Appendix

A. Proofs for Convergence under Gaussian Noise (Theorem 1)

A.1. Proof Overview

The main proof of Theorem 1 is contained in Appendix A.4.

Here, we outline the steps of our proof:

- 1. In Appendix A.2, we construct a coupling between (3) and (2) over a single step (i.e. for $t \in [k\delta, (k+1)\delta]$, for some k and δ).
- 2. Appendix A.3, we prove Lemma 1, which shows that under the coupling constructed in Step 1, a Lyapunov function $f(x_T y_T)$ contracts exponentially with rate λ , plus a discretization error term. The function f is defined in Appendix E, and sandwiches $||x_T y_T||_2$. In Corollary 2, we apply the results of Lemma 1 recursively over multiple steps to give a bound on $f(x_{k\delta} y_{k\delta})$ for all k, and for sufficiently small δ .
- 3. Finally, in Appendix A.4, we prove Theorem 1 by applying the results of Corollary 2, together with the fact that f(z) upper bounds $||z||_2$ up to a constant factor.

A.2. A coupling construction

In this subsection, we will study the evolution of (3) and (2) over a small time interval. Specifically, we will study

$$dx_t = -\nabla U(x_t)dt + M(x_t)dB_t \tag{20}$$

$$dy_t = -\nabla U(y_0)dt + M(y_0)dB_t \tag{21}$$

One can verify that (20) is equivalent to (3), and (21) is equivalent to a single step of (2) (i.e. over an interval $t \le \delta$).

We first give the explicit coupling between (20) and (21): (A similar coupling in the continuous-time setting is first seen in (Gorham et al., 2016) in their proof of contraction of (3).)

Given arbitrary (x_0, y_0) , define (x_t, y_t) using the following coupled SDE:

$$x_{t} = x_{0} + \int_{0}^{t} -\nabla U(x_{s})ds + \int_{0}^{t} c_{m}dV_{s} + \int_{0}^{t} N(x_{s})dW_{s}$$

$$y_{t} = y_{0} + \int_{0}^{t} -\nabla U(y_{0})dt + \int_{0}^{t} c_{m}(I - 2\gamma_{s}\gamma_{s}^{T})dV_{s} + \int_{0}^{t} N(y_{0})dW_{s}$$
(22)

Where dV_t and dW_t are two independent standard Brownian motion, and

$$\gamma_t := \frac{x_t - y_t}{\|x_t - y\|_2} \cdot \mathbb{1}\left\{\|x_t - y_t\|_2 \in [2\epsilon, \mathcal{R}_q)\right\}$$
(23)

By Lemma 6, we show that (20) has the same distribution as x_t in (22), and (21) has the same distribution as y_t in (22). Thus, for any t, the process (x_t, y_t) defined by (22) is a valid coupling for (20) and (21).

A.3. One step contraction

Lemma 1 Let f be as defined in Lemma 18 with parameters ϵ satisfying $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$. Let x_t and y_t be as defined in (22). If we assume that $\mathbb{E}\left[\|y_0\|_2^2\right] \leq 8\left(R^2 + \beta^2/m\right)$ and $T \leq \min\left\{\frac{\epsilon^2}{\beta^2}, \frac{\epsilon}{6L\sqrt{R^2 + \beta^2/m}}\right\}$, then $\mathbb{E}\left[f(x_T - y_T)\right] \leq e^{-\lambda T}\mathbb{E}\left[f(x_0 - y_0)\right] + 3T(L + L_N^2)\epsilon$

Remark 8 For ease of reference: m, L, L_R, R are from Assumption A, c_m, β are from Assumption B, $\alpha_q, \mathcal{R}_q, L_N, \lambda$ are defined in (7).

Proof of Lemma 1

For notational convenience, for the rest of this proof, let us define $z_t := x_t - y_t$ and $\nabla_t := \nabla U(x_t) - \nabla U(y_t)$, $\Delta_t := \nabla U(y_0) - \nabla U(y_t) N_t := N(x_t) - N(y_t)$.

It follows from (22) that

$$dz_t = -\nabla_t dt + \Delta_t dt + 2c_m \gamma_t \gamma_t^T dV_t + (N_t + N(y_t) - N(y_0))dW_t$$
(24)

Using Ito's Lemma, the dynamics of $f(z_t)$ is given by

$$df(z_{t}) = \langle \nabla f(z_{t}), dz_{t} \rangle + 2c_{m}^{2} \operatorname{tr} \left(\nabla^{2} f(z_{t}) \left(\gamma_{t} \gamma_{t}^{T} \right) \right) dt + \frac{1}{2} \operatorname{tr} \left(\nabla^{2} f(z_{t}) \left(N_{t} + N(y_{t}) - N(y_{0}) \right)^{2} \right) dt$$

$$= \underbrace{- \left\langle \nabla f(z_{t}), \nabla_{t} \right\rangle}_{(1)} dt + \underbrace{\left\langle \nabla f(z_{t}), \Delta_{t} \right\rangle}_{(2)} dt + \underbrace{\left\langle \nabla f(z_{t}), 2c_{m} \gamma_{t} \gamma_{t}^{T} dV_{t} + \left(N_{t} + N(y_{t}) - N(y_{0}) \right) dW_{t} \right\rangle}_{(3)}$$

$$+ \underbrace{2c_{m}^{2} \operatorname{tr} \left(\nabla^{2} f(z_{t}) \left(\gamma_{t} \gamma_{t}^{T} \right) \right)}_{(4)} dt + \underbrace{\frac{1}{2} \operatorname{tr} \left(\nabla^{2} f(z_{t}) \left(N_{t} + N(y_{t}) - N(y_{0}) \right)^{2} \right)}_{(5)} dt$$

$$(25)$$

(3) goes to 0 when we take expectation, so we will focus on (1, 2, 4). We will consider 3 cases

Case 1: $||z_t||_2 \le 2\epsilon$ From item 1(c) of Lemma 18, $||\nabla f(z)||_2 \le 1$. Using Assumption A.1, $||\nabla_t|| \le L ||z_t||_2$, so that $\widehat{(1)} \le ||\nabla_t||_2 \le L ||z_t||_2 \le 2L\epsilon$

Also by Cauchy Schwarz,

$$(2) = \langle \nabla f(z_t), \Delta_t \rangle \le \|\Delta_t\|_2 \le L \|y_t - y_0\|_2$$

Since $\gamma_t = 0$ in this case by definition in (23), (4) = 0.

Using Lemma 18.2.c. $\left\|\nabla^2 f(z_t)\right\|_2 \leq \frac{2}{\epsilon}$, so that

$$(5) \leq \frac{1}{\epsilon} \left(\operatorname{tr} \left(N_t^2 + N(y_t) - N(y_0) \right)^2 \right)$$

$$\leq \frac{2}{\epsilon} \left(\operatorname{tr} \left(N_t^2 \right) + \operatorname{tr} \left(\left(N(y_t) - N(y_0) \right)^2 \right) \right)$$

$$\leq \frac{2L_N^2}{\epsilon} \left(\|z_t\|_2^2 + \|y_t - y_0\|_2^2 \right)$$

$$\leq 4L_N^2 \epsilon + \frac{2L_N^2}{\epsilon} \|y_t - y_0\|_2^2$$

Where the second inequality is by Young's inequality, the third inequality is by item 2 of Lemma 16, the fourth inequality is by our assumption that $||z_t||_2 \le 2\epsilon$.

