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Abstract

Instance- and Label-dependent label Noise (ILN)
widely exists in real-world datasets but has been
rarely studied. In this paper, we focus on
Bounded Instance- and Label-dependent label
Noise (BILN), a particular case of ILN where
the label noise rates—the probabilities that the
true labels of examples flip into the corrupted
ones—have upper bound less than 1. Specifically,
we introduce the concept of distilled examples,
i.e. examples whose labels are identical with the
labels assigned for them by the Bayes optimal
classifier, and prove that under certain conditions
classifiers learnt on distilled examples will con-
verge to the Bayes optimal classifier. Inspired
by the idea of learning with distilled examples,
we then propose a learning algorithm with theo-
retical guarantees for its robustness to BILN. At
last, empirical evaluations on both synthetic and
real-world datasets show effectiveness of our al-
gorithm in learning with BILN.

1. Introduction
In the traditional classification task, we always expect and
assume a perfectly labeled training sample. However, there
is a strong possibility that we will be confronted with label
noise, which means labels in the training sample are likely to
be erroneous, especially in the era of big data. The reasons
are as follows. On the one hand, to circumvent costly human
labeling, many inexpensive approaches are employed to
collect labeled data, such as data mining on social media
and search engines (Fergus et al., 2010; Schroff et al., 2011),
which inevitably involve label noise; on the other hand, even
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labels made by human experts are likely to be noisy due to
confused patterns and perceptual errors. Overall, label noise
is ubiquitous in real-world datasets and will undermine the
performance of many machine learning models (Long &
Servedio, 2010; Frénay & Verleysen, 2014). Therefore,
designing learning algorithms robust to label noise is of
significant value to the machine learning community (Han
et al., 2020; Yao et al., 2020; Liu & Guo, 2020; Xia et al.,
2020; Wu et al., 2020).

There are several methods proposed to model label noise.
The random classification noise (RCN) model, in which
each label is flipped independently with a constant prob-
ability ρ, and the class-conditional random label noise
(CCN) model, in which the flip probabilities (noise rates)
ρy are the same for all labels from one certain class y,
have been widely-studied (Angluin & Laird, 1988; Kearns,
1998; Long & Servedio, 2010; Gao et al., 2016; Han et al.,
2018a). A more generalized model is the instance- and
label-dependent noise (ILN), in which the flip rate ρy(x)
is dependent on both the instance x and the corresponding
true label y. Obviously, the ILN model is more realistic and
applicable. For example, in real-world datasets, an instance
whose feature contains less information or is of poorer qual-
ity may be more prone to be labeled wrongly. Unfortunately,
the case of ILN has not yet been extensively studied.

In this paper, label noise is defined to be Bounded Instance-
and Label- dependent Noise (BILN) if the noise rates for
instances are upper bounded by some values smaller than
1, and we focus on this situation. We propose an algorithm
for learning with BILN and theoretically establish the sta-
tistical consistency and a performance bound. To the best
of our knowledge, we are not aware of any other specially
designed algorithms robust to such general label noise with
theoretical guarantees. Empirical evaluations on synthetic
and real-world datasets demonstrate the effectiveness of the
proposed learning algorithm. In addition, we believe the pro-
posed algorithm is promising to handle instance-dependent
complementary label learning (Ishida et al., 2017; Yu et al.,
2018; Xu et al., 2020; Feng et al., 2020; Chou et al., 2020).

Related Works: Learning with label noise has been widely
investigated (Frénay & Verleysen, 2014). There are lots of
methods designed for learning with label noise. Some meth-
ods attempt to identify mislabeled training examples and
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then filter them out (Brodley & Friedl, 1999; Zhu et al.,
2003; Angelova et al., 2005; Malach & Shalev-Shwartz,
2017; Jiang et al., 2018; Han et al., 2018b; Kim et al., 2019;
Huang et al., 2019; Li et al., 2020); some methods aim to
modify existing learning models, e.g., deep learning models,
without filtering the mislabeled examples out (Bylander,
1994; Jin et al., 2003; Khardon & Wachman, 2007; Bootkra-
jang & Kaban, 2012; 2013; Goldberger & Ben-Reuven,
2017; Ma et al., 2018; Ren et al., 2018; Tanaka et al., 2018;
Hendrycks et al., 2018; Wang et al., 2018; Zhang & Sabuncu,
2018; Xu et al., 2019; Li et al., 2019; Yi & Wu, 2019; Wang
et al., 2019; Nguyen et al., 2020; Hu et al., 2020); some
methods treat the unobservable true labels of training exam-
ples as hidden variables and learn them by maximum likeli-
hood estimation (Lawrence & Scholkopf, 2001; Bootkrajang
& Kaban, 2012; Vahdat, 2017). Most of these methods are
heuristic and are not provided with theoretical guarantee for
their robustness to label noise.

