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Supplementary Material

A. Verification of Assumption A1 and A2
A1 For all p(x;θDX

) ∈ PDX
and DZ > 0, there exists p(x, z;θDX+DZ

) ∈ PDX+DZ
, such that for all x and z,

p(x, z;θDX+DZ
) = p(x;θDX

)pε(z).

A2 For all DZ > 0, there exists q(z|x;φ) ∈ QDZ
, such that for all x and z,

q(z|x;φ) = pε(z).

Let x, z be row vectors, and
[
x z

]
be the horizontal concatenation of x and z. We first show that the following conditions

are sufficient for Assumption A1 and A2.

B1 For all θDX
∈ ΘDX

and DZ > 0, there exists θDX+DZ
∈ ΘDX+DZ

, such that for all l, x and z,

f l(
[
x z

]
;θDX+DZ

) =
[
f l(x;θDX

) z
]
.

B2 For all DZ > 0, there exists φ ∈ ΦDZ
, such that for all l, x and z,

gl(εq; x,φ) = εq.

Proof. Under condition B1,

f(
[
x z

]
)

=f1(. . . (fL(
[
x z

]
)))

=f1(. . . (fL−1(
[
fL(x) z

]
)))

=f1(. . . (fL−2(
[
fL−1(fL(x)) z

]
))) = . . .

=
[
f1(. . . (fL(x))) z

]
.

Then,

p(x, z;θDX+DZ
) = pε(f(

[
x z

]
;θDX+DZ

))

∣∣∣∣∣∂f(
[
x z

]
;θDX+DZ

)

∂
[
x z

] ∣∣∣∣∣
= pε(

[
f(x;θDX

) z
]
)

∣∣∣∣∣∂
[
f(x;θDX

) z
]

∂
[
x z

] ∣∣∣∣∣
= pε(f(x;θDX

))pε(z)

∣∣∣∣∣
[
∂f(x;θDX

)

∂x 0
0 I

]∣∣∣∣∣
= pε(f(x;θDX

))

∣∣∣∣∂f(x;θDX
)

∂x

∣∣∣∣ pε(z)

= p(x;θDX
)pε(z).
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Figure 7. Constructing f l(
[
x z

]
;θDX+DZ ) based on f l(x;θDX ).

Similarly, under condition B2,
g(εq; x,φ) = g1(. . . (gL(εq))) = εq.

So

q(z; x,φ) = q(g(εq; x,φ)|x;φ) = pε(εq)/

∣∣∣∣ ∂z

∂εq

∣∣∣∣ = pε(εq)/ |I| = pε(εq).

Therefore, we only need to verify condition B1 and B2 separately for each transformation step . For Glow (Kingma &
Dhariwal, 2018) and Residual Flow (Chen et al., 2019), the transformations to verify includes affine coupling layer (Dinh
et al., 2017), invertible 1×1 convolution (Kingma & Dhariwal, 2018), and invertible residual blocks (Behrmann et al.,
2019). In this section we only verify condition B1 and B2 for fully-connected transformations, but they readily generalize to
convolutional transformations.

A.1. Invertible Residual Blocks

An invertible residual block (Behrmann et al., 2019) f l(x;θDX
) for DX -dimensional input x is defined as

a1 = xθ
(1)
DX

, a2 = n(a1;θ
(2)
DX

), ∆x = a2θ
(3)
DX

, f l(x;θDX
) = y = x + ∆x,

where we explicitly write the first and last linear layer, and leave all the internal hidden layers as n(a1;θ
(2)
DX

). We construct
a DX +DZ-dimensional invertible residual block f l(

[
x z

]
;θDX+DZ

) as

a1 =
[
x z

]
θ

(1)
DX+DZ

, a2 = n(a1;θ
(2)
DX+DZ

),
[
∆x 0

]
= a2θ

(3)
DX+DZ

,

f l(
[
x z

]
;θDX+DZ

) =
[
x + ∆x z + 0

]
=
[
f l(x;θDX

) z
]
,

satisfying condition B1, where

θ
(1)
DX+DZ

=

[
θ

(1)
DX

0

]
, θ

(2)
DX+DZ

= θ
(2)
DX

, θ
(3)
DX+DZ

=
[
θ

(3)
DX

0
]
.