Summing these,

$$(1) + (2) + (4) + (5) \le 4(L + L_N^2)\epsilon + L||y_t - y_0||_2 + \frac{2L_N^2}{\epsilon}||y_t - y_0||_2^2$$

Case 2: $||z_t||_2 \in (2\epsilon, \mathcal{R}_q)$

In this case, $\gamma_t = \frac{z_t}{\|z_t\|_2}$. Let q be as defined in (39) and g be as defined in Lemma 20. By items 1(b) and 2(b) of Lemma 18 and items 1(b) and 2(b) of Lemma 20,

$$\begin{aligned} \nabla f(z_t) &= q'(g(z_t)) \nabla g(z_t) \\ &= q'(g(z_t)) \frac{z_t}{\|z_t\|_2} \\ \nabla^2 f(z_t) &= q''(g(z_t)) \nabla g(z_t) \nabla g(z_t)^T + q'(g(z_t)) \nabla^2 g(z_t) \\ &= q''(g(z_t)) \frac{z_t z_t^T}{\|z_t\|_2^2} + q'(g(z_t)) \frac{1}{\|z_t\|_2} \left(I - \frac{z_t z_t^T}{\|z_t\|_2^2}\right) \end{aligned}$$

Once again, by Assumption A.3,

$$(1) \le q'(g(z_t)) \|\nabla_t\|_2 \le q'(g(z_t)) \cdot L_R \cdot \|z_t\|_2 \le L \cdot q'(g(z_t))g(z_t) + 2L\epsilon$$

Where the last inequality uses Lemma 20.4. We can also verify that

$$(2) \le L \|y_t - y_0\|_2$$

Using the expression for $\nabla^2 f(z_t)$,

$$(4) = 2c_m^2 \operatorname{tr} \left(\nabla^2 f(z_t) \gamma_t \gamma_t^T \right) = 2c_m^2 \cdot q''(g(z_t))$$

Finally,

$$\begin{split} (\bar{\mathfrak{S}}) &= \frac{1}{2} \operatorname{tr} \left(\nabla^2 f(z_t) (N_t + N(y_t) - N(y_0))^2 \right) \\ &= \frac{1}{2} \operatorname{tr} \left(\left(q''(g(z_t)) \frac{z_t z_t^T}{\|z_t\|_2^2} + q'(g(z_t)) \frac{1}{\|z_t\|_2} \left(I - \frac{z_t z_t^T}{\|z_t\|_2^2} \right) \right) (N_t + N(y_t) - N(y_0))^2 \right) \\ &\leq \frac{1}{2} \operatorname{tr} \left(\left(q'(g(z_t)) \frac{1}{\|z_t\|_2} \left(I - \frac{z_t z_t^T}{\|z_t\|_2^2} \right) \right) (N_t + N(y_t) - N(y_0))^2 \right) \\ &\leq \frac{q'(g(z_t))}{\|z_t\|_2} \cdot \left(\operatorname{tr} \left(N_t^2 \right) + \operatorname{tr} \left((N(y_t) - N(y_0))^2 \right) \right) \\ &\leq q'(g(z_t)) \cdot L_N^2 \|z_t\|_2 + \frac{L_N^2 \|y_t - y_0\|_2^2}{2\epsilon} \\ &\leq q'(g(z_t)) \cdot L_N^2 g(z_t) + \frac{L_N^2 \|y_t - y_0\|_2^2}{2\epsilon} + 2L_N^2 \epsilon \end{split}$$

The above uses multiples times the fact that $0 \le q' \le 1$ and $q'' \le 0$ (proven in items 3 and 4 of Lemma 21). The second inequality is by Young's inequality, the third inequality is by item 2 of Lemma 16, the fourth inequality uses item 4 of Lemma 20.

Summing these,

$$\begin{aligned} \widehat{1} + \widehat{2} + \widehat{4} + \widehat{5} &\leq \left(L_R + L_N^2\right) q'(g(z_t))g(z_t) + 2c_m^2 q''(g(z_t)) + \frac{L_N^2 \|y_t - y_0\|_2^2}{2\epsilon} + 2\left(L + L_N^2\right)\epsilon \\ &\leq -\frac{2c_m^2 \exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)}{32\mathcal{R}_q^2} q(g(z_t)) + \frac{L_N^2 \|y_t - y_0\|_2^2}{2\epsilon} + 2\left(L + L_N^2\right)\epsilon \\ &\leq -\lambda q(g(z_t)) + \frac{L_N^2 \|y_t - y_0\|_2^2}{2\epsilon} + 2(L + L_N^2)\epsilon \\ &= -\lambda f(z_t) + \frac{L_N^2 \|y_t - y_0\|_2^2}{2\epsilon} + 2(L + L_N^2)\epsilon + L\|y_t - y_0\|_2 \end{aligned}$$

Where the last inequality follows from Lemma 21.1. and the definition of λ in (7).

Case 3: $||z_t||_2 \ge \mathcal{R}_q$ In this case, $\gamma_t = 0$. Similar to case 2,

$$\nabla f(z_t) = q'(g(z_t)) \frac{z_t}{\|z_t\|_2}$$

Thus by Assumption A.3,

$$(1) = \left\langle q'(g(z_t)) \frac{z_t}{\|z_t\|_2}, -\nabla_t \right\rangle$$

$$\leq -mq'(g(z_t)) \|z_t\|_2$$

Where the inequality is by Assumption A.3.

For identical reasons as in Case 1, $(2) \leq L_R ||y_t - y_0||_2$, and (4) = 0. Finally,

$$\begin{split} (\widehat{\mathbf{5}}) &= \frac{1}{2} \operatorname{tr} \left(\nabla^2 f(z_t) (N_t + N(y_t) - N(y_0))^2 \right) \\ &= \frac{1}{2} \operatorname{tr} \left(\left(q''(g(z_t)) \frac{z_t z_t^T}{\|z_t\|_2^2} + q'(g(z_t)) \frac{1}{\|z_t\|_2} \left(I - \frac{z_t z_t^T}{\|z_t\|_2^2} \right) \right) (N_t + N(y_t) - N(y_0))^2 \right) \\ &\leq \frac{1}{2} \operatorname{tr} \left(\left(q'(g(z_t)) \frac{1}{\|z_t\|_2} \left(I - \frac{z_t z_t^T}{\|z_t\|_2^2} \right) \right) (N_t + N(y_t) - N(y_0))^2 \right) \\ &\leq \frac{q'(g(z_t))}{\|z_t\|_2} \cdot \left(\operatorname{tr} (N_t^2) + \operatorname{tr} \left((N(y_t) - N(y_0))^2 \right) \right) \end{split}$$

Where the first inequality is because $q'' \le 0$ from item 4 of Lemma 21, the second inequality is by Young's inequality. (These steps are identical to Case 2). Continuing from above, and using item 2 and 3 of Lemma 16,

$$(5) \leq q'(g(z_t)) \cdot \left(\frac{8\beta^2 L_N}{c_m} + \frac{L_N^2 \|y_t - y_0\|_2^2}{\epsilon}\right) \\ \leq q'(g(z_t)) \cdot \left(\frac{m}{2} \|z_t\|_2\right) + q'(g(z_t)) \cdot \left(\frac{L_N^2 \|y_t - y_0\|_2^2}{\epsilon}\right)$$

Where the second inequality is by our definition of \mathcal{R}_q in the Lemma statement, which ensures that $\frac{8\beta^2 L_N}{c_m} \leq \frac{m}{2}\mathcal{R}_q \leq \frac{m}{2}\|z_t\|_2$.

Thus

$$\begin{split} &(1) + (2) + (4) + (5) \\ &\leq -mq'(g(z_t)) \|z_t\|_2 + L_R \|y_t - y_0\|_2 + \frac{m}{2}q'(g(z_t))\|z_t\|_2 + q'(g(z_t)) \cdot \left(\frac{L_N^2 \|y_t - y_0\|_2^2}{\epsilon}\right) \\ &\leq -\frac{m}{2}q'(g(z_t)) \|z_t\|_2 + \frac{L_N^2}{\epsilon} \|y_t - y_0\|_2^2 + L \|y_t - y_0\|_2 \\ &\leq -\lambda f(z_t) + \frac{L_N^2}{\epsilon} \|y_t - y_0\|_2^2 + L \|y_t - y_0\|_2 \end{split}$$

where the second inequality uses $q' \le 1$ from item 3 of Lemma 21, the third inequality uses our definition of λ in (7). Combining the three cases, (25) can be upper bounded with probability 1:

$$df(z_t) \le -\lambda f(z_t) + \frac{L_N^2}{\epsilon} \|y_t - y_0\|_2^2 + L \|y_t - y_0\|_2 + \left\langle \nabla f(z_t), 2c_m \gamma_t \gamma_t^T dV_t + (N_t + N(y_t) - N(y_0)) dW_t \right\rangle$$

To simplify notation, let us define $G_t \in \mathbb{R}^{1 \times 2d}$ as $G_t := \left[\nabla f(z_t)^T 2c_m \gamma_t \gamma_t^T, \nabla f(z_t)^T (N_t + N(y_t) - N(y_0))\right]$, and let A_t be a 2*d*-dimensional Brownian motion from concatenating $A_t = \begin{bmatrix} V_t \\ W_t \end{bmatrix}$. Thus

$$df(z_t) \le -\lambda f(z_t) dt + \left(\frac{L_N^2}{\epsilon} \|y_t - y_0\|_2^2 + L \|y_t - y_0\|_2\right) + G_t dA_t.$$

We will study the Lyapunov function

$$\mathcal{L}_t := f(z_t) - \int_0^t e^{-\lambda(t-s)} \left(\frac{L_N^2}{\epsilon} \|y_s - y_0\|_2^2 + L \|y_s - y_0\|_2 \right) ds - \int_0^t e^{-\lambda(t-s)} G_s dA_s.$$

