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Abstract

Inspired by progress in unsupervised representa-
tion learning for natural language, we examine
whether similar models can learn useful repre-
sentations for images. We train a sequence Trans-
former to auto-regressively predict pixels, without
incorporating knowledge of the 2D input struc-
ture. Despite training on low-resolution ImageNet
without labels, we find that a GPT-2 scale model
learns strong image representations as measured
by linear probing, fine-tuning, and low-data clas-
sification. On CIFAR-10, we achieve 96.3% ac-
curacy with a linear probe, outperforming a su-
pervised Wide ResNet, and 99.0% accuracy with
full fine-tuning, matching the top supervised pre-
trained models. We are also competitive with
self-supervised benchmarks on ImageNet when
substituting pixels for a VQVAE encoding, achiev-
ing 69.0% top-1 accuracy on a linear probe of our
features.

1. Introduction

Unsupervised pre-training played a central role in the resur-
gence of deep learning. Starting in the mid 2000’s, ap-
proaches such as the Deep Belief Network (Hinton et al.,
2006) and Denoising Autoencoder (Vincent et al., 2008)
were commonly used in neural networks for computer vi-
sion (Lee et al., 2009) and speech recognition (Mohamed
et al., 2009). It was believed that a model which learned
the data distribution P(X') would also learn beneficial fea-
tures for the subsequent supervised modeling of P(Y|X)
(Lasserre et al., 2006; Erhan et al., 2010). However, advance-
ments such as piecewise linear activation functions (Nair
& Hinton, 2010), improved initializations (Glorot & Ben-
gio, 2010), and normalization strategies (Ioffe & Szegedy,
2015; Ba et al., 2016) removed the need for pre-training in
order to achieve strong results. Other research cast doubt
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on the benefits of deep unsupervised representations and re-
ported strong results using a single layer of learned features
(Coates et al., 2011), or even random features (Huang et al.,
2014; May et al., 2017). The approach fell out of favor as
the state of the art increasingly relied on directly encoding
prior structure into the model and utilizing abundant su-
pervised data to directly learn representations (Krizhevsky
et al., 2012; Graves & Jaitly, 2014). Retrospective study of
unsupervised pre-training demonstrated that it could even
hurt performance in modern settings (Paine et al., 2014).

Instead, unsupervised pre-training flourished in a differ-
ent domain. After initial strong results for word vectors
(Mikolov et al., 2013), it has pushed the state of the art
forward in Natural Language Processing on most tasks (Dai
& Le, 2015; Peters et al., 2018; Howard & Ruder, 2018;
Radford et al., 2018; Devlin et al., 2018). Interestingly, the
training objective of a dominant approach like BERT, the
prediction of corrupted inputs, closely resembles that of the
Denoising Autoencoder, which was originally developed for
images.

As a higher dimensional, noisier, and more redundant modal-
ity than text, images are believed to be difficult for genera-
tive modeling. Here, self-supervised approaches designed to
encourage the modeling of more global structure (Doersch
et al., 2015) have shown significant promise. A combination
of new training objectives (Oord et al., 2018), more recent
architectures (Gomez et al., 2017), and increased model ca-
pacity (Kolesnikov et al., 2019) has allowed these methods
to achieve state of the art performance in low data settings
(Hénaff et al., 2019) and sometimes even outperform super-
vised representations in transfer learning settings (He et al.,
2019; Misra & van der Maaten, 2019).

Given that it has been a decade since the original wave of
generative pre-training methods for images and considering
their substantial impact in NLP, this class of methods is due
for a modern re-examination and comparison with the recent
progress of self-supervised methods. We re-evaluate genera-
tive pre-training on images and demonstrate that when using
a flexible architecture (Vaswani et al., 2017), a tractable and
efficient likelihood based training objective (Larochelle &
Murray, 2011; Oord et al., 2016), and significant compute
resources (1024 TPU cores), generative pre-training is com-
petitive with other self-supervised approaches and learns
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Figure 1. An overview of our approach. First, we pre-process raw images by resizing to a low resolution and reshaping into a 1D sequence.
We then chose one of two pre-training objectives, auto-regressive next pixel prediction or masked pixel prediction. Finally, we evaluate
the representations learned by these objectives with linear probes or fine-tuning.

representations that significantly improve the state of the
art in low-resolution unsupervised representation learning
settings.

This is especially promising as our architecture uses a dense
connectivity pattern which does not encode the 2D spatial
structure of images yet is able to match and even outperform
approaches which do. We report a set of experiments charac-
terizing the performance of our approach on many datasets
and in several different evaluation settings (low data, linear
evaluation, full fine-tuning). We also conduct several exper-
iments designed to better understand the achieved perfor-
mance of these models. We investigate how representations
are computed inside our model via the performance of linear
probes as a function of model depth as well as studying how
scaling the resolution and parameter count of the approach
affects performance.

2. Approach

Our approach consists of a pre-training stage followed by
a fine-tuning stage. In pre-training, we explore both the
auto-regressive and BERT objectives. We also apply the
sequence Transformer architecture to predict pixels instead
of language tokens.

One way to measure representation quality is to fine-tune for
image classification. Fine-tuning adds a small classification
head to the model, used to optimize a classification objective
and adapts all weights. Pre-training can be viewed as a
favorable initialization or as a regularizer when used in
combination with early stopping (Erhan et al., 2010).

Another approach for measuring representation quality uses
the pre-trained model as a feature extractor. In particular,
given labeled examples (X, Y), the model is applied to X
to produce features fx. Then, a linear classifier is trained
on (fx,Y). Linear probing captures the intuition that good
features should linearly separate the classes of transfer tasks.
Furthermore, linear probes help disentangle feature quality
from model architecture: in fine-tuning, one model may
outperform another because its architecture is more suited

for the downstream task rather than because of better pre-
training.

We begin this section by defining the auto-regressive and
BERT objectives in the context of images. Next, we outline
implementation details for our transformer decoder. Finally,
we describe how the transformer is used for fine-tuning and
how features are extracted for linear probes.

2.1. Pre-training

Given an unlabeled dataset X consisting of high dimen-
sional data = (x4, ..., xn), we can pick a permutation 7
of the set [1, n] and model the density p(x) auto-regressively
as follows:

i=1
When working with images, we pick the identity permuta-
tion mj = ¢ for 1 < ¢ < n, also known as raster order. We
train our model by minimizing the negative log-likelihood
of the data:

Lar = E_[—logp()]
x X

We also consider the BERT objective, which samples a
sub-sequence M C [1,n] such that each index ¢ indepen-
dently has probability 0.15 of appearing in M. We call M
the BERT mask, and we train our model by minimizing
the negative log-likelihood of the “masked” elements x
conditioned on the “unmasked” ones Z[1;njnm

X

Lgert = EE
i2M

—logp m; ‘x[l;n]nM

In pre-training, we pick one of Lar or LgerT and mini-
mize the loss over our pre-training dataset.

2.2. Architecture

The transformer decoder takes an input sequence x1, ..., Tn
of discrete tokens and produces a d-dimensional embedding
for each position. The decoder is realized as a stack of
L blocks, the [-th of which produces an intermediate em-
bedding 1!, ..., k), also of dimension d. We use the GPT-2