Many methods theoretically robust to RCN or CCN have
been put forward with theoretical guarantees: Natarajan
et al. (2013) proposed two methods (the method of unbiased
estimator and the method of label-dependent costs) to mod-
ify the surrogate loss and provided theoretical guarantees
for the robustness to CCN of the modified loss; Ghosh et al.
(2015) proved a sufficient condition for a loss function to
be robust to symmetric CCN; Ghosh et al. (2017) extended
the results in Ghosh et al. (2015) to multiclass classification.
van Rooyen et al. (2015) proved that the unhinged loss is the
only convex loss that is robust to symmetric CCN; Patrini
et al. (2016) introduced linear-odd losses and proved that
every linear-odd loss is approximately robust to CCN; Liu
& Tao (2016) proved that by importance reweighting, any
loss function can be robust to CCN. Northcutt et al. (2017)
proposed the method of rank pruning to estimate noise rates
and remove mislabeled examples prior to training. Many
methods (Natarajan et al., 2013; Yu et al., 2020) employ
noise rates (transition probabilities) to produce noise-robust
loss functions. Liu & Tao (2016); Menon et al. (2015); Ra-
maswamy et al. (2016) and Scott (2015) provided consistent
estimators for the noise rates and the inversed noise rates,
respectively. Patrini et al. (2017) extended the estimators of
Liu & Tao (2016); Menon et al. (2015) to the multi-class
setting. Xia et al. (2019) proposed a noise rate estimator
for which anchor points are no longer necessary. Recently,
Liu & Guo (2020) presented peer loss functions that op-
erate with noisy labels without the need of specifying the
class-conditional noise rates.

Especially, many advances have been achieved in learning
halfspaces in the presence of different degrees of label noise
(Awasthi et al., 2015; 2016; Zhang et al., 2017; Yan & Zhang,
2017; Diakonikolas et al., 2019). These works often assume
examples of two classes to be linearly separable under the
clean distribution and the marginal over X to have some

special structures (e.g. uniform over the unit sphere).

Learning with more realistic label noise has also been stud-
ied in recent years (Xiao et al., 2015; Li et al., 2017; Lee
et al., 2018; Tanaka et al., 2018; Seo et al., 2019; Han et al.,
2019). These works have been evaluated on real-world label
noise, but theoretical guarantees for noise-robustness have
not been provided.

For ILN, Menon et al. (2018) proved that, in the special
case where ρ+1(x) = ρ−1(x), the Bayes optimal classifiers
under the clean and noisy distributions coincide, implying
that any algorithm consistent for the classification under
the noisy distribution is also consistent for the classification
under the clean distribution. Xia et al. (2020) tried to address
the instance-dependent label noise by exploiting the the
parts-dependence assumption. To the best of our knowledge,
we are not aware of any algorithm prior to this work dealing
with ILN with theoretical guarantees.

Organization: The rest of this paper is structured as fol-
lows. In Sec. 2, we formalize our research problem. In
Sec. 3, our algorithm for learning with BILN is presented
in detail. In Sec. 4, we provide empirical evaluations of our
learning algorithm. In Sec. 5, we conclude our paper. All
the proofs are presented in the supplementary material.

2. Problem Setup
In the task of binary classification with label noise, we
consider a feature space X ⊂ Rd and a label space
Y = {−1,+1}. Formally, we assume that random variables
(X, Y, Ỹ ) ∈ X ×Y ×Y are jointly distributed according to
an unknown distribution P , where X is the observation, Y is
the uncorrupted but unobserved label and Ỹ is the observed
but noisy label. In specific, we use D and Dρ to denote
the clean distribution P (X, Y ) and the noisy distribution
P (X, Ỹ ), respectively. With label noise, we observe a se-
quence of pairs {(xi, ỹi)}ni=1 sampled i.i.d. from Dρ and
our goal is to construct a discriminant function f : X → R,
such that the classifier g(x) = sgn(f(x)) is an accurate
prediction of the label of x, where sgn(·) denotes the sign
function. Some criteria are necessary to measure the perfor-
mance of f and g. In the first place, we have the 0-1 risk of
g as

RD(g) = E(X,Y )∼D[1[g(X) 6= Y ]]

where E denotes expectation and its subscript indicates
the random variables and the distribution w.r.t. which the
expectation is taken, and 1[·] denotes the indicator func-
tion. Then we can define the Bayes optimal classifier
under D as g∗D = argming RD(g) and the Bayes risk
R∗D = ming RD(g). Since the distribution D is unknown
to us, we cannot directly compute RD(g). So we need the
empirical 0-1 risk and a sample {(xi, yi)}ni=1 sampled i.i.d.
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from D to estimate RD(g):

R̂D(g) =
1

n

n∑
i=1

1[g(xi) 6= yi].

