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Abstract
Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input struc-
ture. Despite training on low-resolution ImageNet
without labels, we find that a GPT-2 scale model
learns strong image representations as measured
by linear probing, fine-tuning, and low-data clas-
sification. On CIFAR-10, we achieve 96.3% ac-
curacy with a linear probe, outperforming a su-
pervised Wide ResNet, and 99.0% accuracy with
full fine-tuning, matching the top supervised pre-
trained models. We are also competitive with
self-supervised benchmarks on ImageNet when
substituting pixels for a VQVAE encoding, achiev-
ing 69.0% top-1 accuracy on a linear probe of our
features.

1. Introduction
Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000’s, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). It was believed that a model which learned
the data distribution P (X) would also learn beneficial fea-
tures for the subsequent supervised modeling of P (Y |X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben-
gio, 2010), and normalization strategies (Ioffe & Szegedy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt
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on the benefits of deep unsupervised representations and re-
ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
et al., 2015) have shown significant promise. A combination
of new training objectives (Oord et al., 2018), more recent
architectures (Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even outperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLP, this class of methods is due
for a modern re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
a flexible architecture (Vaswani et al., 2017), a tractable and
efficient likelihood based training objective (Larochelle &
Murray, 2011; Oord et al., 2016), and significant compute
resources (1024 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns
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Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.

representations that significantly improve the state of the
art in low-resolution unsupervised representation learning
settings.

This is especially promising as our architecture uses a dense
connectivity pattern which does not encode the 2D spatial
structure of images yet is able to match and even outperform
approaches which do. We report a set of experiments charac-
terizing the performance of our approach on many datasets
and in several different evaluation settings (low data, linear
evaluation, full fine-tuning). We also conduct several exper-
iments designed to better understand the achieved perfor-
mance of these models. We investigate how representations
are computed inside our model via the performance of linear
probes as a function of model depth as well as studying how
scaling the resolution and parameter count of the approach
affects performance.

2. Approach
Our approach consists of a pre-training stage followed by
a fine-tuning stage. In pre-training, we explore both the
auto-regressive and BERT objectives. We also apply the
sequence Transformer architecture to predict pixels instead
of language tokens.

One way to measure representation quality is to fine-tune for
image classification. Fine-tuning adds a small classification
head to the model, used to optimize a classification objective
and adapts all weights. Pre-training can be viewed as a
favorable initialization or as a regularizer when used in
combination with early stopping (Erhan et al., 2010).

Another approach for measuring representation quality uses
the pre-trained model as a feature extractor. In particular,
given labeled examples (X,Y ), the model is applied to X
to produce features fX . Then, a linear classifier is trained
on (fX , Y ). Linear probing captures the intuition that good
features should linearly separate the classes of transfer tasks.
Furthermore, linear probes help disentangle feature quality
from model architecture: in fine-tuning, one model may
outperform another because its architecture is more suited

for the downstream task rather than because of better pre-
training.

We begin this section by defining the auto-regressive and
BERT objectives in the context of images. Next, we outline
implementation details for our transformer decoder. Finally,
we describe how the transformer is used for fine-tuning and
how features are extracted for linear probes.

2.1. Pre-training

Given an unlabeled dataset X consisting of high dimen-
sional data x = (x1, ..., xn), we can pick a permutation π
of the set [1, n] and model the density p(x) auto-regressively
as follows:

p(x) =

nY
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, θ)

When working with images, we pick the identity permuta-
tion πi = i for 1 ≤ i ≤ n, also known as raster order. We
train our model by minimizing the negative log-likelihood
of the data:

LAR = E
x�X

[− log p(x)]

We also consider the BERT objective, which samples a
sub-sequence M ⊂ [1, n] such that each index i indepen-
dently has probability 0.15 of appearing in M . We call M
the BERT mask, and we train our model by minimizing
the negative log-likelihood of the “masked” elements xM
conditioned on the “unmasked” ones x[1;n]nM :
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In pre-training, we pick one of LAR or LBERT and mini-
mize the loss over our pre-training dataset.

2.2. Architecture

The transformer decoder takes an input sequence x1, ..., xn
of discrete tokens and produces a d-dimensional embedding
for each position. The decoder is realized as a stack of
L blocks, the l-th of which produces an intermediate em-
bedding hl1, ..., h

l
n also of dimension d. We use the GPT-2