By taking derivatives, we see that

$$\begin{aligned} d\mathcal{L}_t &\leq -\lambda f(z_t) dt + \left(\frac{L_N^2}{\epsilon} \|y_t - y_0\|_2^2 + L \|y_t - y_0\|_2 \right) dt + G_t dA_t \\ &+ \lambda \left(\int_0^t e^{-\lambda(t-s)} \left(\frac{L_N^2}{\epsilon} \|y_s - y_0\|_2^2 + L \|y_s - y_0\|_2 \right) ds \right) dt - \left(\frac{L_N^2}{\epsilon} \|y_t - y_0\|_2^2 + L \|y_t - y_0\|_2 \right) dt \\ &+ \lambda \left(\int_0^t e^{-\lambda(t-s)} G_s dA_s \right) dt - G_t dA_t \\ &= -\lambda \mathcal{L}_t dt \end{aligned}$$

We can then apply Gronwall's Lemma to \mathcal{L}_t , so that

$$\mathcal{L}_T \le e^{-\lambda T} \mathcal{L}_0,$$

which is equivalent to

$$f(z_T) - \int_0^T e^{-\lambda(T-s)} \left(\frac{L_N^2}{\epsilon} \|y_s - y_0\|_2^2 + L \|y_s - y_0\|_2 \right) ds - \int_0^T e^{-\lambda(t-s)} G_s dA_s \le e^{-\lambda T} f(z_0).$$

Observe that G_s is measurable wrt the natural filtration generated by A_s , so that $\int_0^T e^{-\lambda(T-s)}G_s dA_s$ is a martingale. Thus taking expectations,

$$\mathbb{E}\left[f(z_T)\right] \le e^{-\lambda T} \mathbb{E}\left[f(z_0)\right] + \int_0^T \frac{L_N^2}{\epsilon} \mathbb{E}\left[\left\|y_s - y_0\right\|_2^2\right] + L \mathbb{E}\left[\left\|y_s - y_0\right\|_2\right] ds$$

By Lemma 11, $\mathbb{E}\left[\|y_t - y_0\|_2^2\right] \le t^2 L^2 \mathbb{E}\left[\|y_0\|_2^2\right] + t\beta^2$, so that

$$\int_{0}^{T} \frac{L_{N}^{2}}{\epsilon} \mathbb{E}\left[\|y_{s} - y_{0}\|_{2}^{2} \right] ds \leq \frac{T^{3}L_{N}^{2}L^{2}}{\epsilon} \mathbb{E}\left[\|y_{0}\|_{2}^{2} \right] + \frac{T^{2}L_{N}^{2}}{\epsilon}\beta^{2}$$
$$L\mathbb{E}\left[\|y_{s} - y_{0}\|_{2} \right] \leq T^{2}L^{2}\sqrt{\mathbb{E}\left[\|y_{0}\|_{2}^{2} \right]} + T^{3/2}L\beta$$

Furthermore, using our assumption in the Lemma statement that $T \leq \min\left\{\frac{\epsilon^2}{\beta^2}, \frac{\epsilon}{6L\sqrt{R^2+\beta^2/m}}\right\}$ and $\mathbb{E}\left[\|y_0\|_2^2\right] \leq 8(R^2+\beta^2/m)$, we can verify that

$$\int_{0}^{T} \frac{L_{N}^{2}}{\epsilon} \mathbb{E}\left[\left\|y_{s} - y_{0}\right\|_{2}^{2}\right] ds \leq \frac{1}{4}TL_{N}^{2}\epsilon + TL_{N}^{2}\epsilon$$
$$L\mathbb{E}\left[\left\|y_{s} - y_{0}\right\|_{2}\right] \leq \frac{1}{2}TL\epsilon + TL\epsilon$$

Combining the above gives

$$\mathbb{E}\left[f(z_T)\right] \le e^{-\lambda T} \mathbb{E}\left[f(z_0)\right] + 3T \left(L + L_N^2\right) \epsilon$$

Corollary 2 Let f be as defined in Lemma 18 with parameter ϵ satisfying $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$.

Let $\delta \leq \min\left\{\frac{\epsilon^2}{\beta^2}, \frac{\epsilon}{8L\sqrt{R^2+\beta^2/m}}\right\}$, and let \bar{x}_t and \bar{y}_t have dynamics as defined in (3) and (2) respectively, and suppose that the initial conditions satisfy $\mathbb{E}\left[\|\bar{x}_0\|_2^2\right] \leq R^2 + \beta^2/m$ and $\mathbb{E}\left[\|\bar{y}_0\|_2^2\right] \leq R^2 + \beta^2/m$. Then there exists a coupling between \bar{x}_t and \bar{y}_t such that

$$\mathbb{E}\left[f(\bar{x}_{i\delta} - \bar{y}_{i\delta})\right] \le e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_0 - \bar{y}_0)\right] + \frac{6}{\lambda} \left(L + L_N^2\right) \epsilon$$

Proof of Corollary 2

From Lemma 7 and 8, our initial conditions imply that for all t, $\mathbb{E}\left[\|\bar{x}_t\|_2^2\right] \leq 6\left(R^2 + \frac{\beta^2}{m}\right)$ and $\mathbb{E}\left[\|\bar{y}_{k\delta}\|_2^2\right] \leq 8\left(R^2 + \frac{\beta^2}{m}\right)$. Consider an arbitrary k, and for $t \in [k\delta, (k+1)\delta)$, define

$$x_t := \bar{x}_{k\delta+t}$$
 and $y_t := \bar{y}_{k\delta+t}$

Under this definition, x_t and y_t have dynamics described in (20) and (21). Thus the coupling in (22), which describes a coupling between x_t and y_t , equivalently describes a coupling between \bar{x}_t and \bar{y}_t over $t \in [k\delta, (k+1)\delta)$.

We now apply Lemma 1. Given our assumed bound on δ and our proven bounds on $\mathbb{E}\left[\|\bar{x}_t\|_2^2\right]$ and $\mathbb{E}\left[\|\bar{y}_t\|_2^2\right]$,

$$\mathbb{E}\left[f(\bar{x}_{(k+1)\delta} - \bar{y}_{(k+1)\delta})\right]$$

= $\mathbb{E}\left[f(x_{\delta} - y_{\delta})\right]$
 $\leq e^{-\lambda\delta}\mathbb{E}\left[f(x_{0} - y_{0})\right] + 6\delta(L + L_{N}^{2})\epsilon$
= $e^{-\lambda\delta}\mathbb{E}\left[f(\bar{x}_{k\delta} - \bar{y}_{k\delta})\right] + 6\delta(L + L_{N}^{2})\epsilon$

Applying the above recursively gives, for any *i*

$$\mathbb{E}\left[f(\bar{x}_{i\delta} - \bar{y}_{i\delta})\right] \le e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_0 - \bar{y}_0)\right] + \frac{6}{\lambda} \left(L + L_N^2\right) \epsilon$$

For ease of reference, we re-state Theorem 1 below as Theorem 3 below. We make a minor notational change: using the letters \bar{x}_t and \bar{y}_t in Theorem 3, instead of the letters x_t and y_t in Theorem 1. This is to avoid some notation conflicts in the proof.

Theorem 3 (Equivalent to Theorem 1) Let \bar{x}_t and \bar{y}_t have dynamics as defined in (3) and (2) respectively, and suppose that the initial conditions satisfy $\mathbb{E}\left[\|\bar{x}_0\|_2^2\right] \leq R^2 + \beta^2/m$ and $\mathbb{E}\left[\|\bar{y}_0\|_2^2\right] \leq R^2 + \beta^2/m$. Let $\hat{\epsilon}$ be a target accuracy

satisfying
$$\hat{\epsilon} \leq \left(\frac{16(L+L_N^2)}{\lambda}\right) \cdot \exp\left(7\alpha_q \mathcal{R}_q/3\right) \cdot \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$$
. Let δ be a step size satisfying

$$\delta \leq \min \begin{cases} \frac{\lambda^2 \hat{\epsilon}^2}{512\beta^2 \left(L^2 + L_N^4\right) \exp\left(\frac{14\alpha_q \mathcal{R}_q^2}{3}\right)} \\ \frac{2\lambda \hat{\epsilon}}{(L^2 + L_N^4) \exp\left(\frac{7\alpha_q \mathcal{R}_q^2}{3}\right) \sqrt{R^2 + \beta^2/m}} \end{cases}.$$

If we assume that $\bar{x}_0 = \bar{y}_0$, then there exists a coupling between \bar{x}_t and \bar{y}_t such that for any k,

$$\mathbb{E}\left[\left\|\bar{x}_{k\delta} - \bar{y}_{k\delta}\right\|_{2}\right] \le \hat{\epsilon}$$

Alternatively, if we assume $k \geq \frac{3\alpha_q \mathcal{R}_q^2}{\delta} \log \frac{R^2 + \beta^2/m}{\hat{\epsilon}}$, then

$$W_1(p^*, p_{k\delta}^y) \le 2\hat{\epsilon}$$

where $p_t^y := \mathsf{Law}(\bar{y}_t)$.