NP-hardness of minimizing the 0-1 risk, which is neither
convex nor smooth, forces us to adopt surrogate loss func-
tions (Bartlett et al., 2006; Scott et al., 2012). When the
surrogate loss function L(f(X), Y ) is used, we define the
L-risk of f as

RD,L(f) = E(X,Y )∼D[L(f(X), Y )].

If L is classification-calibrated, the minimizer of L-risk (if it
exists) f∗D,L = argminf RD,L(f) will also minimizes the
0-1 risk, i.e., RD(sgn(f∗D,L)) = R∗D (Bartlett et al., 2006).
Likewise, the empirical L-risk is defined to estimate the
L-risk:

R̂D,L(f) =
1

n

n∑
i=1

L(f(xi), yi).

Risks under the noisy distribution can be defined similarly
as risks under the clean distribution.

As for label noise, we employ the noise rate ρy(x)=P (Ỹ =
−y|X = x, Y = y) to model it. The noise is said to be
random classification noise (RCN) if ρ+1(x)=ρ−1(x)=ρ
or class-conditional random label noise (CCN) if ρy(x) is
independent on x but dependent on y. A more general
model of label noise is instance- and label-dependent noise
(ILN). For ILN, ρy(x) is dependent on both the observation
X and the true label Y . The model of ILN is more realistic
and applicable because, e.g., observations with misleading
contents are more likely to be annotated with wrong labels.

This paper focus on a particular case of ILN where noise
rates have upper bounds. Formally, the noise is said to be
bounded instance- and label- dependent noise (BILN) if the
following assumption holds.

Assumption 1. ∀x ∈ X , we have
0 ≤ρ+1(x) ≤ ρ+1max < 1,

0 ≤ρ−1(x) ≤ ρ-1max < 1,

0 ≤ρ+1(x) + ρ−1(x) < 1.

The bounded noise rate assumption 0 ≤ ρ+1(x)+ρ−1(x) <
1 encodes that for each example, the noisy label and clean
label must agree on average (Menon et al., 2018). Especially
when noise rates are only dependent on labels, ρ+1 +ρ-1 < 1
is a standard condition for analysis under CCN (Blum &
Mitchell, 1998; Natarajan et al., 2013). In the rest of this
paper, we always suppose Assumption 1 holds.

Notice that our BILN model is different from the bounded
noise model (a.k.a. the Massart noise model (Massart &
Nédélec, 2006)), which assumes that PD(X = x|Y =+1)

and PD(X = x|Y =−1) have non-overlapping supports
and that noise rates are upper bounded by a constant smaller
than 0.5.

3. Learning with BILN
In this section, we propose an algorithm, inspired by the
idea of learning with distilled examples (explained in the
following subsection, i.e., examples whose labels are iden-
tical with the labels assigned for them by g∗D, the Bayes
optimal classifier under the clean distribution), for learn-
ing with bounded instance- and label-dependent label noise.
Recently, a similar idea has been applied for learning with
class-conditional noise (Zheng et al., 2020).

This section is structured as follows. In Sec. 3.1, we prove
that under certain conditions classifier learnt on distilled ex-
amples converge to g∗D. In Sec. 3.2, an automatic approach
is proposed to collect distilled examples out of noisy exam-
ples utilizing the knowledge of ρ+1max and ρ-1max. In Sec.
3.3, we discuss the necessity of actively labeling a small
fraction of noisy examples for our learning algorithm to
be statistically consistent. In Sec. 3.4, we further employ
importance reweighting to prevent our learning algorithm
from suffering from sample selection bias. In Sec. 3.5, an
approach to collect distilled examples without knowledge
of ρ+1max and ρ-1max is proposed.

Note that, to simplify analysis, in this section we assume
upper bounds of noise rates ρ+1max, ρ-1max to be known to us
until Sec. 3.5. We propose an approach to collect distilled
examples without knowledge of ρ+1max, ρ-1max in Sec. 3.5
which can be easily integrated into our algorithm, and em-
pirical results in Sec. 4.1 and Sec. 4.2 demonstrate that our
algorithm can work well with or without knowing ρ+1max
and ρ-1max.

3.1. Learning with Distilled Examples

We formally introduce the concept of distilled example first.
Definition 1. An example (x, y) is defined to be a distilled
example if its label is identical to the one assigned by the
Bayes optimal classifier under the clean data, i.e., y =
g∗D(x).

Denote by D∗ the distribution of distilled examples. In the
empirical risk minimization (ERM) frame, a discriminant
function f̂D∗,L can be learnt by

f̂D∗,L = argmin
f∈F

R̂D∗,L(f),

where F is the learnable function class. We will show that
under certain conditions, sgn(f̂D∗,L) converges to g∗D, the
Bayes optimal classifier under the clean distribution. Before
presenting the main theoretical results, we introduce the
following lemma and theorem.
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Lemma 1. Denote by η(x) the conditional probability
PD(Y =+1|X = x). The Bayes optimal classifier under
D is given by g∗D(x) = sgn

(
η(x)− 1

2

)
.

