
Appendix: Mapping natural-language problems to formal-language solutions
using structured neural representations

Kezhen Chen 1 2 Qiuyuan Huang 1 Hamid Palangi 1 Paul Smolensky 1 3 Kenneth D. Forbus 2 Jianfeng Gao 1

1. Implementations of TP-N2F for
experiments

In this section, we present details of the experiments of TP-
N2F on the two datasets. We present the implementation of
TP-N2F on each dataset.

The MathQA dataset consists of about 37k math word prob-
lems ((80/12/8)% training/dev/testing problems), each with
a corresponding list of multi-choice options and an straight-
line operation sequence program to solve the problem. An
example from the dataset is presented in the Appendix A.4.
In this task, TP-N2F is deployed to generate the operation
sequence given the question. The generated operations are
executed to generate the solution for the given math prob-
lem. We use the execution script from (Amini et al., 2019)
to execute the generated operation sequence and compute
the multi-choice accuracy for each problem. During our
experiments we observed that there are about 30% noisy
examples (on which the execution script fails to get the
correct answer on the ground truth program). Therefore,
we report both execution accuracy (the final multi-choice
answer after running the execution engine) and operation
sequence accuracy (where the generated operation sequence
must match the ground truth sequence exactly).

The AlgoLisp dataset (Polosukhin & Skidanov, 2018) is
a program synthesis dataset, which has 79k/9k/10k train-
ing/dev/testing samples. Each sample contains a problem
description, a corresponding Lisp program tree, and 10
input-output testing pairs. We parse the program tree into a
straight-line sequence of commands from leaves to root and
(as in MathQA) use the symbol #i to indicate the result of
the ith command (generated previously by the model). A
dataset sample with our parsed command sequence is pre-
sented in the Appendix A.4. AlgoLisp provides an execution
script to run the generated program and has three evaluation
metrics: accuracy of passing all test cases (Acc), accuracy
of passing 50% of test cases (50p-Acc), and accuracy of
generating an exactly matched program (M-Acc). AlgoLisp
has about 10% noise data (where the execution script fails
to pass all test cases on the ground truth program), so we
report results both on the full test set and the cleaned test
set (in which all noisy testing samples are removed).

We use dR, nR, dF, nF to indicate the TP-N2F encoder hy-
perparameters, the dimension of role vectors, the number
of roles, the dimension of filler vectors and the number of
fillers. dRel, dArg, dPos indicate the TP-N2F decoder hyper-
parameters, the dimension of relation vectors, the dimension
of argument vectors, and the dimension of position vectors.

In the experiment on the MathQA dataset, we use nF =
150, nR = 50, dF = 30, dR = 20, dRel = 20, dArg =
10, dPos = 5 and we train the model for 60 epochs with
learning rate 0.00115. The reasoning module only contains
one layer. As most of the math operators in this dataset are
binary, we replace all operators taking three arguments with
a set of binary operators based on hand-encoded rules, and
for all operators taking one argument, a padding symbol is
appended. For the baseline SEQ2PROG-orig, TP2LSTM
and LSTM2TP, we use hidden size 100, single-direction,
one-layer LSTM. For the SEQ2PROG-best, we performed a
hyperparameter search on the hidden size for both encoder
and decoder; the best score is reported.

In the experiment on the AlgoLisp dataset, we use nF =
150, nR = 50, dF = 30, dR = 30, dRel = 30, dArg = 20,
dPos = 5 and we train the model for 50 epochs with learn-
ing rate 0.00115. We also use one-layer in the reasoning
module like in MathQA. For this dataset, most function calls
take three arguments so we simply add padding symbols for
those functions with fewer than three arguments.

2. Analysis from ablation studies
We performed some ablation studies. The explanation stud-
ies and findings are discussed here. As TP-N2F model
usually needs more parameters for TPRs, we tested the base-
line LSTM2LSTM+attention model with similar number of
parameters (increasing the hidden size in the encoder and
decoder). We found that the performance of baseline model
decreased when they had similar degree of parameters. We
also tested different number of layers of the reasoning MLP.
Each layer of the MLP is a linear layer following Tanh ac-
tivation function. From ablation studies, the performance
with 1, 2 and 3 layers were similar. As the number of layers
increase, the performance reduced. Finally, we tested using
the tensor product of last hidden states of Role-LSTM and

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

Filler-LSTM instead of the sum of all tensor products. Ex-
periments showed that using tensor product sums had better
performance than using last hidden states.

