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Abstract

We revisit the optimization from samples (OPS)
model, which studies the problem of optimizing
objective functions directly from the sample data.
Previous results showed that we cannot obtain a
constant approximation ratio for the maximum
coverage problem using polynomially many in-
dependent samples of the form {Si, f(Si)}ti=1

(Balkanski et al., 2017), even if coverage func-
tions are (1 − ε)-PMAC learnable using these
samples (Badanidiyuru et al., 2012), which means
most of the function values can be approximately
learned very well with high probability. In this
work, to circumvent the impossibility result of
OPS, we propose a stronger model called op-
timization from structured samples (OPSS) for
coverage functions, where the data samples en-
code the structural information of the functions.
We show that under three general assumptions on
the sample distributions, we can design efficient
OPSS algorithms that achieve a constant approxi-
mation for the maximum coverage problem. We
further prove a constant lower bound under these
assumptions, which is tight when not considering
computational efficiency. Moreover, we also show
that if we remove any one of the three assump-
tions, OPSS for the maximum coverage problem
has no constant approximation.

1. Introduction
Traditional optimization problems in the textbook are often
formulated as mathematical models with specified param-
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eters. The computational task is to optimize an objective
function given parameters of the model. One such exam-
ple is the maximum coverage problem. Given a family of
subsets T1, T2, · · · , Tn of a ground set N and a positive
integer k, the problem asks to find k subsets whose union
contains the most number of elements in N . In practice,
however, parameters of the model are often hidden in the
complex real world and we cannot observe them directly.
Instead, we can only learn information about the model from
the passively observed sample data. Back to the maximum
coverage problem, in this case we may not know the exact
elements contained in every subset Ti, but only observe sam-
ples of subsets Ti’s, and for each sample we only observe the
number of elements it covers. An immediate question, re-
cently raised by Balkanski et al. (2017), asks to what extent
we can optimize objective functions based on the sample
data that we use to learn them. More specifically, given
samples {Si, f(Si)}ti=1 where Si’s are drawn i.i.d. from
some distribution D on the subsets of N , f : 2N → R is
an unknown objective function, and t ∈ poly(|N |), can we
solve max|S|≤k f(S)? For maximum coverage, Si would
be a collection of some subsets Ti’s, function f would be
the number of elements covered by such collections. Such
problems form a new approach to optimization called opti-
mization from samples (OPS) (Balkanski et al., 2017).

A reasonable and perhaps the most natural approach is to
first learn a surrogate function f̃ : 2N → R which approx-
imates well the original function f and then optimize f̃
instead of f . One may expect that if we can approximate
a function well, then we can also optimize it well. Stan-
dard frameworks of learnability in the literature include
PAC learnability for boolean functions due to Valiant (1984)
and PMAC learnability for real-valued set functions due to
Balcan and Harvey (2011).

Unfortunately, the learning-and-then-optimization approach
does not work in general. Indeed, Balkanski et al. (2017)
show the striking result that the maximum coverage prob-
lem cannot be approximated within a ratio better than
2−Ω(

√
log |N |) using only polynomially many samples

drawn i.i.d. from any distribution, even though (a) for any
constant ε > 0, coverage functions are (1− ε)-PMAC learn-
able over any distribution (Badanidiyuru et al., 2012), which
means most of the function values can be approximately
learned very well with high probability; and (b) maximum



Optimization from Structured Samples for Coverage Functions

coverage problem as a special case of submodular function
maximization has a 1 − 1/e approximation given a value
oracle to the coverage function (Nemhauser et al., 1978).

The impossibility result by Balkanski et al. (2017) uses
coverage functions defined over a partition of the ground
set, which ensure the “good” and “bad” parts of the partition
cannot be distinguished from the samples. In other words,
the impossibility result arises because the samples do not
provide information on the structure of coverage functions.

To circumvent the above impossibility result, we propose a
stronger model called optimization from structured samples
(OPSS) for coverage functions, which encodes structural
information of the coverage functions into the samples. In
many real-world applications, such structural information
are often revealed in the data, for example, a crowd-sourcing
platform records the crowd-workers’ coverage on the tasks
they took, a document analysis application records the key-
words coverage on the documents they appear, etc. Thus
the OPSS model is reasonable in practice. However, even in
the stronger OPSS model, not all sample distributions will
allow a constant approximation for the maximum coverage
problem. In this paper, we study the assumptions that enable
constant approximation in the OPSS model and its related
algorithmic and hardness results. We now state our model
and results in more detail.

1.1. Model

For sake of comparison, we first state the definition of opti-
mization from samples (Balkanski et al., 2017) for general
set functions.

Definition 1 (Optimization from samples (OPS)). Let F
be a class of set functions defined on the ground set L.
F is α-optimizable from samples in constraint M ⊆ 2L

over distribution D on 2L, if there exists a (not necessarily
polynomial time) algorithm such that, given any parameter
δ > 0 and sufficiently large L, there exists some integer
t0 ∈ poly(|L|, 1/δ), for all t ≥ t0, for any set of samples
{Si, f(Si)}ti=1 with f ∈ F and Si’s drawn i.i.d. from D,
the algorithm takes samples {Si, f(Si)}ti=1 as the input and
returns S ∈M such that

Pr
S1,··· ,St∼D

[E[f(S)] ≥ α · max
T∈M

f(T )] ≥ 1− δ,

where the expectation is taken over the randomness of the
algorithm.

Next we state the definition of coverage functions in terms
of bipartite graphs as well as the definition of optimization
from structured samples for coverage functions.