This construction is demonstrated by Fig. 7. Intuitively, due to the residual structure, we only need to output 0 for all the z

dimensions. Similarly, condition B2 can be satisfied by taking θ
(3)
DZ

= 0, so that all the residuals are zero and the network
outputs identity.
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A.2. Affine Coupling Layer

An affine coupling layer (Dinh et al., 2017) f l(x;θDX
) for DX -dimensional input x is defined as

x1,x2 = split(x), y1 = x1, y2 = µ(x1;θDX
) + exp(s(x1;θDX

)) ◦ x2, f l(x;θDX
) = concat(y1,y2).

The case of affine coupling layer is almost identical to the invertible residual block, because both transformations have
residual structures. This can be seen by noticing when µ(x1;θDX

) = s(x1;θDX
) = 0, f l(x;θDX

) = x. We explicitly
write out the first and last linear layers of µ(·) and s(·):

x1,x2 = split(x), y1 = x1,

a1 = x1θ
(a1)
DX

, a2 = µ′(a1;θ
(a2)
DX

), a3 = a2θ
(a3)
DX

,

b1 = x1θ
(b1)
DX

, b2 = s′(b1;θ
(b2)
DX

), b3 = b2θ
(b3)
DX

,

y2 = a3 + b3 ◦ x2, f l(x;θDX
) = concat(y1,y2).

A DX +DZ-dimensional affine coupling layer has the form[
x1 z1

]
,
[
x2 z2

]
= split(

[
x z

]
), y1 = x1,

a1 =
[
x1 z1

]
θ

(a1)
DX+DZ

, a2 = µ′(a1;θ
(a2)
DX+DZ

),
[
a3 u3

]
= a2θ

(a3)
DX+DZ

,

b1 =
[
x1 z1

]
θ

(b1)
DX+DZ

, b2 = s′(b1;θ
(b2)
DX+DZ

),
[
b3 w3

]
= b2θ

(b3)
DX+DZ

,

y2 =
[
a3 + b3 ◦ x2 u3 + w3 ◦ z2

]
, f l(

[
x z

]
;θDX+DZ

) = concat(
[
y1 z1

]
,y2),

We want the networks µ(·;θDX+DZ
) and s(·;θDX+DZ

) to ignore the z1 part from the input, and output zero for u3, w3,
so that [

a3 u3

]
=
[
µ(x1;θDX

) 0
]
,
[
b3 w3

]
=
[
s(x1;θDX

) 0
]

y2 =
[
µ(x1;θDX

) + exp(s(x1;θDX
)) ◦ x2 z2

]
, f l(

[
x z

]
;θDX+DZ

) =
[
f l(x;θDX

) z
]
,

so condition B1 is satisfied. We can easily achieve this by setting

θ
(a1)
DX+DZ

=

[
θ

(a1)
DX

0

]
, θ

(a2)
DX+DZ

= θ
(a2)
DX

, θ
(a3)
DX+DZ

=
[
θ

(a3)
DX

0
]

θ
(b1)
DX+DZ

=

[
θ

(b1)
DX

0

]
, θ

(b2)
DX+DZ

= θ
(b2)
DX

, θ
(b3)
DX+DZ

=
[
θ

(b3)
DX

0
]
.

Similarly, condition B2 can be satistied by setting θ
(a3)
DZ

= θ
(b3)
DZ

= 0.

A.3. Invertible 1×1 Convolution

For fully-connected cases, invertible 1×1 convolution (Kingma & Dhariwal, 2018) degenerates to a regular matrix multipli-
cation

f l(x;θDX
) = xθDX

,

where θDX
is a non-singular matrix. We construct f l(x;θDX+DZ

) such that

θDX+DZ
=

[
θDX

0
0 I

]
.

Clearly, θDX+DZ
is also non-singular, and f l(

[
x z

]
;θDX+DZ

) =
[
f l(x;θDX

) z
]
. On the other hand, condition B2

can be satisfied by setting θDZ
= I.
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Table 4. Model architecture for improving existing models experiment and parameter efficiency experiment.