Proof of Theorem 3

Let $\epsilon := \frac{\lambda}{16(L+L_N^2)} \exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right) \hat{\epsilon}$. Let f be defined as in Lemma 18 with the parameter ϵ .

$$\mathbb{E}\left[\|\bar{x}_{i\delta} - \bar{y}_{i\delta}\|_{2}\right] \leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \mathbb{E}\left[f(\bar{x}_{i\delta} - \bar{y}_{i\delta})\right] + 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \epsilon \\ \leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_{0} - \bar{y}_{0})\right] + \frac{6}{\lambda} \left(L + L_{N}^{2}\right) \epsilon\right) + 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \epsilon \\ \leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_{0} - \bar{y}_{0})\right] + \frac{16\left(L + L_{N}^{2}\right)}{\lambda} \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \cdot \epsilon \tag{26}$$

$$= 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_{0} - \bar{y}_{0})\right] + \hat{\epsilon}$$

where the first inequality is by item 4 of Lemma 18, the second inequality is by Corollary 2 (notice that δ satisfies the requirement on T in Theorem 1, for the given ϵ). The third inequality uses the fact that $1 \le L/m \le \frac{(L+L_N^2)}{\lambda}$.

The first claim follows from substituting $\bar{x}_0 = \bar{y}_0$ into (26), so that the first term is 0, and using the definition of ϵ , so that the second term is 0.

For the second claim, let $\bar{x}_0 \sim p^*$, the invariant distribution of (3). From Lemma 7, we know that \bar{x}_0 satisfies the required initial conditions in this Lemma. Continuing from (26),

$$\mathbb{E}\left[\|x_{i\delta} - \bar{y}_{i\delta}\|_{2}\right]$$

$$\leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(2e^{-\lambda i\delta}\mathbb{E}\left[\|\bar{x}_{0}\|_{2}^{2} + \|\bar{y}_{0}\|_{2}^{2}\right] + \frac{6}{\lambda}\left(L + L_{N}^{2}\right)\epsilon\right) + \epsilon$$

$$\leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(2e^{-\lambda i\delta}\left(R^{2} + \beta^{2}/m\right)\right) + \frac{16}{\lambda}\exp\left(2\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right)\left(L + L_{N}^{2}\right)\epsilon$$

$$= 4 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(e^{-\lambda i\delta}\left(R^{2} + \beta^{2}/m\right)\right) + \hat{\epsilon}$$

By our assumption that $i \ge \frac{1}{\delta} \cdot 3\alpha_q \mathcal{R}_q^2 \log \frac{R^2 + \beta^2/m}{\hat{\epsilon}}$, the first term is also bounded by $\hat{\epsilon}$, and this proves our second claim.

A.5. Simulating the SDE

One can verify that the SDE in (2) can be simulated (at discrete time intervals) as follows:

$$y_{(k+1)\delta} = y_{k\delta} - \delta \nabla U(y_{k\delta}) + \sqrt{\delta M(y_{k\delta})}\theta_k$$

Where $\theta_k \sim \mathcal{N}(0, I)$. This however requires access to $M(y_{k,\delta})$, which may be difficult to compute.

If for any y, one is able to draw samples from some distribution p_y such that

1. $\mathbb{E}_{\xi \sim p_{y}}[\xi] = 0$

2.
$$\mathbb{E}_{\xi \sim p_y} \left[\xi \xi^T \right] = M(y)$$

3. $\|\xi\|_2 \leq \beta$ almost surely, for some β .

then one might sample a noise that is δ close to $M(y_{k\delta})\theta_k$ through Theorem 5.

Specifically, if one draws n samples $\xi_1 \dots \xi_n \stackrel{iid}{\sim} p_y$, and let $S_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n \xi_i$, Theorem 5 guarantees that $W_2(S_n, M(y)\theta) \leq \frac{6\sqrt{d}\beta\sqrt{\log n}}{\sqrt{n}}$. We remark that the proof of Theorem 1 can be modified to accommodate for this sampling error. The number of samples needed to achieve ϵ accuracy will be on the order of $n \cong O(\delta\epsilon)^{-2} = O(\epsilon^{-6})$.

B. Proofs for Convergence under Non-Gaussian Noise (Theorem 2)

B.1. Proof Overview

The main proof of Theorem 2 is contained in Appendix B.4.

Here, we outline the steps of our proof:

- 1. In Appendix B.2, we construct a coupling between (3) and (1) over an epoch which consists of an interval $[k\delta, (k+n)\delta)$ for some k. The coupling in (B.2) consists of four processes (x_t, y_t, v_t, w_t) , where y_t and v_t are auxiliary processes used in defining the coupling. Notably, the process (x_t, y_t) has the same distribution over the epoch as (22).
- 2. In Appendix B.3, we prove Lemma 3 and Lemma 4, which, combined with Lemma 1 from Appendix A.3, show that under the coupling constructed in Step 1, a Lyapunov function $f(x_T w_T)$ contracts exponentially with rate λ , plus a discretization error term. In Corollary 5, we apply the results of Lemma 1, Lemma 3 and Lemma 4 recursively over multiple steps to give a bound on $f(x_{k\delta} w_{k\delta})$ for all k, and for sufficiently small δ .
- 3. Finally, in Appendix B.4, we prove Theorem 2 by applying the results of Corollary 5, together with the fact that f(z) upper bounds $||z||_2$ up to a constant.

B.2. Constructing a Coupling

In this subsection, we construct a coupling between (1) and (3), given arbitrary initialization (x_0, w_0) . We will consider a finite time $T = n\delta$, which we will refer to as an *epoch*.

- 1. Let V_t and W_t be two independent Brownian motion.
- 2. Using V_t and W_t , define

$$x_t = x_0 + \int_0^t -\nabla U(x_s)ds + \int_0^t c_m dV_s + \int_0^t N(w_0)dW_s$$
(27)

3. Using the same V_t and W_t in (27), we will define y_t as

$$y_t = w_0 + \int_0^t -\nabla U(w_0)ds + \int_0^t c_m (I - 2\gamma_s \gamma_s^t) dV_s + \int_0^T N(x_s) dW_s$$
(28)

Where $\gamma_t := \frac{x_t - y_t}{\|x_t - y_t\|_2} \cdot \mathbb{1}\{\|x_t - y_t\|_2 \in [2\epsilon, \mathcal{R}_q)\}$. The coupling (x_t, y_t) defined in (27) and (28) is identical to the coupling in (22) (with $y_0 = w_0$).

4. We now define a process $v_{k\delta}$ for k = 0...n:

$$v_{k\delta} = w_0 + \sum_{i=0}^{k-1} -\delta \nabla U(w_0) + \sqrt{\delta} \sum_{i=0}^{k-1} \xi(w_0, \eta_i)$$
(29)

where marginally, the variables $(\eta_0 \dots \eta_{n-1})$ are drawn *i.i.d* from the same distribution as in (1).

Notice that $y_T - w_0 - T\nabla U(w_0) = \int_0^T c_m dB_t + \int_0^T N(w_0) dW_t$, so that $\mathsf{Law}(y_T - w_0 - T\nabla U(w_0)) = \mathcal{N}(0, TM(w_0)^2)$. Notice also that $v_T - w_0 - T\nabla U(w_0) = \sqrt{\delta} \sum_{i=0}^{n-1} \xi(w_0, \eta_i)$. By Corollary 24, $W_2(y_T - w_0 - T\nabla U(w_0)) = 6\sqrt{d\delta}\beta\sqrt{\log n}$. Let the joint distribution between (29) and (28) be the one induced by the optimal coupling between $y_T - w_0 - T\nabla U(w_0)$ and $v_T - w_0 - T\nabla U(w_0)$, so that

$$\sqrt{\mathbb{E}\left[\left\|y_{T} - v_{T}\right\|_{2}^{2}\right]} = \sqrt{\mathbb{E}\left[\left\|y_{T} - T\nabla U(w_{0}) - v_{T} + T\nabla U(w_{0})\right\|_{2}^{2}\right]} = W_{2}(y_{T} - w_{0} - T\nabla U(w_{0}), v_{T} - w_{0} - T\nabla U(w_{0})) \le 6\sqrt{d\delta}\beta\sqrt{\log n}$$
(30)

where the last inequality is by Corollary 24.