Definition 2 (Coverage functions). Assume there is a bipar-
tite graph G = (L,R,E). For node u ∈ L ∪R, let NG(u)
denote its neighbors in G. The neighbors of a subset S ⊆ L

or S ⊆ R isNG(S) = ∪u∈SNG(u). The coverage function
fG : 2L → R+ is the number of neighbors covered by a set
S ⊆ L, i.e. fG(S) = |NG(S)|.
Definition 3 (Optimization from structured samples
(OPSS)). Let F be the class of coverage functions de-
fined on all bipartite graphs {G = (L,R,E)} with two
components L and R. F is α-optimizable under OPSS in
constraint M ⊆ 2L over distribution D on 2L, if there
exists a (not necessarily polynomial time) algorithm such
that, given any parameter δ > 0 and sufficiently large
L, there exists some integer t0 ∈ poly(|L|, |R|, 1/δ), for
all t ≥ t0, for any set of samples {Si, NG(Si)}ti=1 with
fG ∈ F and Si’s drawn i.i.d. from D, the algorithm takes
samples {Si, NG(Si)}ti=1 as the input and returns S ∈M
such that

Pr
S1,··· ,St∼D

[E[fG(S)] ≥ α · max
T∈M

fG(T )] ≥ 1− δ,

where the expectation is taken over the randomness of the
algorithm.

Samples in OPSS are structured in that the exact members
covered by a set S ⊆ L are revealed, instead of only the
number of covered members being revealed as in OPS. In
this paper we focus on the cardinality constraintM≤k =
{S ⊆ L | |S| ≤ k}. Maximizing coverage functions under
this constraint is known as the maximum coverage problem.

Our OPSS model is defined so far only for coverage func-
tions. One reason is that the impossibility of OPS given by
Balkanski et al. (2017) is on the coverage functions, which
is striking because coverage functions admit a simple con-
stant approximation algorithm with the value oracle and is
(1− ε)-PMAC learnable as mentioned before. Thus cover-
age function is the first to consider for circumventing the
impossibility result for OPS. Another reason is that cov-
erage functions exhibit natural structures via the bipartite
graph representation. Other set functions may exhibit dif-
ferent combinatorial structures and thus the OPSS problem
may need to be defined accordingly to reflect the specific
structural information for other set functions.

1.2. Our Results

One of our main results is to provide a set of three general
assumptions on the sample distribution together with an
algorithm and show that the algorithm achieves a constant
approximation ratio for the maximum coverage problem
in OPSS under the assumption. The general assumption is
summarized below.

Assumption 1. We assume that the distribution D on 2L

satisfy the following three assumptions:

1.1 Feasibility. A sample S ∼ D is always feasible,
i.e. |S| ≤ k.
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1.2 Polynomial bounded sample complexity. For any u ∈
L, the probability pu = PrS∼D[u ∈ S] satisfies pu ≥
1/|L|c for some constant c.

1.3 Negative correlation. The random variables Xu =
1u∈S are “negatively correlated” (see Definition 4)
over distribution D.

All three assumptions above are natural. In particular, As-
sumption 1.2 means that all elements in the ground set have
sufficient probability to be sampled, and Assumption 1.3
means informally that the appearance of one element in the
sampled set S would reduce the probability of the appear-
ance of another element in S. In fact, typical distributions
overM≤k, such as uniform distribution D≤k over all sub-
sets inM≤k or uniform distribution Dk over all subsets of
exact size k, all satisfy these assumptions. Our result based
on the above assumption is summarized by the following
theorem.

Theorem 1. If a distribution D satisfies Assumption 1,
given any α-approximation algorithm A for the standard
maximum coverage problem, coverage functions are α

2 -
optimizable under OPSS in the cardinality constraintM≤k
over D for any k ≤ |L|. Furthermore, the OPSS algorithm
uses a polynomial number of arithmetic operations and one
call of algorithm A.

The general approximation ratio α is to cover both
polynomial-time and non-polynomial-time algorithms. If
we need a polynomial-time algorithm, then we know that the
best ratio we can achieve is 1− 1/e if NP6=P (Nemhauser
et al., 1978; Feige, 1998). Thus our OPSS algorithm
achieves 1

2 (1 − 1/e) approximation. If running time is
not our concern, then we can use α = 1 by an exhaus-
tive search algorithm, and our OPSS algorithm achieves 1

2
approximation.

We further show that if the distribution is Dk, i.e. the uni-
form distribution over all subsets of exact size k, we have
another OPSS algorithm to achieve (α− ε) approximation,
as shown below. This implies that our OPSS algorithm (al-
most) matches the approximation ratio of any algorithm for
the standard maximum coverage problem.

Theorem 2. For any constant ε > 0, given any α-
approximation algorithm A for the standard maximum cov-
erage problem, coverage functions are (α− ε)-optimizable
under OPSS in the cardinality constraintM≤k over Dk, as-
suming that ln2 |L| ≤ k ≤ |L|/2 and |R| ≤ ε

2 |L|
(ε ln |L|)/8.

Furthermore, the OPSS algorithm uses a polynomial num-
ber of arithmetic operations and one call of algorithm A.

Next, we prove a hardness result showing that the approx-
imation ratio of 1

2 is unavoidable for some distributions,
which means that when efficiency is not the concern, our
upper and lower bounds are tight.

Theorem 3. There is a distribution D satisfying Assump-
tion 1 such that coverage functions are not α-optimizable
under OPSS in the cardinality constraintM≤k over D for
any α > 1

2 + o(1).

Finally, we also show that the three conditions given in
Assumption 1 are necessary, in the sense that dropping any
one of them would result in no constant approximation
for the OPSS problem. This demonstrates that our three
conditions need to work together to make OPSS solvable.
Theorem 4. By dropping any one of the conditions in As-
sumption 1, there is a distribution D such that coverage
functions are not α-optimizable under OPSS for any con-
stant α in the cardinality constraintM≤k over D.