3. Detailed equations of TP-N2F
3.1. TP-N2F encoder

Filler-LSTM in TP-N2F encoder

This is a standard LSTM, governed by the equations:

f t
f = ϕ(Uff wt + Vff [(T

t−1) + bff) (1)

gt
f = tanh(Ufg w

t + Vfg [(T
t−1) + bfg) (2)

itf = ϕ(Ufi w
t + Vfi [(T

t−1) + bfi) (3)

ot
f = ϕ(Ufo w

t + Vfo [(T
t−1) + bfo) (4)

ctf = f t
f � ct−1

f + itf � gt
f (5)

ht
f = ot

f � tanh(ctf) (6)

ϕ, tanh are the logistic sigmoid and tanh functions applied
elementwise. [flattens (reshapes) a matrix in RdF×dR into
a vector in RdT , where dT = dFdR. � is elementwise mul-
tiplication. The variables have the following dimensions:

f t
f , g

t
f , i

t
f ,o

t
f , c

t
f ,h

t
f , bff , bfg, bfi, bfo, [(T

t−1) ∈ RdT

wt ∈ Rd

Uff ,Ufg,Ufi,Ufo ∈ RdT×d

Vff ,Vfg,Vfi,Vfo ∈ RdT×dT

Filler vector

The filler vector for input token wt is f t, defined through
an attention vector over possible fillers, at

f :

at
f = softmax((Wfa h

t
f)/T) (7)

f t = Wf a
t
f (8)

(Wf is the same as F of Sec.2 in the paper) The variables’
dimensions are:

Wfa ∈ RnF×dT

at
f ∈ RnF

Wf ∈ RdF×nF

f t ∈ RdF

T is the temperature factor, which is fixed at 0.1.

Role-LSTM in TP-N2F encoder

Similar to the Filler-LSTM, the Role-LSTM is also a stan-
dard LSTM, governed by the equations:

f t
r = ϕ(Urf w

t + Vrf [(T
t−1) + brf) (9)

gt
r = tanh(Urg w

t + Vrg [(T
t−1) + brg) (10)

itr = ϕ(Uri w
t + Vri [(T

t−1) + bri) (11)

ot
r = ϕ(Uro w

t + Vro [(T
t−1) + bro) (12)

ctr = f t
r � ct−1

r + itr � gt
r (13)

ht
r = ot

r � tanh(ctr) (14)

The variable dimensions are:

f t
r , g

t
r, i

t
r,o

t
r, c

t
r,h

t
r, brf , brg, bri, bro, [(T

t−1) ∈ RdT

wt ∈ Rd

Urf ,Urg,Uri,Uro ∈ RdT×d

Vrf ,Vrg,Vri,Vro ∈ RdT×dT

Role vector

The role vector for input tokenwt is determined analogously
to its filler vector:

at
r = softmax((Wra h

t
r)/T) (15)

rt = Wr a
t
r (16)

The dimensions are:

Wra ∈ RnR×dT

at
r ∈ RnR

Wr ∈ RdR×nR

rt ∈ RdR

Binding

The TPR for the filler/role binding for token wt is then:

Tt = rt ⊗ f t (17)

where

T t ∈ RdR×dF

3.2. Structure Mapping

H0 = fmapping(Tt) (18)

H0 ∈ RdH , where dH = dA, dO, dP are dimension of argu-
ment vector, operator vector and position vector. fmapping

is implemented with a MLP (linear layer followed by a tanh)
for mapping the Tt ∈ RdT to the initial state of decoder H0.