Theorem 1. Given the target distribution D and the dis-
tilled examples’ distribution D∗. If marginal distributions
PD(x) and PD∗(x) share the same support, then the Bayes
optimal classifier under D∗ coincides with the Bayes opti-
mal classifier under D, i.e. g∗D∗ = g∗D.

Combining the aforementioned results with the basic
Rademacher bound (Bartlett & Mendelson, 2002), we have
the following proposition.

Proposition 1. Under the condition of Theorem 1, assume
that {(xi, yi)}mi=1 are i.i.d. sampled from D∗. If L is [0, b]-
valued and f∗D∗,L = argminf RD∗,L(f) ∈ F , then for any
δ, with probability at least 1− δ, we have

RD∗,L(f̂D∗,L)−RD∗,L(f
∗
D∗,L)

≤ 2R(L ◦ F) + 2b

√
log(1/δ)

2m
,

where the Rademacher complexity R(L ◦ F) =

ED∗,σ[supf∈F
2
m

m∑
i=1

σiL(f(xi, yi))]. (σ1, · · · , σm are in-

dependent Rademacher variables.)

The above proposition implies that RD∗,L(f̂D∗,L) con-
verges to RD∗,L(f

∗
D∗,L), as m → ∞. Further, if L is

classification-calibrated and the Bayes optimal classifier
is within the predefined F , sgn(f̂D∗,L) will converge to
the Bayes optimal classifier under D∗, which is also the
Bayes optimal classifier under D, as the number of distilled
examples approaches infinity.

Motivated by above results, we discuss how to collect dis-
tilled examples out of noisy examples and learn a well-
performing classifier with distilled examples in the follow-
ing subsections.

3.2. Collecting Distilled Examples out of Noisy
Examples Automatically

Then we propose an approach to automatically collect dis-
tilled examples out of noisy examples according to the fol-
lowing theorem and its immediate corollary.

Theorem 2. Denote by η̃(x) the conditional probability
PDρ(Ỹ =+1|X=x). ∀x ∈ X , given that UB(ρ±1(x)) is
an upper bound of ρ±1(x), we have
η̃(x) < 1−UB(ρ+1(x))

2 =⇒ (x, Y =−1) is distilled;
η̃(x) > 1+UB(ρ−1(x))

2 =⇒ (x, Y =+1) is distilled.

Corollary 1. ∀x ∈ X , we have
η̃(x) < 1−ρ+1max

2 =⇒ (x, Y =−1) is distilled;
η̃(x) > 1+ρ-1max

2 =⇒ (x, Y =+1) is distilled.

According to Corollary 1, we can obtain distilled examples
by picking out every noisy example (xi, ỹi) whose xi satis-
fies η̃(xi) > 1+ρ-1max

2 or η̃(xi) < 1−ρ+1max
2 and then assigning

the label +1 or −1 to it.

Indeed, in practice η̃ is inaccessible to us, but it is feasible for
us to obtain an estimator ˆ̃η for η̃. Note that the estimation of
η̃ is a traditional probability estimation problem which can
be addressed by several methods, such as the probabilistic
classification methods (e.g., logistic regression, deep neural
networks), the kernel density estimation methods, and the
density ratio estimation methods.

3.3. Labeling Noisy Examples Actively

The collection of distilled examples in the last subsection
is inevitably biased, because examples whose observations
are in

{
x ∈ X | 1−ρ+1max

2 ≤ η̃(x) ≤ 1+ρ-1max
2

}
will not be col-

lected. To put it more formally, we let D∗auto denote the
distribution of these distilled examples automatically col-
lected via Corollary 1. Then we have

supp
(
PD∗

auto
(x)
)

=

{
x∈X |η̃(x) ∈

[
0,

1− ρ+1max

2

)⋃(
1 + ρ-1max

2
, 1

]}

which leads to supp(PD∗
auto
(x)) 6= supp(PD(x)) and does

not hold the condition of Theorem 1. Consequently, learning
with automatically-collected distilled examples only is not
statistically consistent.

Our strategy to address this issue is to perform active learn-
ing. Formally, learning algorithms which actively choose
unlabeled examples, manually acquire their labels and then
use labeled examples to perform supervised learning are
called active learning methods (Settles, 2010). Active learn-
ing has been successfully applied in many fields, e.g., text
classification (Tong & Koller, 2001) and compound clas-
sification (Lang et al., 2016). Also, it is applicable to our
case, where we treat the automatically-collected distilled
examples as labeled data and the remaining noisy examples
as unlabeled data since their labels are noisy and unreli-
able. We will have some of the remaining noisy examples
labeled by human experts and train the classifier using the
automatically-collected and actively-labeled distilled exam-
ples together. Here we made a reasonable assumption that
actively-labeled examples are distilled as well, i.e., manual
labels by human experts are the same with labels given by
the Bayes optimal classifier under clean distribution.