To summarize, in this paper we investigate the structural
information on coverage functions that could allow us to cir-
cumvent the impossibility result in (Balkanski et al., 2017).
We show that when the samples could reveal the covered
elements rather than just the count, under certain reasonable
assumptions on the sample distribution (Assumption 1), we
could design an OPSS algorithm that achieves α/2 approx-
imation, where α is the approximation ratio of a standard
maximum coverage problem. Moreover, for the uniform
distribution on subsets of size k, we provide an efficient
algorithm that achieves tight α− ε approximation, matching
the performance of any algorithm for the standard maxi-
mum coverage problem. On the lower bound side, we show
that the approximation ratio of 1/2 is unavoidable, which
matches the upper bound when not considering computa-
tional complexity. Finally, we show that removing any one
of the three conditions in Assumption 1, we cannot achieve
constant approximation for OPSS. Our study opens up the
possibility of studying structural information for achiev-
ing optimization from samples, which is needed in many
applications in the big data era.

1.3. Related Work

The study of optimization from samples (OPS) was initiated
by Balkanski et al. (2017). They proved that no algorithm
can achieve an approximation ratio better than 2−Ω(

√
logn)

for the maximum coverage problem under OPS. The same
set of authors showed there is an optimal (1−c)/(1+c−c2)
approximation algorithm for maximizing monotone sub-
modular functions with curvature c subject to a cardinality
constraint over uniform distributions under OPS (Balkanski
et al., 2016). For submodular function minimization, it was
proved in (Balkanski & Singer, 2017) that no algorithm
can obtain an approximation strictly better than 2 − o(1)
under OPS. And this is tight via a trivial 2-approximation
algorithm. Rosenfeld et al. (2018) defined a weaker variant
of OPS called distributionally optimization from samples
(DOPS). They showed that a class of set functions is opti-
mizable under DOPS if and only if it is PMAC-learnable.
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2. Concepts and Tools
We first discuss the definition of negative correlation. Neg-
ative dependence among random variables has been exten-
sively studied in the literature and there are a lot of qualita-
tive versions of this concept (Jogdeo & Patil, 1975; Karlin
& Rinott, 1980; Ghosh, 1981; Block et al., 1982; Joag-Dev
& Proschan, 1983). Among them, the most widely accepted
one is the negative association (NA) defined in (Joag-Dev
& Proschan, 1983). However, in this paper, we only use
a weaker version of NA. Thus, more distributions satisfy
our definition of negative correlation. It is also easy to see
that the uniform distributions Dk and D≤k both satisfy this
definition.

Definition 4 (Negative correlation). A set of 0-1 random
variables X1, · · · , Xn is negative correlated, if for any dis-
joint subsets I, J ⊆ [n] := {1, · · · , n},

E
[ ∏
i∈I∪J

(1−Xi)
]
≤ E

[∏
i∈I

(1−Xi)
]
E
[∏
j∈J

(1−Xj)
]
.

Then we prove the following lemma, which shows that
the occurrence of an event would reduce the probability of
occurrences of other events.

Lemma 1. Assume that X1, · · · , Xn are negatively cor-
related 0-1 random variables. Then for any I ⊆ [n] and
j /∈ I ,

Pr[∨i∈I(Xi = 1) | Xj = 1] ≤ Pr[∨i∈I(Xi = 1)].

Proof. Since X1, · · · , Xn are negatively correlated,

Pr[∧i∈I∪{j}(Xi = 0)] ≤ Pr[∧i∈I(Xi = 0)] Pr[Xj = 0],

which is equivalent to

Pr[∧i∈I(Xi = 0)]− Pr[∧i∈I(Xi = 0), Xj = 1]

≤ Pr[∧i∈I(Xi = 0)] Pr[Xj = 0].

Rearranging the last inequality, we have

Pr[∧i∈I(Xi = 0)] Pr[Xj = 1]

≤ Pr[∧i∈I(Xi = 0), Xj = 1],

which is equivalent to

(1− Pr[∨i∈I(Xi = 1)]) Pr[Xj = 1]

≤ Pr[Xj = 1]− Pr[∨i∈I(Xi = 1), Xj = 1].

Rearranging the last inequality, we have

Pr[∨i∈I(Xi = 1), Xj = 1]

≤ Pr[∨i∈I(Xi = 1)] Pr[Xj = 1].

This concludes the proof.

Algorithm 1 OPSS algorithm for the general Assumption 1
Input: Samples {Si, NG(Si)}ti=1 and k ∈ N+

1: Let T1 = S1

2: Construct a surrogate bipartite graph G̃ = (L,R, Ẽ)
such that for each u ∈ L, NG̃(u) = ∩i:u∈SiNG(Si)

3: Let T2 = A(G̃, k)
4: return T1 with probability 1/2; and T2 otherwise

Next is Chernoff bound used in the analysis of probability
concentration.
Lemma 2 (Chernoff bound, (Mitzenmacher & Upfal,
2005)). Let X1, X2, · · · , Xn be independent random vari-
ables in {0, 1} with Pr[Xi = 1] ≥ pi. Let X =

∑n
i=1Xi

and E[X] = µ ≥ µL =
∑n
i=1 pi. Then, for 0 < δ < 1,

Pr[X ≤ (1− δ)µL] ≤ e−µLδ
2/2.

3. Constant Approximations for OPSS
In this section, we present two constant approximation al-
gorithms for OPSS and their results: one for the general
distributions satisfying Assumption 1 (Theorem 1) and the
other for the uniform distribution Dk (Theorem 2).