5. Given the sequence $(\eta_0 \dots \eta_{n-1})$ from (29), we can define

$$w_{k\delta} = w_0 + \sum_{i=0}^{k-1} -\delta \nabla U(w_{i\delta}) + \sqrt{\delta} \sum_{i=0}^{k-1} \xi(w_{i\delta}, \eta_i)$$
(31)

specifically, $(w_0...w_{n\delta})$ in (31) and $(v_0...v_{n\delta})$ in (29) are coupled through the shared $(\eta_0...\eta_{n-1})$ variables.

For convenience, we will let $v_t := v_{i\delta}$ and $w_t := w_{i\delta}$, where *i* is the unique integer satisfying $t \in [i\delta, (i+1)\delta)$.

We can verify that, marginally, the process x_t in (27) has the same distribution as (3), using the proof as Lemma 6. It is also straightforward to verify that $w_{k\delta}$, as defined in (31), has the same marginal distribution as (1), due to the definition of η_i in (29).

B.3. One Epoch Contraction

In Lemma 3, we prove a discretization error bound between $f(x_T - y_T)$ and $f(x_T - v_T)$, for the coupling defined in (27), (28) and (29).

In Lemma 4, we prove a discretization error bound between $f(x_T - v_T)$ and $f(x_T - w_T)$, for the coupling defined in (27), (29) and (31).

Lemma 3 Let f be as defined in Lemma 18 with parameter ϵ satisfying $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$. Let x_t , y_t and v_t be as defined in (27), (28), (29). Let n be any integer and δ be any step size, and let $T := n\delta$.

$$If \mathbb{E}\left[\|x_0\|_2^2\right] \le 8\left(R^2 + \beta^2/m\right), \mathbb{E}\left[\|y_0\|_2^2\right] \le 8\left(R^2 + \beta^2/m\right) \text{ and } T \le \min\left\{\frac{1}{16L}, \frac{\beta^2}{8L^2(R^2 + \beta^2/m)}\right\} \text{ and}$$
$$\delta \le \min\left\{\frac{T\epsilon^2 L}{36d\beta^2 \log\left(\frac{36d\beta^2}{\epsilon^2 L}\right)}, \frac{T\epsilon^4 L^2}{2^{14}d\beta^4 \log\left(\frac{2^{14}d\beta^4}{\epsilon^4 L^2}\right)}\right\}$$

Then

$$\mathbb{E}\left[f(x_T - v_T)\right] - \mathbb{E}\left[f(x_T - y_T)\right] \le 4TL\epsilon$$

Proof

By Taylor's Theorem,

$$\mathbb{E} \left[f(x_{T} - v_{T}) \right] = \mathbb{E} \left[f(x_{T} - y_{T}) + \langle \nabla f(x_{T} - y_{T}), y_{T} - v_{T} \rangle + \int_{0}^{1} \int_{0}^{s} \langle \nabla^{2} f(x_{T} - y_{T} + s(y_{T} - v_{T})), (y_{T} - v_{T})(y_{T} - v_{T})^{T} \rangle \, ds dt \right] \\ = \mathbb{E} \left[f(x_{T} - y_{T}) + \underbrace{\langle \nabla f(x_{0} - y_{0}), y_{T} - v_{T} \rangle}_{(1)} + \underbrace{\langle \nabla f(x_{T} - y_{T}) - \nabla f(x_{0} - y_{0}), y_{T} - v_{T} \rangle}_{(2)} \right] \\ + \mathbb{E} \left[\underbrace{\int_{0}^{1} \int_{0}^{s} \langle \nabla^{2} f(x_{T} - y_{T} + s(y_{T} - v_{T})), (y_{T} - v_{T})(y_{T} - v_{T})^{T} \rangle \, ds dt}_{(3)} \right]$$

We will bound each of the terms above separately.

$$\mathbb{E}\left[\left(\mathbf{1}\right)\right]$$

$$=\mathbb{E}\left[\left\langle\nabla f(x_{0}-y_{0}), y_{T}-v_{T}\right\rangle\right]$$

$$=\mathbb{E}\left[\left\langle\nabla f(x_{0}-y_{0}), n\delta\nabla U(y_{0})-n\delta\nabla U(v_{0})+\int_{0}^{T}-\nabla U(w_{0})dt+\int_{0}^{T}c_{m}dV_{t}+\int_{0}^{T}N(w_{0})dW_{t}+\sum_{i=0}^{n-1}\sqrt{\delta}\xi(v_{0},\eta_{i})\right\rangle\right]$$

$$=\mathbb{E}\left[\left\langle\nabla f(x_{0}-y_{0}), n\delta\nabla U(y_{0})-n\delta\nabla U(v_{0})\right\rangle\right]$$

$$=0$$

where the third equality is because $\int_0^T dB_t$, $\int_0^T dW_t$ and $\sum_{k=1}^T \xi(v_0, \eta_i)$ have zero mean conditioned on the information at time 0, and the fourth equality is because $y_0 = v_0$ by definition in (28) and (29).

$$\mathbb{E}\left[\left(\widehat{2}\right)\right]$$

$$=\mathbb{E}\left[\left\langle\nabla f(x_{T}-y_{T})-\nabla f(x_{0}-y_{0}),y_{T}-v_{T}\right\rangle\right]$$

$$\leq\sqrt{\mathbb{E}\left[\left\|\nabla f(x_{T}-y_{T})-\nabla f(x_{0}-y_{0})\right\|_{2}^{2}\right]}\sqrt{\mathbb{E}\left[\left\|y_{T}-v_{T}\right\|_{2}^{2}\right]}$$

$$\leq\frac{2}{\epsilon}\sqrt{2\mathbb{E}\left[\left\|x_{T}-x_{0}\right\|_{2}^{2}+\left\|y_{T}-y_{0}\right\|_{2}^{2}\right]}\sqrt{\mathbb{E}\left[\left\|y_{T}-v_{T}\right\|_{2}^{2}\right]}$$

$$\leq\frac{2}{\epsilon}\sqrt{(32T\beta^{2}+4T\beta^{2})}\cdot\left(6\sqrt{d\delta}\beta\log n\right)$$

$$\leq\frac{128}{\epsilon}\sqrt{T}\beta^{2}\cdot\left(\sqrt{d\delta}\log n\right)$$

Where the second inequality is by $\|\nabla^2 f\|_2 \leq \frac{2}{\epsilon}$ from item 2(c) of Lemma 18 and Young's inequality. The third inequality is by Lemma 10 and Lemma 11 and (30).

Finally, we can bound

$$\mathbb{E}\left[\overline{\mathfrak{S}}\right]$$

$$\leq \int_{0}^{1} \int_{0}^{s} \mathbb{E}\left[\left\|\nabla^{2} f(x_{T} - y_{T} + s(y_{T} - v_{T}))\right\|_{2} \|y_{T} - v_{T}\|_{2}^{2}\right] ds dt$$

$$\leq \frac{2}{\epsilon} \mathbb{E}\left[\left\|y_{T} - v_{T}\right\|_{2}^{2}\right]$$

$$\leq \frac{72d\delta\beta^{2}\log^{2}n}{\epsilon}$$

Where the second inequality is by $\|\nabla^2 f\|_2 \leq \frac{2}{\epsilon}$ from item 2(c) of Lemma 18, the third inequality is by (30). Summing these 3 terms,

$$\mathbb{E}\left[f(x_T - v_T) - f(x_T - y_T)\right]$$

$$\leq \frac{128}{\epsilon}\sqrt{T}\beta^2 \cdot \left(\sqrt{d\delta}\sqrt{\log n}\right) + \frac{36d\delta\beta^2\log n}{\epsilon}$$

$$= \frac{128}{\epsilon}\sqrt{T}\beta^2 \cdot \left(\sqrt{d\delta}\sqrt{\log \frac{T}{\delta}}\right) + \frac{36d\delta\beta^2\log \frac{T}{\delta}}{\epsilon}$$

Let us bound the first term. We apply Lemma 25 (with $x = \frac{T}{\delta}$ and $c = \frac{\epsilon^4}{2^{14}d\beta^4}$), which shows that

$$\frac{T}{\delta} \geq \frac{2^{14}d\beta^4}{\epsilon^4}\log\left(\frac{2^{14}d\beta^4}{\epsilon^4L^2}\right) \quad \Rightarrow \quad \frac{T}{\delta}\frac{1}{\log\frac{T}{\delta}} \geq \frac{2^{14}d\beta^4}{\epsilon^4L^2} \quad \Leftrightarrow \quad \frac{128}{\epsilon}\sqrt{T}\beta^2 \cdot \left(\sqrt{d\delta}\log\frac{T}{\delta}\right) \leq TL\epsilon$$

For the second term, we can again apply Lemma 25 ($x = \frac{T}{\delta}$ and $c = \frac{\epsilon^2 L}{36 d\beta^2}$), which shows that

$$\frac{T}{\delta} \ge \frac{36d\beta^2}{\epsilon^2 L} \log\left(\frac{36d\beta^2}{\epsilon^2 L}\right) \quad \Rightarrow \quad \frac{T}{\delta} \frac{1}{\log \frac{T}{\delta}} \ge \frac{36d\beta^2}{\epsilon^2 L} \quad \Rightarrow \quad \frac{36d\delta\beta^2 \log \frac{T}{\delta}}{\epsilon} \le TL\epsilon$$

The above imply that

$$\mathbb{E}\left[f(x_T - v_T) - f(x_T - y_T)\right] \le 2TL\epsilon$$

Lemma 4 Let f be as defined in Lemma 18 with parameter ϵ satisfying $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$. Let x_t , v_t and w_t be as defined in (27), (29), (31). Let n be an integer and δ be a step size, and let $T := n\delta$.