As for how to determine which examples to be actively
labeled, we adopt a simple but widely-used strategy:
Choose unlabeled examples at random, which ensures that
supp (PD∗(x)) = supp (PD(x)), and further makes our
learning algorithm consistent.
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3.4. Covariate Shift Correction by Importance
Reweighting

In previous subsections, we introduced our ap-
proach to construct a sample of distilled examples
{(xdistilled

i , ydistilled
i )}mi=1 and show that learning on the

distilled sample is consistent. However, in practice, we
noticed that the performance of the classifier directly learnt
on the distilled examples is likely to be comprised by the
problem of sample selection bias, because the distribution
of distilled examples D∗ does not exactly match the target
distribution D.

Technically, the sample selection bias can be divided into
the difference between PD(x) and PD∗(x) and the differ-
ence between PD(y|x) and PD∗(y|x). Here we focus on
the former for the following reasons. First, according to
our analysis in Sec. 3.1, the bias in P (y|x) in our case
does not change the Bayes optimal classifier. Second, the
bias in P (x) in our case is severe because the number of
actively-labeled examples is usually extremely limited since
manual labeling is costly. Consequently, the proportion
of examples whose observations are in {x ∈ X |η̃(x) ∈
[ 1−ρ+1max

2 , 1+ρ-1max
2 ]} in our distilled sample is significantly

smaller compared to that in a sample from D. Hence, we
make the following assumption.

Assumption 2. PD(x, y) and PD∗(x, y) only differ in the
marginal distribution P (x).

Then the issue of sample selection bias is simplified as
covariate shift. Importance reweighting is a method to
handle this problem as follows.

RD,L(f) = E(X,Y )∼D[L(f(X), Y )]

= E(X,Y )∼D∗ [
PD(X, Y )

PD∗(X, Y )
L(f(X), Y )]

= E(X,Y )∼D∗ [
PD(X)

PD∗(X)
L(f(X), Y )]

= E(X,Y )∼D∗ [β(X)L(f(X), Y )]

= RD∗,βL(f), (1)

where the second equality follows by Assumption 2 and
the importance β(x) = PD(x)

PD∗ (x) . Eq. (1) implies that given
β, we can minimize RD,L(f) by minimizing RD∗,βL(f)
which can be estimated as

R̂D∗,βL(f) =
1

m

m∑
i=1

β(xdistilled
i )L(f(xdistilled

i ), ydistilled
i ).

Further, f̂D∗,βL can be learnt by

f̂D∗,βL = argmin
f∈F

R̂D∗,βL(f). (2)

A performance bound for f̂D∗,βL is provided in Proposition
2.

Proposition 2. Assume that Assumption 2 holds and
{(xi, yi)}mi=1 are i.i.d. sampled from D∗, which satisfies
that supp(PD∗(x)) = supp(PD(x)). If β(x)L(f(x), y) is
[0,b]-valued and f∗D,L = argminf RD,L(f) ∈ F , then for
any δ > 0, with probability at least 1− δ, we have

RD,L(f̂D∗,βL)−RD,L(f∗D,L) ≤

2R(β ◦ L ◦ F) + 2b

√
log(1/δ)

2m
,

where the Rademacher complexity R(β ◦ L ◦ F) =

ED∗,σ[supf∈F
2
m

m∑
i=1

σiβ(xi)L(f(xi), yi)].

The method of empirical kernel mean matching (KMM)
(Huang et al., 2007) can be employed to estimate the
importance. By KMM, given two sets of observa-
tions {xi}ni=1 and {xdistilled

i }mi=1 sampled from PD(x) and
PD∗(x) respectively, we can obtain proper importance
β = [β1, · · · , βm] =

[
β(xdistilled

1 ), · · · , β(xdistilled
m )

]
via

solving

minimize
β

1

2
βTKβ − κTβ,

subject to ∀i, βi ∈ [0, B] and |
m∑
i=1

βi −m| ≤ mε,
(3)

where Kij = k
(
xdistilled
i ,xdistilled

j

)
, κi =

m
n

∑n
j=1 k(x

distilled
i ,xj) and k is a universal kernel.

Optimization problem (3) is a quadratic program which can
be solved efficiently using interior point methods or any
other successive optimization procedure.

Finally, our learning algorithm is summarized in Algorithm
1. The proposed framework can be easily extended to multi-
class classification (cf. Supplementary Material B).

Admittedly, in order for the analysis in this subsection to be
simplified, the target distribution D is required to satisfy As-
sumption 2, which might not be valid in certain cases. In ad-
dition, the time complexity of the KMM procedure might be
a potential concern. Remind that our learning algorithm is
consistent, no matter whether Assumption 2 is satisfied and
whether importance reweighting is performed. We present
covariate shift correction by importance reweighting as a
part of our algorithm mainly because we observed that it
usually boosts the algorithm performance in practice.