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

3.3. TP-N2F decoder

Tuple-LSTM

The output tuples are also generated via a standard LSTM:

wt
d = γ(wt−1

Rel ,w
t−1
Arg1,w

t−1
Arg2) (19)

f t = ϕ(Uf w
t
d + Vf [(H

t−1) + bf) (20)

gt = tanh(Ug w
t
d + Vg [(H

t−1) + bg) (21)

it = ϕ(Ui w
t
d + Vi [(H

t−1) + bi) (22)

ot = ϕ(Uo w
t
d + Vo [(H

t−1) + bo) (23)

ct = f t � ct−1 + it � gt (24)

ht
input = ot � tanh(ct) (25)

Ht = Atten(ht
input, [T0, ...,Tn−1]) (26)

Here, γ is the concatenation function. wt−1
Rel is the trained

embedding vector for the Relation of the input binary tuple,
wt−1

Arg1 is the embedding vector for the first argument and
wt−1

Arg2 is the embedding vector for the second argument.
Then the input for the Tuple LSTM is the concatenation
of the embedding vectors of relation and arguments, with
dimension ddec.

f t, gt, it,ot, ct,ht
input, bf , bg, bi, bo, [(H

t−1) ∈ RdH

wt
d ∈ Rddec

Uf ,Ug,Ui,Uo ∈ RdH×ddec

Vf ,Vg,Vi,Vo ∈ RdH×dH

Ht ∈ RdH

Atten is the attention mechanism used in Luong et al.
(2015), which computes the dot product between ht

input

and each Tt′ . Then a linear function is used on the concate-
nation of ht

input and the softmax scores on all dot products
to generate Ht. The following equations show the attention
mechanism:

dt = score(ht
input,CT) (27)

st = CT softmax(dt) (28)

Ht = Kγ(ht
input, s

t) (29)

score is the score function of the attention. In this paper, the
score function is dot product.

CT ∈ RdH×n

dt ∈ Rn

st ∈ RdH

K ∈ RdH×(dT+n)

Unbinding

At each timestep t, the 2-step unbinding process described
in Sec.3.1.2 of the paper operates first on an encoding of the
triple as a whole, H, using two unbinding vectors p′i that are
learned but fixed for all tuples. This first unbinding gives an
encoding of the two operator-argument bindings, Bi. The
second unbinding operates on the Bi, using a generated un-
binding vector for the operator, r′rel, giving encodings of the
arguments, ai. The generated unbinding vector for the oper-
ator, r′, and the generated encodings of the arguments, ai,
each produce a probability distribution over symbolic opera-
tor outputs Rel and symbolic argument outputs Argi; these
probabilities are used in the cross-entropy loss function.
For generating a single symbolic output, the most-probable
symbols are selected.

Bt
1 = Ht p′1 (30)

Bt
2 = Ht p′2 (31)

r′trel = Wdual (B
t
1 +Bt

2) (32)

at
1 = Bt

1 r
′t
rel (33)

at
2 = Bt

2 r
′t
rel (34)

ltrrel = Lt
rrel

r′trel (35)

lta1
= Lt

a a
t
1 (36)

lta2
= Lt

a a
t
2 (37)

Relt = argmax(softmax(ltr)) (38)

Arg1t = argmax(softmax(lta1
)) (39)

Arg2t = argmax(softmax(lta2
)) (40)

The dimensions are:

r′trel ∈ RdO

at
1,a

t
2 ∈ RdA

p′1,p
′
2 ∈ RdP

Bt
1,B

t
2 ∈ RdA×dO

Wdual ∈ RdH

Lt
r ∈ RnO×dO

Lt
a ∈ RnA×dA

ltr ∈ RnR

lta1
, lta2
∈ RnA

4. Dataset samples
4.0.1. DATA SAMPLE FROM MATHQA DATASET

Problem: The present polulation of a town is 3888.
Population increase rate is 20%. Find the population of
town after 1 year?
Options: a) 2500, b) 2100, c) 3500, d) 3600, e) 2700
Operations: multiply(n0,n1), divide(#0,const-100),
add(n0,#1)

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

4.0.2. DATA SAMPLE FROM ALGOLISP DATASET

Problem: Consider an array of numbers and a number,
decrements each element in the given array by the given
number, what is the given array?
Program Nested List: (map a (partial1 b –))
Command-Sequence: (partial1 b –), (map a #0)

5. Generated programs comparison
In this section, we display some generated samples from the
two datasets, where the TP-N2F model generates correct
programs but LSTM-Seq2Seq does not.

