1\right)-1=$ $\frac{\rho_{p}^{t+1}-2 \rho_{p}^{t}-\rho_{p}^{2}}{\rho_{p}+1}+\rho_{p}-1=q_{t+1}\left(\rho_{p}\right)$. Since ρ_{p} is decreasing in p and $q_{t+1}\left(\rho_{t+1}\right)=0$, we conclude that $z_{t+1} \leq 0$. Since
$z_{t+1} \leq 0$, we get that $z_{t+2}=-\rho_{p} z_{t+1}-1=-\rho_{p} q_{t+1}\left(\rho_{p}\right)-1$. To finish the claim, it suffices to show that $z_{t+2} \leq 0$. Observe that

$$
\begin{aligned}
-\rho_{p} q_{t+1}\left(\rho_{p}\right)-1 & =-\rho_{p}\left(\rho_{p}^{t}-\rho_{p}^{t-1}-\sum_{j=0}^{t-2}\left(-\rho_{p}\right)^{j}\right)-1 \\
& =-\rho_{p}^{t+1}+\rho_{p}^{t}-\sum_{j=1}^{t-1}\left(-\rho_{p}\right)^{j}-1 \\
& =-2 \rho_{p}^{t+1}+2 \rho_{p}^{t}+\frac{q_{t+1}\left(\rho_{p}\right)}{\rho_{p}+1}
\end{aligned}
$$

The term $-2\left(\rho_{p}^{t+1}-\rho_{p}^{t}\right)<0$ (since $\rho_{p}>1$) and moreover $\frac{q_{t+1}\left(\rho_{p}\right)}{\rho_{p}+1} \leq 0$ because ρ_{p} is decreasing in p and $t+1 \leq p-1$. Hence $z_{t+2} \leq 0$ and the induction is complete.

From the above, we conclude that $z_{p}=-\rho_{p} z_{p-1}-1=q_{p}\left(\rho_{p}\right)=0$, thus z_{0}, \ldots, z_{p-1} form a cycle. If we show that z_{0}, \ldots, z_{p-1} are distinct, the proof of the lemma follows.
First observe that $q_{t}(\lambda)=\frac{\lambda^{t}-2 \lambda^{t-2}-1}{\lambda+1}$ is strictly increasing in t as long as $\lambda>\sqrt{2}$ (by computing the derivative). Therefore it holds that $z_{3}<z_{5}<\ldots<z_{p}=0$ (for all the odd indices) and also $z_{1}<z_{3}$. Furthermore, $-\lambda q_{t}(\lambda)-1$ is decreasing in t for $\lambda>\sqrt{2}$, therefore we conclude $z_{4}>\ldots>z_{p-1}$ (and also $z_{2}>0 \geq z_{4}$).
We will show that $z_{3}>z_{4}$ and finally $z_{p-1}>-1=z_{1}$ and the lemma will follow. Recall $z_{3}=\rho_{p}^{2}-\rho_{p}-1$ and $z_{4}=-\rho_{p}^{3}+\rho_{p}^{2}+\rho_{p}-1$. Equivalently, we need to show that $\rho_{p}^{2}-\rho_{p}-1>-\rho_{p}^{3}+\rho_{p}^{2}+\rho_{p}-1$ or $\rho_{p}^{3}-2 \rho_{p}>0$ which holds because $\rho_{p}>\sqrt{2}$. Finally $z_{p-1}=-\rho_{p} z_{p-2}-1>-1$ since $z_{p-2}<z_{p}=0$.

D. Sensitivity to Lipschitzness and separation examples based on periods

We consider three regimes. The first regime corresponds to the functions that appear in Lemma 3.2, where $L=\rho_{p}$ and $\rho_{p} \in[\sqrt{2}, \phi]$, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.618$ is the golden ratio. The second regime corresponds to the case when $L>\phi$ and the third regime corresponds to the case when $L<\sqrt{2}$. We can see in Figure 1 that the function $f(x):=2|x|-1$ has period 3 and a Lipschitz constant of $L=2$, while in Figure 2, we can see that the function $f(x):=1.2|x|-1$, does not have any odd period and $L=1.2$.
Figure 1 and Figure 2 correspond to cases where the Lipschitz constant of the function does not match ρ_{p}.

- When $\sqrt{2} \leq L \leq \phi$, we see from Figure 3, how small differences in the values of the slope can lead to the existence of different (prime) periods, which consequently lead to different depth-width trade-offs.
- When $L>\phi$, we can see from Figure 1 that $L=2$ and also the growth rate of oscillations is 2 . This means that $L=\rho$ and that L^{1} separation is achievable. Note that period 3 is present in the tent map, so $\rho_{3}=\phi$ for this case.
- When $L<\sqrt{2}$, we can see from Figure 2 that the oscillations do not grow exponentially with compositions and that the existing ones are of small magnitude, which means that the L^{1} error can be made arbitrarily small. Observe here that no odd period is present in the function (as this would imply that $L \geq \rho \geq \sqrt{2}$).

References

Chatziafratis, V., Nagarajan, S. G., Panageas, I., and Wang, X. Depth-width trade-offs for relu networks via sharkovsky's theorem. International Conference on Learning Representations, Addis Ababa, Africa, 2020.

(a) Graph of $f(x)$ intersected with $y=x$, to identify period 1 points.

(c) Graph of $f^{5}(x)$ intersected with $y=x$, to identify period 5 points.

(b) Graph of $f^{3}(x)$ intersected with $y=x$, to identify period 3 points.

(d) Graph of $f^{7}(x)$ intersected with $y=x$, to identify period 7 points.

Figure 1 . Here $L=2$, and this function has period 3. However, the growth rate of oscillations is exactly 2 and since we have equality $L=\rho$ we get L^{1} separations even though the largest root $\rho_{3}=\phi<2$.

(a) Graph of $f(x)$ intersected with $y=x$, to identify period 1 points.

(c) Graph of $f^{5}(x)$ intersected with $y=x$, to identify period 5 points.

(b) Graph of $f^{3}(x)$ intersected with $y=x$, to identify period 3 points.

(d) Graph of $f^{7}(x)$ intersected with $y=x$, to identify period 7 points.

Figure 2. Here $L=1.2$ that corresponds to the regime where $L<\sqrt{2}$. It follows that this function cannot have any odd period (because then $L \geq \rho \geq \sqrt{2}$). Observe that the oscillations do not grow exponentially fast and they shrink in area, hence no L^{1} separation is achievable.

(a) Graph of $f(x)$ is shown. The regime $\sqrt{2} \leq L \leq \phi$ with small slope variations.

(c) Graph of $f^{5}(x)$. When $L=1.513$, period 5 is present (trade-offs with base 1.513).

(b) Graph of $f^{3}(x)$. When $L=\phi$, period 3 is present (trade-offs with base ϕ).

(d) Graph of $f^{7}(x)$. When $L=1.465$, period 7 is present (trade-offs with base 1.465).

Figure 3. Functions parameterized by ρ_{p} for $L=\rho_{p}$ and $\rho=1.618,1.513,1.465$ with periods 3,5 and 7 respectively (see intersection with $y=x$). Slight changes lead to different trade-offs.

[^0]: ${ }^{1}$ Department of Computer Science, Stanford University ${ }^{2}$ Singapore University of Technology and Design. Correspondence to: Vaggos Chatziafratis vaggos@cs.stanford.edu, Sai Ganesh Nagarajan sai_nagarajan@mymail.sutd.edu.sg, Ioannis Panageas ioannis@sutd.edu.sg.

 Proceedings of the $37^{\text {th }}$ International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s).