3.5. Collecting Distilled Examples Without Knowledge
of ρ+1max and ρ-1max

In the previous subsections we assumed ρ+1max, ρ−1max to
be known to us, which is a strong assumption and seldom
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Algorithm 1 Learning with BILN
Input: the noisy sample Snoisy = {(xi, ỹi)}ni=1, the upper
bounds of noise rates ρ+1max, ρ-1max, the number of examples
to be actively labeled nact;

1: Initialize the distilled sample Sdistilled = ∅;
2: Learn ˆ̃η on Snoisy;
3: for (xi, ỹi) in Snoisy do
4: if ˆ̃η(xi) > 1+ρ-1max

2 then
5: Sdistilled ← Sdistilled ∪ {(xi, ydistilled

i = +1)};
Snoisy ← Snoisy\{(xi, ỹi)};

6: end if
7: if ˆ̃η(xi) < 1−ρ+1max

2 then
8: Sdistilled ← Sdistilled ∪ {(xi, ydistilled

i = −1)};
Snoisy ← Snoisy\{(xi, ỹi)};

9: end if
10: end for
11: Randomly sample nact examples {(xact

i , ỹ
act
i )}nact

i=1 from
Snoisy;

12: for i = 1 to nact do
13: Query xact

i for its distilled label yact
i ;

14: Sdistilled ← Sdistilled∪{(xact
i , y

act
i )};

15: end for
16: Obtain importance of distilled examples in Sdistilled via

solving (3);
17: Learn f̂ on the distilled sample Sdistilled by (2);

holds in real-world tasks. In order to make our algorithm
more practical, we propose an approach to collect distilled
examples without knowledge of ρ+1max and ρ−1max in this
section.

To collect distilled examples without knowledge of ρ±1max
by Theorem 2, we need to find UB(ρ±1(x)) using only
noisy examples. We have the following theorem that pro-
vides an upper bound for ρ±1(x).

Theorem 3. ∀x ∈ X , we have ρ+1(x) ≤ 1 − η̃(x) and
ρ-1(x) ≤ η̃(x).

Note that 1 − η̃(x) and η̃(x) cannot be directly used as
UB(ρ+1(x)) and UB(ρ−1(x)) for collecting distilled ex-
amples by Theorem 2, since η̃(x) < η̃(x)

2 and η̃(x) >
1+η̃(x)

2 can never be satisfied.

Our strategy is to consider the k-nearest neighborhood
Nk(x) of a given example x in the feature space, and use∑

xj∈Nk(x)
η̃(xj)
k and

∑
xj∈Nk(x)

1−η̃(xj)
k , which can be

estimated using ˆ̃η, as approximate upper bounds of ρ+1(x)
and ρ−1(x). Experimental results demonstrate that inte-
grating this approach of collecting distilled examples into
Algorithm 1 can achieve decent results and it is robust to
the selection of k.

4. Empirical Evaluations
Evaluations of our algorithm are conducted on both syn-
thetic and real-world datasets. In our experiments, lo-
gistic regression is used for both training f̂ and estimat-
ing η̃. For KMM, we always use the Gaussian kernel
k(xi,xj) = exp(−σ‖xi − xj‖2) and the value of σ is set
as σ = 1 for evaluations on synthetic datasets and σ = 0.01
for evaluations on real-world datasets. The setup of parame-
ters ε and B is the same as that of Huang et al. (2007), i.e.,
ε = (

√
m − 1)/

√
m and B = 1000. In this section, each

entry in the tables is the result averaged over 1000 trials.

4.1. The Case Where ρ+1max and ρ-1max Are Known

In this subsection, ρ+1max and ρ-1max are assumed to be
known, and the evaluated methods are as follows:

a) “clean”: Train the classifier with clean examples.
b) “noisy”: Train the classifier with noisy examples.
c) “auto”: Train the classifier with automatically-

collected distilled examples.
d) “auto+act”: Train the classifier with automatically-

collected and manually-labeled distilled examples with-
out importance reweighting. This can be viewed as a
simplified version of our Algorithm 1.

e) “Algo. 1”: Train the classifier by our Algorithm 1.
f) “noisy+act”: Add the nact examples actively-labeled

by “auto+act” into the noisy training sample and re-
move the corresponding noisy ones, and then train the
classifier.

Note that “noisy+act” is used as a baseline for comparisons
with our “auto+act”. The share of actively-labeled examples
is to make comparisons fair.

4.1.1. EVALUATIONS ON SYNTHETIC DATASETS

First, we perform evaluations on 2D synthetic datasets that
are linearly inseparable.