3.1. A Constant Approximation under Assumption 1

The algorithm is shown in Algorithm 1. It returns one of
the two solutions T1 and T2 with equal probability, where
T1 is just the first sample, and T2 is the solution of an α-
approximation algorithmA on a constructed surrogate bipar-
tite graph G̃ for the standard maximum coverage problem.
The parameters of algorithm A denote the graph and the
constraint respectively. The surrogate graph G̃ = (L,R, Ẽ)
is constructed from samples {Si, NG(Si)}ti=1 such that
for each node u ∈ L, we construct u’s coverage in R as
NG̃(u) = ∩i:u∈SiNG(Si), which is an estimate of NG(u).
The intuition is as follows. If some singleton {u} is drawn
fromD, the knowledge aboutNG(u) is completely revealed.
However, it might be the case that D always returns a large
set S, and the exact knowledge about NG(u) for u ∈ S is
hidden behind NG(S). Thus to reveal as much knowledge
about NG(u) as possible, it is natural to use the intersection
of samples that contain u as an estimate.

The difficulty in the analysis is that NG̃(u) is always an
overestimate of NG(u), and it is impossible to show that
NG̃(u) is a good approximation of NG(u). One extreme ex-
ample is that suppose for some v ∈ L, PrS∼D[v ∈ S] = 1,
then we have that NG̃(u) always contains all elements in
NG(u) ∪NG(v), which might be much larger than NG(u)
itself. Thus T2 itself might not be a good solution on the
original graph G. To circumvent this difficulty, the key
step is to show that for any S ∼ D, NG̃(T2)\NG(T2) ⊆
∪u∈L(NG̃(u)\NG(u)) ⊆ NG(S) with high probability
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(Lemma 3). Consequently, NG̃(T2) ⊆ NG(T1 ∪ T2) and
we can obtain a constant approximation ratio by combining
a random sample T1 with T2 as in Algorithm 1. Note that
T1 and T2 may be correlated since they are both dependent
on S1, but this is not an issue based on our analysis.

Lemma 3. For a given δ > 0, suppose that the number of
samples t ≥ 4|L|c|R|

δ ln 4|L||R|
δ , where c is the constant in

Assumption 1.2. Under Assumption 1, we have

Pr
S1,··· ,St∼D

[∪u∈L(NG̃(u)\NG(u)) ⊆ NG(S1)] ≥ 1− δ.

The proof of Lemma 3 is delayed to Section 3.1.1. For now,
we use it to prove Theorem 5, which is a more concrete
version of Theorem 1.

Theorem 5. If a distribution D satisfies Assumption 1,
given any α-approximation algorithm A for the standard
maximum coverage problem, coverage functions are α

2 -
optimizable under OPSS in the cardinality constraintM≤k
over D for any k ≤ |L|. More precisely, for any δ > 0,
suppose that the number of samples t ≥ 4|L|c|R|

δ ln 4|L||R|
δ ,

where c is the constant in Assumption 1.2. Let ALG be the
solution returned by Algorithm 1 and OPT be the optimal
solution on the original graph G. Then under Assumption 1,
we have

Pr
S1,··· ,St∼D

[
E[fG(ALG)] ≥

α

2
fG(OPT )

]
≥ 1− δ.

Proof. By the construction of G̃, NG(u) ⊆ NG̃(u) for any
u ∈ L. Therefore, G is a subgraph of G̃ and fG̃(OPT ) ≥
fG(OPT ). Since A is an α approximation algorithm,

fG̃(T2) ≥ αfG̃(OPT ) ≥ αfG(OPT ).

On the other hand, it holds that NG̃(T2)\NG(T2) ⊆
∪u∈T2(NG̃(u)\NG(u)) ⊆ ∪u∈L(NG̃(u)\NG(u)). Since
T1 = S1, by Lemma 3, it holds with probability 1− δ that
NG̃(T2)\NG(T2) ⊆ NG(T1), and

fG̃(T2) = |NG(T2) ∪ (NG̃(T2)\NG(T2))|
≤ |NG(T2)|+ |NG̃(T2)\NG(T2)|
≤ |NG(T2)|+ |NG(T1)|
= fG(T2) + fG(T1).

Therefore, with probability 1− δ,

E[fG(ALG)] = E

[
1

2
· fG(T1) +

1

2
· fG(T2)

]
≥ E

[
1

2
fG̃(T2)

]
≥ α

2
fG(OPT ).

For common distributions, the constant c in Assumption
1.2 is usually small, thus Algorithm 1 requires moder-
ately small number of samples. For instance, for dis-
tributions Dk and D≤k, PrS∼Dk [u ∈ S] = k/|L| and
PrS∼D≤k [u ∈ S] ≥ 1/|L|. Thus both distributions require
only O( |L||R|δ ln |L||R|δ ) samples.

3.1.1. PROOF OF LEMMA 3

We first introduce some notations. Let |L| = n, |R| = m
and t = 2m

δ ln 4mn
δ . For any node u ∈ L, let tu = |{i :

u ∈ Si}| be the number of samples where u appears. For
any node v ∈ R, let qv = PrS∼D[v ∈ NG(S)] be the
probability that v is covered by a sample S ∼ D. Our
analysis starts with partitioning R into two subsets R1 and
R2, where R1 = {v ∈ R | qv ≤ 1− δ

2m} and R2 = R\R1.
In general, we will show that nodes in R1 will not appear
in ∪u∈L(NG̃(u)\NG(u)) with high probability (Lemma 7)
and R2 will be covered by any sample S ∼ D with high
probability (Lemma 8). These facts together suffice to prove
Lemma 3.

Lemma 4. Assume that t ≥ 2nc · t. For fixed u ∈ L,
PrS1,··· ,St∼D[tu ≤ t] ≤ δ/(4mn).

Proof. For fixed u ∈ L, let Xi = 1 if u ∈ Si and 0
otherwise. Then tu =

∑t
i=1Xi. By Assumption 1.2,

pu = PrS∼D[u ∈ S] ≥ 1/nc. Thus E[tu] ≥ t/nc ≥ 2t.
By Chernoff bound (Lemma 2),

Pr[tu ≤ t] = Pr

[
tu ≤

(
1− 1

2

)
· 2t
]
≤ e−t/4 ≤ δ

4mn
.