Model 3-channel Flow++ 6-channel VFlow 6-channel VFlow 6-channel VFlow
Parameters 31.4M 37.8M 16.5M 11.9M

bpd 3.08 2.98 3.03 3.08
Architecture for p(x, z): direction (x, z)→ ε

32× 32 fchecker(10, 96, 32) ×4
fchecker(10, 96, 32) ×2 fchecker(10, 64, 16) ×2 fchecker(10, 56, 10) ×2
fchannel(10, 96, 32) ×2 fchannel(10, 64, 16) ×2 fchannel(10, 56, 10) ×2

SpaceToDepth SpaceToDepth SpaceToDepth SpaceToDepth

16× 16
fchannel(10, 96, 32) ×2 fchecker(10, 96, 32) ×2 fchecker(10, 64, 16) ×2 fchecker(10, 56, 10) ×2
fchecker(10, 96, 32) ×3 fchannel(10, 96, 32) ×3 fchannel(10, 64, 16) ×3 fchannel(10, 56, 10) ×3

Architecture for q(z|x): direction εq → z

32× 32 N/A gchecker(3, 96, 32) ×4 gchecker(3, 64, 16) ×4 gchecker(3, 56, 10) ×4
Sigmoid Sigmoid Sigmoid

Architecture for r(u|x): direction εr → u

32× 32
gchecker(2, 96, 32) ×4 gchecker(2, 96, 32) ×4 gchecker(2, 64, 16) ×4 fchecker(2, 56, 10) ×4

Sigmoid Sigmoid Sigmoid Sigmoid

B. Model Architecture
Our model architecture is directly taken from Flow++ (Ho et al., 2019), with some minor changes to make best use of the
increased dimensionality.

Flow++ has three types of invertible transformation steps, activation normalization ActNorm (Kingma & Dhariwal,
2018), invertible 1×1 convolution Pointwise (Kingma & Dhariwal, 2018) and mixture-of-logistic attention coupling layer
MixLogisticAttnCoupling (Ho et al., 2019). Each coupling layers is controlled by the number of convolution-attention
hidden layersB, number of filtersDH , and number of logistic mixture componentsK, as mentioned in Sec. 6. There are two
types of input splits for coupling layer, where ChannelSplit partitions input by channel, and CheckerboardSplit partitions
input by space. Squeezing operation SpaceToDepth (Dinh et al., 2017) is adopted for multiscale modeling. Conditional
distributions, including augmented data distribution q(z|x + u) and dequantization distribution r(u|x), are implemented by
adding a transformed version of x to the input of every coupling layer. Further denoting TupleFlip as flipping the two split
inputs, Inverse(·) as the inverse transformation, and MixLogisticCoupling as MixLogisticAttnCoupling without attention,
Flow++ consists the following building blocks:

fchecker(B,DH ,K) =CheckerboardSplit −→ ActNorm −→ Pointwise −→ MixLogisticAttnCoupling(B,DH ,K)

−→ TupleFlip −→ Inverse(CheckerboardSplit)

fchannel(B,DH ,K) =ChannelSplit −→ ActNorm −→ Pointwise −→ MixLogisticAttnCoupling(B,DH ,K)

−→ TupleFlip −→ Inverse(ChannelSplit)

gchecker(B,DH ,K) =CheckerboardSplit −→ ActNorm −→ Pointwise −→ MixLogisticCoupling(B,DH ,K)

−→ TupleFlip −→ Inverse(CheckerboardSplit)

gchannel(B,DH ,K) =ChannelSplit −→ ActNorm −→ Pointwise −→ MixLogisticCoupling(B,DH ,K)

−→ TupleFlip −→ Inverse(ChannelSplit)

We show the model architectures used in Sec. 6.1 and Sec. 6.3 in Table 4, where the architecture of VFlow is almost identical
with the baseline Flow++, except we use both fchecker and fchannel for the 32× 32 scale, while Flow++ uses only fchecker.
Flow++ cannot use fchannel for the 32× 32 scale because there are odd number (3) of channels. The model architectures
under 4-million-parameter budget used in Sec. 6.2 are listed in Table 5. In this experiment, we use a special affine coupling
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Table 5. Model architecture for ablation experiment under fixed parameter budget.

Model 3-channel Flow++ 4-channel VFlow 6-channel VFlow
Parameters 4.02M 4.03M 4.01M

bpd 3.21 3.15 3.12
Architecture for p(x, z): direction (x, z)→ ε

32× 32 fchecker(13, 32, 4) ×4
faffine(3, 32) ×1 faffine(3, 32) ×1

fchecker(11, 32, 4) ×2 fchecker(10, 32, 4) ×2
fchannel(11, 32, 4) ×2 fchannel(10, 32, 4) ×2

SpaceToDepth SpaceToDepth SpaceToDepth

16× 16
fchannel(13, 32, 4) ×2 fchecker(11, 32, 4) ×2 fchecker(10, 32, 4) ×2
fchecker(13, 32, 4) ×3 fchannel(11, 32, 4) ×3 fchannel(10, 32, 4) ×3