Question: A train running at the speed of 50 km per hour
crosses a post in 4 seconds. What is the length of the train?
TP-N2F(correct):
(multiply,n0,const1000) (divide,#0,const3600) (multi-
ply,n1,#1)
LSTM(wrong):
(multiply,n0,const0.2778) (multiply,n1,#0)

Question: 20 is subtracted from 60 percent of a number,
the result is 88. Find the number?
TP-N2F(correct):
(add,n0,n2) (divide,n1,const100) (divide,#0,#1)
LSTM(wrong):
(add,n0,n2) (divide,n1,const100) (divide,#0,#1) (multi-
ply,#2,n3) (subtract,#3,n0)

Question: The population of a village is 14300. It increases
annually at the rate of 15 percent. What will be its
population after 2 years?
TP-N2F(correct):
(divide,n1,const100) (add,#0,const1) (power,#1,n2) (multi-
ply,n0,#2)
LSTM(wrong):
(multiply,const4,const100) (sqrt,#0)

Question: There are two groups of students in the sixth
grade. There are 45 students in group a, and 55 students in
group b. If, on a particular day, 20 percent of the students
in group a forget their homework, and 40 percent of the
students in group b forget their homework, then what
percentage of the sixth graders forgot their homework?
TP-N2F(correct):
(add,n0,n1) (multiply,n0,n2) (multiply,n1,n3) (di-
vide,#1,const100) (divide,#2,const100) (add,#3,#4)
(divide,#5,#0) (multiply,#6,const100)
LSTM(wrong):
(multiply,n0,n1) (subtract,n0,n1) (divide,#0,#1)

Question: 1 divided by 0.05 is equal to
TP-N2F(correct):
(divide,n0,n1)
LSTM(wrong):
(divide,n0,n1) (multiply,n2,#0)

Question: Consider a number a, compute factorial of a
TP-N2F(correct):
(¡=,arg1,1) (-,arg1,1) (self,#1) (*,#2,arg1) (if,#0,1,#3)
(lambda1,#4) (invoke1,#5,a)
LSTM(wrong):
(¡=,arg1,1) (-,arg1,1) (self,#1) (*,#2,arg1) (if,#0,1,#3)
(lambda1,#4) (len,a) (invoke1,#5,#6)

Question: Given an array of numbers and numbers b and c,
add c to elements of the product of elements of the given
array and b, what is the product of elements of the given
array and b?
TP-N2F(correct):
(partial, b,*) (partial1,c,+) (map,a,#0) (map,#2,#1)
LSTM(wrong):
(partial1,b,+) (partial1,c,+) (map,a,#0) (map,#2,#1)

Question: You are given an array of numbers a and
numbers b, c and d , let how many times you can replace
the median in a with sum of its digits before it becomes a
single digit number and b be the coordinates of one end and
c and d be the coordinates of another end of segment e ,
your task is to find the length of segment e rounded down
TP-N2F(correct):
(digits arg1) (len #0) (== #1 1) (digits arg1) (reduce
#3 0 +) (self #4) (+ 1 #5) (if #2 0 #6) (lambda1 #7) (
sort a) (len a) (/ #10 2) (deref #9 #11) (invoke1 #8 #12
) (- #13 c) (digits arg1) (len #15) (== #16 1) (digits
arg1) (reduce #18 0 +) (self #19) (+ 1 #20) (if #17 0
#21) (lambda1 #22) (sort a) (len a) (/ #25 2) (deref
#24 #26) (invoke1 #23 #27) (- #28 c) (* #14 #29) (- b d
) (- b d) (* #31 #32) (+ #30 #33) (sqrt #34) (floor #35)
LSTM(wrong): (digits arg1) (len #0) (== #1 1) (digits
arg1) (reduce #3 0 +) (self #4) (+ 1 #5) (if #2 0 #6) (
lambda1 #7) (sort a) (len a) (/ #10 2) (deref #9 #11) (
invoke1 #8 #12 c) (- #13) (- b d) (- b d) (* #15 #16) (*
#14 #17) (+ #18) (sqrt #19) (floor #20)

Question: Given numbers a , b , c and e , let d be c , reverse
digits in d , let a and the number in the range from 1 to b
inclusive that has the maximum value when its digits are
reversed be the coordinates of one end and d and e be the
coordinates of another end of segment f , find the length of
segment f squared
TP-N2F(correct):