The last inequality needs m ≥ 2δ, which is satisfied for all
nontrivial instances.

Lemma 5. For any u ∈ L and v ∈ R such that
(u, v) /∈ E, PrS∼D[v ∈ NG(S), u ∈ S] ≤ PrS∼D[v ∈
NG(S)] PrS∼D[u ∈ S].

Proof. Just note that the event {v ∈ NG(S)} is equivalent
to {∪u′∈NG(v)(u

′ ∈ S)}. The lemma follows directly from
Lemma 1.

Lemma 6. For any u ∈ L and v ∈ R such that
(u, v) 6∈ E, PrS1,··· ,St∼D[v ∈ NG̃(u)\NG(u), tu = `] ≤
qlv · PrS1,··· ,St∼D[tu = `], for any ` ∈ N.

Proof. By the law of total probability, the formula
on the left-hand side is equal to

∑
I⊆[t]:|I|=` Pr[v ∈

NG̃(u)\NG(u), u ∈ ∩i∈ISi, u /∈ ∪j /∈ISj ]. Since Si’s are
independent samples, by construction ofNG̃(u) and Lemma
5, we have

Pr[v ∈ NG̃(u)\NG(u), u ∈ ∩i∈ISi, u /∈ ∪j /∈ISj ]
= Pr[v ∈ ∩i∈ING(Si), u ∈ ∩i∈ISi, u /∈ ∪j /∈ISj ]
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=
∏
i∈I

Pr[v ∈ NG(Si), u ∈ Si]
∏
j /∈I

Pr[u /∈ Sj ]

≤
∏
i∈I

(Pr[v ∈ NG(Si)] Pr[u ∈ Si])
∏
j /∈I

Pr[u /∈ Sj ]

=
∏
i∈I

Pr[v ∈ NG(Si)]
∏
i∈I

Pr[u ∈ Si]
∏
j /∈I

Pr[u /∈ Sj ]

= q`v · Pr[u ∈ ∩i∈ISi, u /∈ ∪j /∈ISj ].

Thus

Pr[v ∈ NG̃(u)\NG(u), tu = `]

≤ q`v
∑

I⊆[t]:|I|=`

Pr[u ∈ ∩i∈ISi, u /∈ ∪j /∈ISj ]

= q`v · Pr[tu = `].

Lemma 7. Assume that t ≥ 2nct. Then PrS1,··· ,St∼D[R1∩
(∪u∈L(NG̃(u)\NG(u))) = ∅] ≥ 1− δ/2.

Proof. For node v ∈ R1 and node u ∈ L such that (u, v) /∈
E, we have

Pr[v ∈ NG̃(u)\NG(u)]

=
∑
`≥0

Pr[v ∈ NG̃(u)\NG(u), tu = `]

≤
∑
`≥0

Pr[tu = `] · q`v

≤
∑
`≤t

Pr[tu = `] · 1 +
∑
`>t

Pr[tu = `] · qtv

= Pr[tu ≤ t] + Pr[tu > t] · qtv

≤ δ

4mn
+

(
1− δ

2m

) 2m
δ ln 4mn

δ

≤ δ

4mn
+

δ

4mn
=

δ

2mn
.

The first inequality holds due to Lemma 6. The second to
last inequality holds due to Lemma 4, the fact that qv ≤
1 − δ

2m for all v ∈ R1 and t = 2m
δ ln 4mn

δ . Finally, by
union bound, we have

Pr[R1 ∩ (∪u∈L(NG̃(u)\NG(u))) 6= ∅]
= Pr[∃ v ∈ R1, u ∈ L s.t. v ∈ NG̃(u)\NG(u)]

≤
∑

v∈R1,u∈L
Pr[v ∈ NG̃(u)\NG(u)]

≤
∑

v∈R1,u∈L

δ

2mn
≤ δ

2
.

The proof is completed.

Lemma 8. PrS1∼D[R2 ⊆ NG(S1)] ≥ 1− δ/2.

Algorithm 2 Tight OPSS algorithm under Dk
Input: Samples {Si, NG(Si)}ti=1, k ∈ N+, ε ∈ (0, 1)

1: Draw a set T1 from Dεk/2.
2: Construct a surrogate bipartite graph G̃ = (L,R, Ẽ)

such that for each u ∈ L, NG̃(u) = ∩Si:u∈SiNG(Si)
3: Let T2 = A(G̃, (1− ε/2)k)
4: return T1 ∪ T2

Proof. For a node v ∈ R2, by definition, PrS∼D[v /∈
NG(S)] = 1 − qv ≤ δ

2m . By union bound, we have
PrS∼D[∃ v ∈ R2 s.t. v /∈ NG(S)] ≤ δ/2. That is,
PrS∼D[R2 ⊆ NG(S)] ≥ 1− δ/2.

Proof of Lemma 3. By Lemma 7, with probability 1 −
δ/2, R1 ∩ (∪u∈L(NG̃(u)\NG(u))) = ∅ and therefore
∪u∈L(NG̃(u)\NG(u)) ⊆ R2. On the other hand, by
Lemma 8, with probability 1 − δ/2, R2 ⊆ NG(S1). Fi-
nally, by union bound, ∪u∈L(NG̃(u)\NG(u)) ⊆ NG(S1)
with probability 1− δ.

3.2. A Tight Algorithm for OPSS under Dk

In this section, we present a tight algorithm for OPSS under
distribution Dk, the uniform distribution over all subsets of
size k. Compared with Algorithm 1, Algorithm 2 takes an
additional input ε ∈ (0, 1) and has two other modifications.
First, when constructing T2, the constraint is replaced by
|S| ≤ (1−ε/2)k, which only incurs little loss in the approxi-
mation ratio. Second, instead of assigning a sample S ∼ Dk
to T1, the algorithm picks a set uniformly at random from
all subsets of size εk/2 and assigns it to T1. The key ob-
servation is that under distribution Dk, although T1 is quite
small, it suffices to cover nodes in NG̃(T2)\NG(T2) with
high probability. However, this is not true for general distri-
butions. As a result, T1 ∪ T2 yields an α− ε approximation
for the problem, and it is also feasible.