Architecture for q(z|x): direction εq → z

32× 32 N/A gchecker(3, 32, 4) ×4 gchecker(3, 32, 4) ×4
Sigmoid Sigmoid

Architecture for r(u|x): direction εr → u

32× 32
fchecker(2, 32, 4) ×4 fchecker(2, 32, 4) ×4 fchecker(2, 32, 4) ×4

Sigmoid Sigmoid Sigmoid

layer to mix z and x forcibly:

y1 = z, y2 = µ(z) + exp(s(z)) ◦ x, faffine = concat(y1,y2)

where µ and s are RDZ → RDX functions. We empirically find that adding this special affine coupling layer accelerates the
convergence for small networks. The building block with this affine coupling layer with B hidden layers and DH hidden
units is denoted as faffine(B,DH) in Table 5.

Fixing Gradient Explosion

In our experiments, we find that the implementation of mixture-of-logistic attention coupling layer (Ho et al., 2019)
sometimes produces huge gradients, leading the training to diverge. To see this, note that the mixture-of-logistic attention
coupling layer for a given input x = (x1,x2) and the output y = (y1,y2) is defined by:

MixLogCDF(x;π,µ, s) =

K∑
i=1

πiσ((x− µi) · exp(−si)), where

K∑
i=1

πi = 1

y1 = x1, y2 = σ−1 (MixLogCDF(x2;πθ(x1), µθ(x1), sθ(x1))) ◦ exp(aθ(x1)) + bθ(x1),

where σ(x) = 1
1+e−x is the sigmoid function. However, the inverse sigmoid may cause gradient explosion. For example,

if x = 1 − 10−N , then
(
σ−1(x)

)′
= 1

x(1−x) ≈ 10N . If for each component, x − µi is large and si is small, then
(x− µi) · exp(−si) is large, and MixLogCDF(x2;πθ(x1), µθ(x1), sθ(x1) will be close to 1, leading to gradient explosion
of the inverse sigmoid function. For example, if πi = 1, x− µi = 4 and si = −1, we have MixLogCDF = σ((x− µi) ·
exp(−si)) ≈ 1 − 2 · 10−5 and then the gradient can be very large. We fix this issue by scaling the input of the inverse
sigmoid function to [0.05, 0.95]:

y2 = σ−1(0.05 + 0.9 ∗MixLogCDF(x2;πθ(x1),µθ(x1), sθ(x1))) ◦ exp(aθ(x1)) + bθ(x1).

C. Extra Experiments
We further study whether it is better to put more parameters on p(x, z) or q(z|x). Under a fixed 4 million total parameter
budget, we vary the parameter allocation between p(x, z) or q(z|x), and list the corresponding result and model architecture
in Table 6. The result implies that it is better to put most parameters on p(x, z), supporting our claim in Sec. 4 that the
variational distribution of VFlow is not necessarily as complicated as those in VAEs.
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Table 6. Parameter allocation between p(x, z) and q(z|x).
6-channel VFlow 6-channel VFlow 6-channel VFlow

Total parameters 4.00M 4.05M 4.01M
q(z|x) parameters 0.83M 0.64M 0.36M

bpd 3.14 3.13 3.12
Architecture for p(x, z): direction (x, z)→ ε

32× 32
faffine(3, 32) ×1 faffine(3, 32) ×1 faffine(3, 32) ×1

fchecker(8, 32, 4) ×2 fchecker(9, 32, 4) ×2 fchecker(10, 32, 4) ×2
fchannel(8, 32, 4) ×2 fchannel(9, 32, 4) ×2 fchannel(10, 32, 4) ×2

SpaceToDepth SpaceToDepth SpaceToDepth

16× 16
fchecker(8, 32, 4) ×2 fchecker(9, 32, 4) ×2 fchecker(10, 32, 4) ×2
fchannel(8, 32, 4) ×3 fchannel(9, 32, 4) ×3 fchannel(10, 32, 4) ×3

Architecture for q(z|x): direction εq → z

32× 32
gchecker(8, 32, 4) ×4 gchecker(6, 32, 4) ×4 gchecker(3, 32, 4) ×4

Sigmoid Sigmoid Sigmoid
Architecture for r(u|x): direction εr → u

32× 32
fchecker(2, 32, 4) ×4 fchecker(2, 32, 4) ×4 fchecker(2, 32, 4) ×4

Sigmoid Sigmoid Sigmoid
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