If we assume that $\mathbb{E}\left[\|x_0\|_2^2\right]$, $\mathbb{E}\left[\|v_0\|_2^2\right]$, and $\mathbb{E}\left[\|w_0\|_2^2\right]$ are each upper bounded by $8(R^2 + \beta^2/m)$ and that $T \leq \min\left\{\frac{1}{16L}, \frac{\epsilon}{32\sqrt{L\beta}}, \frac{\epsilon^2}{128\beta^2}, \frac{\epsilon^4L_N^2}{2^{14}\beta^2c_m^2}\right\}$, then

$$\mathbb{E}\left[f(x_T - w_T)\right] - \mathbb{E}\left[f(x_T - v_T)\right] \le 4T(L + L_N^2)\epsilon$$

Remark 9 For sufficiently small ϵ , our assumption on T boils down to $T = o(\epsilon^4)$

Proof

First, we can verify using Taylor's theorem that for any x, y,

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \int_0^s \langle \nabla^2 f(x + s(y - x)), (y - x)(y - x)^T \rangle \, ds dt \tag{32}$$

$$\nabla f(y) = \nabla f(x) + \left\langle \nabla^2 f(x), y - x \right\rangle + \int_0^1 \int_0^s \left\langle \nabla^3 f(x + s(y - x)), (y - x)(y - x)^T \right\rangle ds dt$$
(33)

Thus

$$\begin{split} & \mathbb{E}\left[f(x_{T}-w_{T})\right] \\ = & \mathbb{E}\left[f(x_{T}-v_{T}) + \left\langle \nabla f(x_{T}-v_{T}), v_{T}-w_{T}\right\rangle + \int_{0}^{1} \int_{0}^{s} \left\langle \nabla^{2} f(x_{T}-v_{T}+s(v_{T}-w_{T})), (v_{T}-w_{T})(v_{T}-w_{T})^{T}\right\rangle ds dt\right] \\ = & \mathbb{E}\left[f(x_{T}-v_{T}) + \underbrace{\left\langle \nabla f(x_{0}-v_{0}), v_{T}-w_{T}\right\rangle}_{(1)} + \underbrace{\left\langle \nabla f(x_{T}-v_{T}) - \nabla f(x_{0}-v_{0}), v_{T}-w_{T}\right\rangle}_{(2)}\right] \\ & + \mathbb{E}\left[\underbrace{\int_{0}^{1} \int_{0}^{s} \left\langle \nabla^{2} f(x_{T}-v_{T}+s(v_{T}-w_{T})), (v_{T}-w_{T})(v_{T}-w_{T})^{T}\right\rangle ds dt}_{(3)}\right] \end{split}$$

Recall from (29) and (31) that

$$v_{n\delta} = w_0 + \sum_{i=0}^{n-1} \delta \nabla U(w_0) + \sqrt{\delta} \sum_{i=0}^{n-1} \xi(w_0, \eta_i)$$
$$w_{n\delta} = w_0 + \sum_{i=0}^{n-1} \delta \nabla U(w_{i\delta}) + \sqrt{\delta} \sum_{i=0}^{n-1} \xi(w_{i\delta}, \eta_i)$$

Note that conditioned on the randomness up to time 0, $\mathbb{E}\left[\sum_{i=0}^{n-1} \xi(w_0, \eta_i)\right] = \mathbb{E}\left[\sum_{i=0}^{n-1} \xi(w_{i\delta}, \eta_i)\right] = 0$, so that

$$\begin{split} & \mathbb{E}\left[\left(\mathbf{I}\right)\right] \\ = & \mathbb{E}\left[\left\langle \nabla f(x_0 - v_0), v_T - w_T\right\rangle\right] \\ = & \delta \mathbb{E}\left[\left\langle \nabla f(x_0 - v_0), \sum_{i=0}^{n-1} \nabla U(w_0) - \nabla U(w_{i\delta})\right\rangle\right] + \sqrt{\delta} \mathbb{E}\left[\left\langle \nabla f(x_0 - v_0), \sum_{i=0}^{n-1} \xi(w_0, \eta_i) - \sum_{i=0}^{n-1} \xi(w_{i\delta}, \eta_i)\right\rangle\right] \\ = & \delta \mathbb{E}\left[\left\langle \nabla f(x_0 - v_0), \sum_{i=0}^{n-1} \nabla U(w_0) - \nabla U(w_{i\delta})\right\rangle\right] \\ \leq & \delta \sum_{i=0}^{n-1} L \mathbb{E}\left[\|w_0 - w_{i\delta}\|_2\right] \\ \leq & TL\sqrt{32T\beta^2} \leq 8T^{3/2}L\beta \end{split}$$

where the third equality is because $\xi(\cdot, \eta_i)$ has 0 mean conditioned on the randomness at time 0, and the second inequality is by Lemma 13.

Next,

$$\begin{split} & \mathbb{E}\left[\textcircled{2}\right] \\ =& \mathbb{E}\left[\left\langle \nabla f(x_T - v_T) - \nabla f(x_0 - v_0), v_T - w_T\right\rangle\right] \\ \leq & \mathbb{E}\left[\left\|\nabla f(x_T - v_T) - \nabla f(x_0 - v_0)\right\|_2 \|v_T - w_T\|\right] \\ \leq & \frac{4}{\epsilon} \sqrt{\mathbb{E}\left[\left\|x_T - x_0\right\|_2^2 + \|v_T - v_0\|_2^2\right]} \cdot \sqrt{\mathbb{E}\left[\left\|v_T - w_T\right\|_2^2\right]} \\ \leq & \frac{4}{\epsilon} \sqrt{16T\beta^2 + 2T\beta^2} \cdot \sqrt{32\left(T^2L^2 + TL_\xi^2\right)T\beta^2} \\ \leq & \frac{128}{\epsilon}T\beta^2\left(\sqrt{T}L_\xi + TL\right) \end{split}$$

where the second inequality is because $\|\nabla^2 f\|_2 \leq \frac{2}{\epsilon}$ from item 2(c) of Lemma 18 and by Young's inequality. The third inequality is by Lemma 10, Lemma 12 and Lemma 14.

Finally,

$$\mathbb{E}\left[\widehat{\mathfrak{3}}\right]$$

$$=\mathbb{E}\left[\int_{0}^{1}\int_{0}^{s}\left\langle \nabla^{2}f(x_{T}-v_{T}+s(v_{T}-w_{T})),(v_{T}-w_{T})(v_{T}-w_{T})^{T}\right\rangle dsdt\right]$$

$$\leq\int_{0}^{1}\int_{0}^{s}\mathbb{E}\left[\left\|\nabla^{2}f(x_{T}-v_{T}+s(v_{T}-w_{T}))\right\|_{2}\left\|v_{T}-w_{T}\right\|_{2}^{2}\right] ds$$

$$\leq\frac{1}{\epsilon}\mathbb{E}\left[\left\|v_{T}-w_{T}\right\|_{2}^{2}\right]$$

$$\leq\frac{32}{\epsilon}\left(T^{2}L^{2}+TL_{\xi}^{2}\right)T\beta^{2}$$

wehere the second inequality is because $\|\nabla^2 f\|_2 \leq \frac{2}{\epsilon}$ from item 2(c) of Lemma 18 and by Young's inequality. The third inequality is by Lemma 14.