We begin the analysis with some notations. Let |L| = n,

|R| = m and t =
(

2m
ε

) 8
ε ln 2mn

δ . In the analysis, we
assume that ln2 n ≤ k ≤ n/2 and m ≤ ε

2n
(ε lnn)/8. This

is a sufficient condition for a key inequality, as we will
further explain after Theorem 6. For any node u ∈ L, let
tu = |{i : u ∈ Si}| be the number of samples where
u appears. For any node v ∈ R, let qv = PrS∼Dk [v ∈
NG(S)] be the probability that v is covered by a sample
S ∼ Dk. Let d(v) = |N(v)| denote the number of v’s
neighbors. Partition R into two subsets R1 and R2, where
R1 = {v ∈ R | d(v) < 2n

εk ln 2m
ε } and R2 = R\R1.

While in the general case discussed in previous section, R
is partitioned according to the value of qv , here we partition
R according to the value of d(v). The reason is that Dk is a
uniform distribution. Thus for v ∈ R, the more neighbors
it has, the higher probability it will be covered by a sample
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S ∼ Dk. The observation is further formulated as Lemma 9.
Based on it, we can show that with high probability nodes in
R1 will not appear in ∪u∈L(NG̃(u)\NG(u)) (Lemma 10).
Besides, qv increases exponentially with respect to d(v).
Thus instead of picking a sample from Dk, drawing a set T1

from Dεk/2 suffices to cover nodes in R2 (Lemma 11).

Lemma 9. For any v ∈ R1, qv ≤ 1−
(
ε

2m

)8/ε
.

Proof. It is easy to verify that when ln2 n ≤ k and m ≤
ε
2n

(ε lnn)/8, we have 2n
εk ln 2m

ε ≤ n/4. Thus for any v ∈
R1, d(v) < 2n

εk ln 2m
ε ≤ n/4. Together with k ≤ n/2, we

have

1− qv =
(
n−d(v)

k

)(
n
k

)
=

(n− d(v)) · · · (n− d(v)− k + 1)

n · · · (n− k + 1)

≥
(
1− d(v)

n− k + 1

)k
≥
(
1− d(v)

n/2

)k
≥ exp

(
−4kd(v)

n

)
≥ exp (−(8/ε) ln(2m/ε))
= (ε/2m)8/ε.

The third inequality holds since 1 − x ≥ e−2x for x ∈
[0, 1/2]. The last inequality holds since d(v) < 2n

εk ln 2m
ε

for v ∈ R1.

Similar to Lemmas 7 and 8, we show the following lemmas.
The proofs are included in Section 3.2.1.
Lemma 10. Assume that t ≥ 2(n/k) · t. We have

Pr
S1,··· ,St∼Dk

[R1 ∩ (∪u∈L(NG̃(u)\NG(u))) = ∅] ≥ 1− δ.

Lemma 11. PrT1∼Dεk/2 [R2 ⊆ NG(T1)] ≥ 1− ε/2.

Now we prove Theorem 6, which is a more concrete version
of Theorem 2.
Theorem 6. For any constant ε > 0, given any α-
approximation algorithm A for the standard maximum cov-
erage problem, coverage functions are (α− ε)-optimizable
under OPSS in the cardinality constraintM≤k over Dk, as-
suming that ln2 |L| ≤ k ≤ |L|/2 and |R| ≤ ε

2 |L|
(ε ln |L|)/8.

More precisely, for any δ > 0, suppose that the number

of samples t ≥ 2|L|
k

(
2|R|
ε

) 8
ε

ln 2|L||R|
δ . Let ALG be the

solution returned by Algorithm 2 and OPT be the optimal
solution on the original graph G. Then

Pr
S1,··· ,St∼Dk

[E[fG(ALG)] ≥ (α− ε)fG(OPT )] ≥ 1− δ.

Proof. By the construction of G̃, NG(u) ⊆ NG̃(u) for any
u ∈ L. Therefore, G is a subgraph of G̃ and fG̃(OPT ) ≥
fG(OPT ). Let OPTk be the optimal solution when select-
ing k elements. Since A is an α approximation algorithm
and |T2| ≤ (1− ε/2)k,

fG̃(T2) ≥ αfG̃(OPT(1−ε/2)k)

≥ α(1− ε/2)fG̃(OPTk) ≥ α(1− ε/2)fG(OPT ),

where the second inequality above utilizes the submodular-
ity of the coverage functions.

Let E be the event R1 ∩ (∪u∈LNG̃(u)\NG(u)) = ∅. By
Lemma 10, PrS1,··· ,St∼Dk [E ] ≥ 1− δ.

We now assume that event E holds. In this case, we first have
NG̃(T2)\NG(T2) ⊆ ∪u∈LNG̃(u)\NG(u) ⊆ R2. Next,
conditioned on E , we still have the claim in Lemma 11
because the sampling of T1 is independent of the sampling
of S1, . . . , St. Therefore, when E holds, we have

E[fG(ALG)] = E[fG(T1 ∪ T2)]

≥ Pr[R2 ⊆ NG(T1)]E[fG(T1 ∪ T2) | R2 ⊆ NG(T1)]

≥ Pr[R2 ⊆ NG(T1)]E[|NG̃(T2)| | R2 ⊆ NG(T1)]

≥ α(1− ε/2)2fG(OPT ) ≥ (α− ε)fG(OPT ).

This concludes the proof.