In each trial, positive examples and negative examples are
sampled from two 2D normal distributions N1(u, I) and
N2(−u, I) respectively, where u = [−2, 2]> and I ∈ R2×2

is the identity matrix. Each 2D datapoint (x(1),x(2))’s
feature vector is [1,x(1),x(2)]> where 1 act as an intercept
term. We generate bounded instance- and label-dependent
label noise at random via{

ρ+1(x) = ρ+1max · S
(
w>+1x

)
,

ρ−1(x) = ρ−1max · S
(
w>−1x

)
,

(4)

where elements of w+1,w−1 are i.i.d. sampled from the
standard normal distribution in each trial and S(·) denotes
the sigmoid function S(x) = 1

1+exp (−x) .
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Figure 1: Visualization of the procedure of our Algorithm 1 (best viewed in color). In this trial, (ρ+1max, ρ-1max, nact)=(0.25,
0.49, 10) and w+1 = [−0.2723,−0.8796, 0.4133]>, w−1 = [−0.6758, 1.3259, 0.1472]>. 1(a): The noisy sample consist-
ing of examples with noisy labels +1/−1 (blue circles/red x-marks) and the classification boundaries. 1(b): Our training
sample consisting of automatically-collected positive/negative examples (blue circles/red x-marks) and actively-labeled
positive/negative examples (blue plus/red pentagrams). Observe that most of automatically-collected distilled examples
are correctly collected. 1(c): A contour plot showing distilled examples’ importance β, in which warmer color indicates
greater importance. It demonstrates that actively-labeled examples are given greater importance than automatically-collected
distilled examples, which is consistent with our analysis. 1(d): The test sample and classification boundaries.

Table 1: Means and Standard Deviations (Percentage) of Classification Accuracies of Different Classifiers

dataset (ρ+1max, ρ-1max,nact ) clean noisy auto noisy+act auto+act
(ours)

Algo. 1
(ours)

Synthetic
Dataset

(0.25, 0.25, 3)

99.73±0.17

98.55±1.28 99.13±0.83 98.56±1.27 99.28±0.70 99.30±0.68
(0, 0.49, 3) 90.06±9.43 97.42±2.75 90.06±9.43 97.75±2.38 98.01±2.10

(0.25, 0.49, 3) 92.59±8.64 97.95±2.70 92.60±8.63 98.69±1.67 98.90±1.37
(0.49, 0.49, 3) 88.57±10.74 89.52±18.96 88.74±10.60 98.16±2.57 98.43±2.29

UCI
Image

(0.1, 0.3, 20)

83.10±1.36

81.16±2.21 81.39 ±1.83 81.15±2.21 81.78±1.72 82.09±1.71
(0.3, 0.1, 20) 78.88±3.07 79.82±2.76 79.09±2.99 80.69±2.47 81.60±2.15
(0.2, 0.4, 20) 78.94±3.10 77.96±3.16 78.98±3.12 79.46±2.72 81.08±2.32
(0.4, 0.2, 20) 75.80±4.08 76.30±3.67 76.14±3.96 78.44±3.37 80.35±2.70
(0.3, 0.3, 20) 79.02±2.90 77.48±3.23 79.21±2.82 79.16±2.88 80.97±2.34
(0.4, 0.4, 20) 74.72±4.06 71.86±5.22 75.03±3.97 76.27±4.11 78.31±3.63
(0.5, 0.5, 20) 68.72±5.91 64.49±7.39 69.19±5.80 73.64±4.95 75.64±4.69

USPS
(6vs8)

(0.1, 0.3, 20)

98.07±0.52

89.00±1.84 93.55±1.47 89.01±1.82 93.72±1.43 93.74±1.44
(0.3, 0.1, 20) 89.15±1.78 93.64±1.50 89.30±1.77 93.82±1.41 93.83±1.44
(0.2, 0.4, 20) 86.40±2.31 91.45±1.91 86.46±2.31 91.65±1.85 91.67±1.86
(0.4, 0.2, 20) 86.45±2.27 91.51±1.92 86.67±2.20 91.74±1.86 91.77±1.88
(0.3, 0.3, 20) 87.01±2.13 91.74±1.83 87.15±2.08 91.97±1.73 91.98±1.77
(0.4, 0.4, 20) 82.84±2.81 87.77±2.74 83.08±2.77 88.36±2.55 88.31±2.60
(0.5, 0.5, 20) 77.73±3.96 82.22±4.20 78.06±3.88 83.35±3.90 83.19±3.92

The performances of evaluated methods under different
(ρ+1max, ρ-1max, nact) are shown in Table 1. Note that the
standard deviations of some results are large, since in dif-
ferent trials label noise is generated by different noise rates
functions. It is shown that our “auto+act” does not only
always significantly outperform the baseline in terms of
average classification accuracies, but also achieves smaller
standard deviations compared to “noisy” and “noisy+act”.

The procedure of Algorithm 1 is visualized in Fig. 1.