Summing the above,

$$\mathbb{E}\left[f(x_T - w_T) - f(x_T - v_T)\right]$$

$$\leq 8T^{3/2}L\beta + \frac{128}{\epsilon}T\beta^2\left(\sqrt{T}L_{\xi} + TL\right) + \frac{32}{\epsilon}\left(T^2L^2 + TL_{\xi}^2\right)T\beta^2$$

$$\leq T^{3/2}\epsilon$$

where the last inequality is by our assumption on T, specifically,

$$\begin{split} T &\leq \frac{\epsilon^2}{128\beta^2} \Rightarrow T^{3/2}L\beta \leq TL\epsilon \\ T &\leq \frac{\epsilon^2}{128\beta^2} \Rightarrow \frac{128}{\epsilon}T^2L\beta^2 \leq TL\epsilon \\ T &\leq \frac{\epsilon}{32\sqrt{L}\beta} \Rightarrow \frac{32}{\epsilon}(T^3L^2\beta^2) \leq TL\epsilon \\ T &\leq \frac{\epsilon^4L_N^2}{2^{14}\beta^2c_m^2} \Rightarrow \frac{128}{\epsilon}T^{3/2}\beta^2L_{\xi} \leq TL_N^2\epsilon \\ T &\leq \frac{\epsilon^2}{128\beta^2} \Rightarrow T \leq \frac{\epsilon^2}{128c_m^2} \Rightarrow \frac{32}{\epsilon}T^2L_{\xi}^2\beta^2 \leq TL_N^2\epsilon \end{split}$$

where the last line uses the fact that $\beta \geq c_m^2$.

Corollary 5 Let f be as defined in Lemma 18 with parameter ϵ satisfying $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$. Let $T = \min\left\{\frac{1}{16L}, \frac{\beta^2}{8L^2(R^2 + \beta^2/m)}, \frac{\epsilon}{32\sqrt{L\beta}}, \frac{\epsilon^2}{128\beta^2}, \frac{\epsilon^4 L_N^2}{2^{14}\beta^2 c_m^2}\right\}$ and let $\delta \leq \min\left\{\frac{T\epsilon^2 L}{36d\beta^2 \log\left(\frac{36d\beta^2}{\epsilon^2 L}\right)}, \frac{T\epsilon^4 L^2}{2^{14}d\beta^4 \log\left(\frac{2^{14}d\beta^4}{\epsilon^4 L^2}\right)}\right\}$, assume additionally that $n = T/\delta$ is an integer. Let \bar{x}_t and \bar{w}_t have dynamics as defined in (3) and (2) respectively, and suppose that the initial conditions satisfy $\mathbb{E}\left[\|\bar{x}_0\|_2^2\right] \leq 1$

$$R^2 + \beta^2/m$$
 and $\mathbb{E}\left[\|\bar{w}_0\|_2^2\right] \leq R^2 + \beta^2/m$. Then there exists a coupling between \bar{x}_t and \bar{w}_t such that

$$\mathbb{E}\left[f(\bar{x}_{i\delta} - \bar{w}_{i\delta})\right] \le e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_0 - \bar{w}_0)\right] + \frac{6}{\lambda} \left(L + L_N^2\right) \epsilon$$

Proof

From Lemma 7 and 9, our initial conditions imply that for all t, $\mathbb{E}\left[\|\bar{x}_t\|_2^2\right] \le 6\left(R^2 + \frac{\beta^2}{m}\right)$ and $\mathbb{E}\left[\|\bar{w}_{k\delta}\|_2^2\right] \le 8\left(R^2 + \frac{\beta^2}{m}\right)$. Consider an arbitrary k, and for $t \in [0, T)$, define

$$x_t := \bar{x}_{kT+t} \quad \text{and} \quad w_t := \bar{w}_{kT+t} \tag{34}$$

Notice that as described above, x_t and w_t have dynamics described in (3) and (1). Let x_t, w_t have joint distribution as described in (27) and (31), and let (y_t, v_t) be the processes defined in (28) and (29). Notice that the joint distribution between x_t and w_t equivalently describes a coupling between \bar{x}_t and \bar{w}_t over $t \in [kT, (k+1)T)$.

First, notice that the processes (27) and (28) have the same distribution as (22). We can thus apply Lemma 1:

$$\mathbb{E}\left[f(x_T - y_T)\right] \le e^{-\lambda T} \mathbb{E}\left[f(x_0 - y_0)\right] + 6T(L + L_N^2)\epsilon$$

By Lemma 3,

$$\mathbb{E}\left[f(x_T - v_T)\right] - \mathbb{E}\left[f(x_T - y_T)\right] \le 4TLe$$

By Lemma 4,

$$\mathbb{E}\left[f(x_T - w_T)\right] - \mathbb{E}\left[f(x_T - v_T)\right] \le 4T(L + L_N^2)\epsilon$$

Summing the above three equations,

$$\mathbb{E}\left[f(x_T - w_T)\right] \le e^{-\lambda\delta} \mathbb{E}\left[f(x_0 - w_0)\right] + 14T(L + L_N^2)$$

Where we use the fact that $y_0 = w_0$ by construction in (28).

Recalling (34), this is equivalent to

$$\mathbb{E}\left[f(\bar{x}_{(k+1)T} - \bar{w}_{(k+1)T})\right] \le e^{-\lambda\delta} \mathbb{E}\left[f(\bar{x}_{kT} - \bar{w}_{kT})\right] + 14T(L + L_N^2)$$

Applying the above recursively gives, for any *i*

$$\mathbb{E}\left[f(\bar{x}_{iT} - \bar{w}_{iT})\right] \le e^{-\lambda i T} \mathbb{E}\left[f(\bar{x}_0 - \bar{w}_0)\right] + \frac{14}{\lambda} \left(L + L_N^2\right) \epsilon$$

B.4. Proof of Theorem 2

For ease of reference, we re-state Theorem 2 below as Theorem 4 below. We make a minor notational change: using the letters \bar{x}_t and \bar{y}_t in Theorem 4, instead of the letters x_t and y_t in Theorem 2. This is to avoid some notation conflicts in the proof.

Theorem 4 (Equivalent to Theorem 2) Let \bar{x}_t and w_t have dynamics as defined in (3) and (1) respectively, and suppose that the initial conditions satisfy $\mathbb{E}\left[\|\bar{x}_0\|_2^2\right] \leq R^2 + \beta^2/m$ and $\mathbb{E}\left[\|\bar{w}_0\|_2^2\right] \leq R^2 + \beta^2/m$. Let $\hat{\epsilon}$ be a target accuracy satisfying $\hat{\epsilon} \leq \left(\frac{16(L+L_N^2)}{\lambda}\right) \cdot \exp(7\alpha_q \mathcal{R}_q/3) \cdot \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^{2}+1}$. Let $\epsilon := \frac{\lambda}{16(L+L_N^2)} \exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)\hat{\epsilon}$. Let $T := \min\left\{\frac{1}{16L}, \frac{\beta^2}{8L^2(R^2+\beta^2/m)}, \frac{\epsilon}{32\sqrt{L}\beta}, \frac{\epsilon^2}{128\beta^2}, \frac{\epsilon^4 L_N^2}{2^{14}\beta^2 c_m^2}\right\}$ and let δ be a step size satisfying

$$\delta \le \min\left\{\frac{T\epsilon^2 L}{36d\beta^2 \log\left(\frac{36d\beta^2}{\epsilon^2 L}\right)}, \frac{T\epsilon^4 L^2}{2^{14} d\beta^4 \log\left(\frac{2^{14} d\beta^4}{\epsilon^4 L^2}\right)}\right\}$$

If we assume that $\bar{x}_0 = \bar{w}_0$, then there exists a coupling between \bar{x}_t and \bar{w}_t such that for any k,

$$\mathbb{E}\left[\|\bar{x}_{k\delta} - \bar{w}_{k\delta}\|_2\right] \le \hat{\epsilon}$$

Alternatively, if we assume that $k \geq \frac{3\alpha_q \mathcal{R}_q^2}{\delta} \cdot \log \frac{R^2 + \beta^2/m}{\hat{\epsilon}}$, then

$$W_1(p^*, p_{k\delta}^w) \le 2\hat{\epsilon},$$

where $p_t^w := \mathsf{Law}(\bar{w}_t)$.

Proof of Theorem 4

Let f be defined as in Lemma 18 with parameter ϵ .

$$\mathbb{E}\left[\|\bar{x}_{i\delta} - \bar{w}_{i\delta}\|_{2}\right] \leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \mathbb{E}\left[f(\bar{x}_{i\delta} - \bar{w}_{i\delta})\right] + 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \epsilon \\ \leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_{0} - \bar{w}_{0})\right] + \frac{6}{\lambda} \left(L + L_{N}^{2}\right) \epsilon\right) + 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \epsilon \\ \leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_{0} - \bar{w}_{0})\right] + \frac{16\left(L + L_{N}^{2}\right)}{\lambda} \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \cdot \epsilon \tag{35}$$

$$= 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) e^{-\lambda i\delta} \mathbb{E}\left[f(\bar{x}_{0} - \bar{w}_{0})\right] + \hat{\epsilon}$$

where the first inequality is by item 4 of Lemma 18, the second inequality is by Corollary 5 (notice that δ satisfies the requirement on T in Theorem 1, for the given ϵ). The third inequality uses the fact that $1 \le L/m \le \frac{(L+L_N^2)}{\lambda}$.