We remark that Lemma 9 (and thus Theorem 6) holds as
long as k ≤ |L|/2 and |R| ≤ ε

2e
(εk)/8. The technical

condition ln2 |L| ≤ k ≤ |L|/2 and |R| ≤ ε
2 |L|

(ε ln |L|)/8

is indeed a relaxed sufficient condition by setting a lower
bound for k. However, it provides a reasonable asymptotic
requirement on k and |R| in terms of |L|.

3.2.1. PROOF OF LEMMAS 10 AND 11

Lemma 12. Assume that t ≥ 2(n/k) · t, where t =(
2m
ε

) 8
ε ln 2mn

δ . For fixed u ∈ L, Pr[tu ≤ t] ≤ δ/(2mn).

Proof. For fixed u ∈ L, let Xi = 1 if u ∈ Si and 0 other-
wise. Then tu =

∑t
i=1Xi. Since pu = PrS∼Dk [u ∈ S] ≥

k/n, E[tu] ≥ tk/n = 2t. By Chernoff bound (Lemma 2),

Pr[tu ≤ t] = Pr

[
tu ≤

(
1− 1

2

)
· 2t
]
≤ e−t/4 ≤ δ

2mn
.

The last inequality holds as long as t ≥ 4 ln 2mn
δ .

Proof of Lemma 10. For node v ∈ R1 and node u ∈ L such
that (u, v) 6∈ E, we have

Pr[v ∈ NG̃(u)\NG(u)]

=
∑
`≥0

Pr[v ∈ NG̃(u)\NG(u), tu = `]
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≤
∑
`≥0

Pr[tu = `] · q`v

≤
∑
`≤t

Pr[tu = `] · 1 +
∑
`>t

Pr[tu = `] · qtv

= Pr[tu ≤ t] + Pr[tu > t] · qtv

≤ δ

2mn
+

(
1−

( ε

2m

) 8
ε

)( 2m
ε )

8
ε ln 2mn

δ

≤ δ

2mn
+

δ

2mn
=

δ

mn
.

The first inequality holds due to Lemma 6. The second to
last inequality holds due to Lemma 12 and Lemma 9, and

the fact that t =
(

2m
ε

) 8
ε ln 2mn

δ .

Finally, by union bound, we have

Pr[R1 ∩ (∪u∈LNG̃(u)\NG(u)) 6= ∅]
= Pr[∃ v ∈ R1, u ∈ L s.t. v ∈ NG̃(u)\NG(u)]

≤
∑

v∈R1,u∈L
Pr[v ∈ NG̃(u)\NG(u)]

≤
∑

v∈R1,u∈L
δ/(mn) ≤ δ.

The proof is completed.

Proof of Lemma 11. For node v ∈ R2, d(v) ≥ 2n
εk ln 2m

ε ,
then

Pr
T1∼Dεk/2

[v 6∈ NG(T1)] =

(
n−d(v)
εk/2

)(
n

εk/2

)
=

(n− d(v)) · · · (n− d(v)− εk/2 + 1)

n · · · (n− εk/2 + 1)

≤
(
1− d(v)

n

)εk/2
≤ exp

(
−εkd(v)

2n

)
≤ ε

2m
.

By union bound, we have

Pr
T1∼Dεk/2

[∃ v ∈ R2, v 6∈ NG(T1)] ≤ ε/2.

That is, PrT1∼Dεk/2 [R2 ⊆ NG(T1)] ≥ 1− ε/2.

4. Hardness Results for OPSS
4.1. The 1/2 Hardness for OPSS under Assumption 1

Theorem 3. There is a distribution D satisfying Assump-
tion 1 such that coverage functions are not α-optimizable
under OPSS in the cardinality constraintM≤k over D for
any α > 1

2 + o(1).

Proof. The distribution D is constructed as follows. Num-
ber nodes in L such that L = {u1, · · · , un}. Let L1 contain

the first k − 1 nodes and L2 = L\L1. Any sample S from
D always contains the k − 1 nodes in L1. The last node in
S is picked uniformly at random from L2. It is easy to see
that distribution D satisfies Assumption 1.

Next, we construct a class of graphs G1, · · · , Gk−1 as fol-
lows such that they cannot be distinguished from the sam-
ples. (a) For any i ≤ k − 1 and u, v ∈ L, NGi(u) ∩
NGi(v) = ∅; (b) for any i, j ≤ k − 1 and u ∈ L2,
|NGi(u)| = r andNGi(u) = NGj (u); (c) for any i ≤ k−1
and u ∈ L1 with u 6= ui,NGi(u) = ∅; (d) for any i ≤ k−1,
and ui covers the same set of (k − 1)r nodes across differ-
ent graph Gi’s. Clearly, the optimal solution OPTi of Gi
contains node ui and arbitrary k − 1 nodes in L2. Thus
fGi(OPTi) = 2(k − 1)r.

We prove the desired ratio by a probabilistic argument. Let
B be any (randomized) OPSS algorithm and T be the solu-
tion it returns. Let G be a graph drawn uniformly at random
from G1, · · · , Gk−1. Since any sample of D always return
the first k − 1 nodes, and the union coverage of these k − 1
nodes is always the same across different graphs Gi’s, solu-
tion T is independent of the random choice of G, although
it may be dependent on the random choices in the samples
from nodes in L2. Suppose the solution T of B is fixed. Let
x = |T ∩ L1|, 0 ≤ x ≤ k − 1. By the above argument that
T and G are independent, we have that the expected number
of nodes covered by T is

EG[fG(T ) | solution T of B are fixed]

=
x

k − 1
(k − 1)r + (k − x)r = kr.

As a result, EB,G[fG(T )] = kr, which implies there must
be a G from G1, · · · , Gk−1 such that EB [fG(T )] ≤ kr.
Thus EB [fG(T )]/fG(OPT ) ≤ k/(2(k − 1)) = 1/2 +
o(1).