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

(digits c) (reverse #0) (* arg1 10) (+ #2 arg2) (lambda2
#3) (reduce #1 0 #4) (- a #5) (digits c) (reverse #7) (*
arg1 10) (+ #9 arg2) (lambda2 #10) (reduce #8 0 #11) (
- a #12) (* #6 #13) (+ b 1) (range 0 #15) (digits arg1) (
reverse #17) (* arg1 10) (+ #19 arg2) (lambda2 #20) (
reduce #18 0 #21) (digits arg2) (reverse #23) (* arg1 10
) (+ #25 arg2) (lambda2 #26) (reduce #24 0 #27) (¿ #22
#28) (if #29 arg1 arg2) (lambda2 #30) (reduce #16 0
#31) (- #32 e) (+ b 1) (range 0 #34) (digits arg1) (
reverse #36) (* arg1 10) (+ #38 arg2) (lambda2 #39) (
reduce #37 0 #40) (digits arg2) (reverse #42) (* arg1 10
) (+ #44 arg2) (lambda2 #45) (reduce #43 0 #46) (¿ #41
#47) (if #48 arg1 arg2) (lambda2 #49) (reduce #35 0
#50) (- #51 e) (* #33 #52) (+ #14 #53)
LSTM(wrong):
(- a d) (- a d) (* #0 #1) (digits c) (reverse #3) (* arg1
10) (+ #5 arg2) (lambda2 #6) (reduce #4 0 #7) (- #8 e)
(+ b 1) (range 0 #10) (digits arg1) (reverse #12) (*
arg1 10) (+ #14 arg2) (lambda2 #15) (reduce #13 0 #16
) (digits arg2) (reverse #18) (* arg1 10) (+ #20 arg2) (
lambda2 #21) (reduce #19 0 #22) (¿ #17 #23) (if #24
arg1 arg2) (lambda2 #25) (reduce #11 0 #26) (- #27 e)
(* #9 #28) (+ #2 #29)

6. Analysis of TP-N2F encoder
For TP-N2F encoder, we extract the Softmax scores for
fillers and roles of natural-language. We dropped the scores
that are less than 0.1 to keep the significant fillers and roles
for each word. After analyzing a subset of questions, we find
that fillers tend to represent the semantic information and
words or phrases with same meaning tend to be assigned the
same filler. Roles tend to represent the structured schemes of
sentences. For example, in AlgoLisp dataset, ”decrement”,
”difference of” and ”decremented by” are assigned to filler
43. ”increment” and ”add” are assigned to filler 105. In
MathQA dataset, ”positive integer”, ”positive number” and
”positive digits” are assigned to filler 27. Figure 1 shows
the visualization of fillers for four examples from AlgoLisp
dataset. From the figure, ”consider” and ”you are given”
are assigned to the filler 146. ”what is” and ”find” are
assigned to filler 120. Figure 2 presents the visualization of
selected for the four examples. Role 12 indicates the target
of the questions needs to be solved and Role 3 indicates the
provided information to solve the questions.

7. Analysis of TP-N2F decoder
For TP-N2F decoder, we run K-means clustering on both
datasets with k = 3, 4, 5, 6 clusters and the results are
displayed in Figure 3 and Figure 4. As described before,
unbinding-vectors for operators or functions with similar
semantics tend to be closer to each other. For example,

in the MathQA dataset, arithmetic operators such as add,
subtract, multiply, divide are clustered together at middle,
and operators related to geometry such as square or volume
are clustered together at bottom left. In AlgoLisp dataset,
basic arithmetic functions are clustered at middle, and string
processing functions are clustered at right.

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

Figure 1. Visualizations of selected fillers for four examples

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

Figure 2. Visualizations of selected roles for four examples

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

Figure 3. MathQA clustering results

Figure 4. AlgoLisp clustering results

Appendix: Mapping natural-language problems to formal-language solutions using structured neural representations

References
Amini, A., Gabriel, S., Lin, P., Kedziorski, R. K., Choi, Y.,

and Hajishirzi, H. Mathqa: Towards interpretable math
word problem solving with operation-based formalisms.
In NACCL, 2019.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Luong, M.-T., Pham, H., and Manning, C. D. Effective
approaches to attention-based neural machine translation.
EMNLP, pp. 533–536, 2015.

Polosukhin, I. and Skidanov, A. Neural program search:
Solving programming tasks from description and exam-
ples. In ICLR workshop, 2018.