4.1.2. EVALUATIONS ON REAL-WORLD DATASETS

Second, we conduct evaluations on two public real-world
datasets: the image dataset from the UCI repository pro-
vided by Gunnar Rätsch1 and the USPS handwritten digits
dataset2 (Hull, 1994). The UCI Image dataset is composed
of 1188 positive examples and 898 negative examples. As
for the USPS dataset, We use images of “6” and “8” as
positive and negative examples respectively, and each class
has 1100 examples. In each trial, all feature vectors are
standardized so that each element has roughly zero mean

1http://theoval.cmp.uea.ac.uk/matlab
2http://www.cs.nyu.edu/˜roweis/data.html

http://theoval.cmp.uea.ac.uk/matlab
http://www.cs.nyu.edu/~roweis/data.html
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Table 2: Means and Standard Deviations (Percentage) of Classification Accuracies of Different Classifiers

dataset (ρ+1max, ρ-1max, nact)
auto

w/o ρ±1max

noisy+act
w/o ρ±1max

Algo. 1
w/o ρ±1max

Synthetic
Dataset

(0.25, 0.25, 3) 99.54±0.31 98.62±1.25 99.61±0.33
(0, 0.49, 3) 98.20±1.35 89.67±9.67 99.16±0.72

(0.25, 0.49, 3) 99.10±2.24 92.54±9.00 99.41±0.74
(0.49, 0.49, 3) 92.36±19.09 89.10±9.62 99.23±1.02

UCI
Image

(0.1, 0.3, 20) 78.65±2.64 81.19±2.16 81.35±2.45
(0.3, 0.1, 20) 75.00±3.84 79.25±3.06 80.38±2.85
(0.2, 0.4, 20) 75.52±4.42 78.96±2.97 79.51±3.18
(0.4, 0.2, 20) 71.38±5.03 76.26±3.79 78.63±3.56
(0.3, 0.3, 20) 73.90±5.11 79.06±2.74 79.30±3.30
(0.4, 0.4, 20) 69.20±5.64 75.01±3.78 76.85±4.52
(0.5, 0.5, 20) 64.61±6.87 69.45±5.91 74.51±5.43

USPS
(6vs8)

(0.1, 0.3, 20) 94.96±1.24 89.03±1.82 95.12±1.20
(0.3, 0.1, 20) 95.02±1.28 89.34±1.79 95.15±1.26
(0.2, 0.4, 20) 92.44±1.76 86.34±2.29 92.73±1.69
(0.4, 0.2, 20 92.55±1.89 86.55±2.21 92.83±1.78
(0.3, 0.3, 20) 93.15±1.69 87.03±1.95 93.46±1.63
(0.4, 0.4, 20) 88.87±2.71 83.00±2.78 89.35±2.61
(0.5, 0.5, 20) 82.52±4.06 77.95±3.86 83.40±3.87
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Figure 2: Curves illustrating the average classification accuracy (CA) of different classifiers learned without knowledge of
ρ+1max and ρ−1max versus the hyperparameter k on three datasets. The settings of (ρ+1max, ρ−1max, nact) in 2(a) and 2(b)/2(c)
are respectively (0.49, 0.49, 5) and (0.5, 0.5, 20). Each result in this figure is averaged over 1000 trials.

and unit variance, and examples are randomly split, 75% for
training and 25% for testing. Label noise is generated in the
same way with evaluations on synthetic datasets by Eq. (4).

Evaluation results are shown in Table 1. It is shown that our
algorithm still outperforms the baselines.

4.2. The Case Where ρ+1max and ρ-1max Are Unknown

In this section, we evaluate variants of “auto”, “noisy+act”
and “Algo. 1”, which employ the approach proposed in
Sec. 3.5 to collect distilled example without knowledge of
ρ±1max, on both synthetic and real-world datasets. The eval-
uated methods are denoted as “auto w/o ρ±1max”, “noisy+act
w/o ρ±1max” and “Algo. 1 w/o ρ±1max”.

The setup of experiments is same with setup in Sec. 4.1.

The only newly introduced hyperparameter is k. We set
k = 10 for all evaluations on three datasets, and avoid
dataset specific tuning.

Results are listed in Table 2 and show that our “Algo. 1 w/o
ρ±1max” outperforms the baseline. Comparing results in
Table 2 and results in Sec. 4.1, we are surprised to observe
that the performance of “Algo. 1 w/o ρ±1max” is comparable
with and sometimes even better than that of “Algo. 1”.

To investigate the sensitivity of our algorithm to k, we plot
the performance curves w.r.t. the variation of k on three
datasets in Fig. 2. It is shown that our algorithm is robust to
the selection of k on different datasets.
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5. Conclusion
In this paper, we focus on learning with BILN, which is a
more general case of label noise than those have been well-
studied. We propose a learning algorithm and theoretically
establish its statistical consistency and a performance bound.
Empirical evaluations on synthetic and real-world datasets
show effectiveness of the proposed algorithm.

In future, we will explore the combination of our algorithm
and more complicated models (e.g., deep neural networks)
for real-world label noise tasks.
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