4.2. Assumption 1 Is Necessary

In this section, we show that the three conditions in As-
sumption 1 are necessary, in the sense that dropping any
one of them would result in no constant approximation for
the OPSS problem. The necessity of Assumption 1.2 is
relatively trivial, and we include it in the full version.

Assumption 1.1 Is Necessary. For the distribution which
always returns L, no reasonable algorithm exists for the
OPSS problem. Thus it is easy to see that we cannot drop
Assumption 1.1 without any restriction. Instead, we show
that even if we relax assumption 1.1 a little bit, no constant
approximation algorithm exists.

Theorem 7. Let Dr be the uniform distribution over all
subsets of size r = ω(k log2 |L|). The coverage functions
are not α-optimizable under OPSS for any constant α in the
cardinality constraintM≤k over Dr.
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Proof. Clearly, Dr satisfies Assumption 1.2 and 1.3, but
not Assumption 1.1. Let |L| = n, |R| = m = poly(n),
and p = r/ log2 n = ω(k). We first construct a class
of graphs G1, · · · , Gp where Gi = (L,R,Ei). Let L be
partitioned into disjoint subsets {L1, · · · , Lp}, each with
q = n/p nodes. For graph Gi, Li is good in that for any
u ∈ Li, NGi(u) = R; each Lj with j 6= i is bad in that
NGi(Lj) = ∅. Clearly, the optimal solution of any graph
covers m nodes.

Next we show that with high probabilityG1, · · · , Gp cannot
be distinguished from the samples. For Li of Gi,

Pr
S∼Dr

[S ∩ Li = ∅] =
(
n−q
r

)(
n
r

) ≤ (1− q

n

)r
≤ e− log2 n.

Thus for t = poly(|L|, |R|) = poly(n) samples, by the
union bound,

Pr
S1,··· ,St∼Dr

[∃ j ∈ [t] s.t. Sj ∩Li = ∅] ≤ te− log2 n = o(1).

Hence with probability 1− o(1), NGi(Sj) = R for all Sj
and all Gi. Below we assume this is exactly the case for all
Gi’s, which means no algorithm can distinguish these Gi’s
from the samples.

We prove the desired ratio by a probabilistic argument.
Let B be any (randomized) algorithm and T be the so-
lution it returns. Let G be a graph drawn uniformly at
random from G1, · · · , Gp and Lg be the good part of G.
Suppose the solution T of B is fixed. Since |T | ≤ k,
it can touch at most k Lj’s. Thus PrG[T ∩ Lg 6= ∅ |
the solution T of B is fixed] ≤ k/p = o(1). Since B can-
not distinguish those graphs from the samples, the solution
T of B is independent of the random graph G. As a result,
PrB,G[T ∩ Lg 6= ∅] = o(1) and EB,G[fG(T )] = o(1) ·m,
which implies there must be aG fromG1, · · · , Gp such that
EB [fG(T )] = o(1) · m. Thus EB [fG(T )]/fG(OPT ) =
o(1) with probability 1− o(1).

As a complement of Theorem 7, we show that as long as
r = O(k), we have a constant approximation algorithm for
the OPSS problem. The proof is included in the full version.

Theorem 8. Let Dr be the uniform distribution over all
subsets of size r = O(k). The coverage functions are α-
optimizable under OPSS for some constant α in the cardi-
nality constraintM≤k over Dr.

Assumption 1.3 Is Necessary. Assumption 1.3 plays a
central role in the analysis of our algorithms. Thus it is
reasonable to consider its necessity. In this section we show
that this is exactly the case.

Theorem 9. There is a distribution D, which satisfies As-
sumption 1.1 and 1.2, but not Assumption 1.3, such that

coverage functions are not α-optimizable under OPSS for
any constant α in the cardinality constraintM≤k over D.

Proof. The distribution D is constructed as follows. Let
L be partitioned into n/k disjoint subsets L1, · · · , Ln/k;
each Lj contains exactly k nodes. A sample S ∼ D is
drawn uniformly at random from L1, · · · , Ln/k. Clearly,
this distribution satisfies Assumption 1.1 and 1.2, but it is
not negatively correlated.

Let G be a random graph constructed with the following
properties: (a) NG(Li) ∩ NG(Lj) = ∅ for any i 6= j; (b)
|NG(Li)| = r for all i ≤ n/k; (c) within each Li, there
is a node ui such that NG(ui) = NG(Li); (d) for node
u ∈ Li with u 6= ui, NG(u) = ∅; (e) node ui is determined
by selecting a uniformly random node from Li. All the
possible outcomes of G form the graph class G. It is easy to
see graphs from G cannot be distinguished from the samples.
The optimal solution of any graph from G covers kr nodes.

Now we prove the desired ratio by a probabilistic argument.
Let B be any (randomized) algorithm and T be the solution
it returns. Suppose the solution T of B is fixed. Then

EG[fG(T ) | the solution T of B is fixed]

=

n/k∑
j=1

Pr
G
[T contains uj of Lj ] · r =

n/k∑
j=1

|T ∩ Lj |
k

· r = r.

Since B cannot distinguish those graphs from the samples,
the solution T of B is independent of the random graph G.
As a result, EB,G[fG(T )] = r, which implies there must be
some fixedG in the graph class G such that EB [fG(T )] ≤ r.
Thus EB [fG(T )]/fG(OPT ) ≤ 1/k.

5. Future Work
One immediate question is to close the [ 12 (1− e

−1), 1
2 ] gap

of polynomial time algorithms under Assumption 1 in our
model. Besides, it is interesting to define suitable structured
samples for other set functions and investigate the possibil-
ity of optimization for those functions. One concrete exam-
ple of such functions is the probabilistic coverage function
where each edge (u, v) in the bipartite graph G = (L,R,E)
has a probability indicating the probability that u covers v.
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