The first claim follows from substituting $\bar{x}_0 = \bar{w}_0$ into (35), so that the first term is 0, and using the definition of ϵ , so that the second term is 0.

For the second claim, let $\bar{x}_0 \sim p^*$, the invariant distribution of (3). From Lemma 7, we know that \bar{x}_0 satisfies the required initial conditions in this Lemma. Continuing from (35),

$$\mathbb{E}\left[\|\bar{x}_{i\delta} - \bar{w}_{i\delta}\|_{2}\right]$$

$$\leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(2e^{-\lambda i\delta}\mathbb{E}\left[\|\bar{x}_{0}\|_{2}^{2} + \|\bar{w}_{0}\|_{2}^{2}\right] + \frac{6}{\lambda}\left(L + L_{N}^{2}\right)\epsilon\right) + \epsilon$$

$$\leq 2 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right) \left(2e^{-\lambda i\delta}\left(R^{2} + \beta^{2}/m\right)\right) + \frac{16}{\lambda}\exp\left(2\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right)\left(L + L_{N}^{2}\right)\epsilon$$

$$= 4 \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right)\left(e^{-\lambda i\delta}\left(R^{2} + \beta^{2}/m\right)\right) + \hat{\epsilon}$$

By our assumption that $i \ge \frac{1}{\delta} \cdot 3\alpha_q \mathcal{R}_q^2 \log \frac{R^2 + \beta^2/m}{\hat{\epsilon}}$, the first term is also bounded by $\hat{\epsilon}$, and this proves our second claim.

C. Coupling Properties

Lemma 6 Consider the coupled (x_t, y_t) in (22). Let p_t denote the distribution of x_t , and q_t denote the distribution of y_t . Let p'_t and q'_t denote the distributions of (20) and (21).

If $p_0 = p'_0$ and $q_0 = q'_0$, then $p_t = p'_t$ and $q_t = q'_t$ for all t.

Proof

Consider the coupling in (22), reproduced below for ease of reference:

$$x_{t} = x_{0} + \int_{0}^{t} -\nabla U(x_{s})ds + \int_{0}^{t} c_{m}dV_{s} + \int_{0}^{t} N(x_{s})dW_{s}$$
$$y_{t} = y_{0} + \int_{0}^{t} -\nabla U(y_{0})dt + \int_{0}^{t} c_{m}(I - 2\gamma_{s}\gamma_{s}^{T})dV_{s} + \int_{0}^{t} N(y_{0})dW_{s}$$

Let us define the stochastic process $A_t := \int_0^t M(x_s)^{-1} c_m dV_s + \int_0^t M(x_s)^{-1} N(x_s) dW_s$. We can verify using Levy's characterization that A_t is a standard Brownian motion: first, since V_t and W_t are Brownian motions, and N(x) is differentiable with bounded derivatives, we know that A_t has continuous sample paths. We now verify that $A_t^i A_t^j - \mathbb{1}\{i = j\}t$ is a martingale.

Notice that $dA_t = c_m dV_t + M(x_s)^{-1} N(x_s) dW_s$. Then

$$\begin{aligned} dA_t^i A_t^j = & dA_t^T \left(e_i e_j^T \right) A_t \\ = & A_t \left(e_i e_j^T \right) \left(c_m dV_t + M(x_s)^{-1} N(x_s) dW_s \right)^T + \left(c_m dV_t + M(x_s)^{-1} N(x_s) dW_s \right) \left(e_j e_i^T \right) a_t^T \\ & + \frac{1}{2} \text{tr} \left(\left(e_i e_j^T + e_j e_i^T \right) \left(c_m^2 M(x_s)^{-2} + M(x_s)^{-1} N(x_s)^2 M(x_s)^{-1} \right) \right) dt \end{aligned}$$

where the second inequality is by Ito's Lemma applied to $f(A_t) = A_t^T e_j e_j^T A_t$. Taking expectations,

$$\begin{split} d\mathbb{E} \left[A_t^i A_t^j \right] = & \mathbb{E} \left[\frac{1}{2} \text{tr} \left(\left(e_i e_j^T + e_j e_i^T \right) \left(c_m^2 M(x_s)^{-2} + M(x_s)^{-1} N(x_s) N(x_s)^T \left(M(x_s)^{-1} \right)^T \right) \right) \right] dt \\ = & \mathbb{E} \left[\frac{1}{2} \text{tr} \left(\left(e_i e_j^T + e_j e_i^T \right) \left(M(x_s)^{-1} \left(c_m^2 I + N(x_s)^2 \right) M(x_s)^{-1} \right) \right) \right] dt \\ = & \mathbb{E} \left[\frac{1}{2} \text{tr} \left(\left(e_i e_j^T + e_j e_i^T \right) \left(M(x_s)^{-1} \left(M(x_s)^2 \right) M(x_s)^{-1} \right) \right) \right] dt \\ = & \mathbb{E} \left[\frac{1}{2} \text{tr} \left(\left(e_i e_j^T + e_j e_i^T \right) \right) \right] dt \\ = & \mathbb{E} \left[\frac{1}{2} \text{tr} \left(\left(e_i e_j^T + e_j e_i^T \right) \right) \right] dt \\ = & \mathbb{1} \left\{ i = j \right\} dt \end{split}$$

This verifies that $A_t^i A_t^j - \mathbb{1} \{i = j\} t$ is a martingale, and hence by Levy's characterization, A_t is a standard Brownian motion. In turn, we verify that by definition of A_t ,

$$x_{t} = x_{0} + \int_{0}^{t} -\nabla U(x_{s})ds + \int_{0}^{t} c_{m}dV_{s} + \int_{0}^{t} N(x_{s})dW_{s}$$

= $x_{0} + \int_{0}^{t} -\nabla U(x_{s})ds + \int_{0}^{t} M(x_{s})(M(x_{s})^{-1}(c_{m}dV_{s} + N(x_{s})dW_{s}))$
= $x_{0} + \int_{0}^{t} -\nabla U(x_{s})ds + \int_{0}^{t} M(x_{s})dA_{s}$

Since we showed that A_t is a standard Brownian motion, we verify that x_t as defined in (22) has the same distribution as (3). On the other hand, we can verify that $A'_t := \int_0^T (I - 2\gamma_s \gamma_s^T) V_s$ is a standard Brownian motion by the reflection principle. Thus

$$\int_{0}^{t} c_m \left(I - 2\gamma_s \gamma_s^T \right) dV_s + \int_{0}^{t} N(y_0) dW_s \sim \mathcal{N}(0, \left(c_m^2 I + N(y_0)^2 \right)) = \mathcal{N}(0, M(y_0)^2)$$

where the equality is by definition of N in (6).

It follows immediately that y_t in (22) has the same distribution as y_t in (2).

C.1. Energy Bounds

Lemma 7 Consider x_t as defined in (3). If x_0 satisfies $\mathbb{E}\left[\|x_0\|_2^2\right] \leq R^2 + \frac{\beta^2}{m}$, then Then for all t,

$$\mathbb{E}\left[\|x_t\|_2^2\right] \le 6\left(R^2 + \frac{\beta^2}{m}\right)$$

We can also show that

$$\mathbb{E}_{p^*}\left[\left\|x\right\|_2^2\right] \le 4\left(R^2 + \frac{\beta^2}{m}\right)$$

Proof

We consider the potential function $a(x) = (||x||_2 - R)^2_+$ We verify that

$$\nabla a(x) = (\|x\|_2 - R)_+ \frac{x}{\|x\|_2}$$
$$\nabla^2 a(x) = \mathbb{1} \{\|x\|_2 \ge R\} \frac{xx^T}{\|x\|_2^2} + \frac{(\|x\|_2 - R)_+}{\|x\|_2} \left(I - \frac{xx^T}{\|x\|_2^2}\right)$$

Observe that

- 1. $\left\|\nabla^2 a(x)\right\|_2 \le 2\mathbb{1}\left\{\|x\|_2 \ge R\right\} \le 2$
- 2. $\langle \nabla a(x), -\nabla U(x) \rangle \leq -ma(x)$. This can be verified by considering 2 cases. If $||x||_2 \leq R$, then $\nabla a(x) = 0$ and a(x) = 0. If $||x||_2 \geq R$, then by Assumption A,

$$\langle \nabla a(x), -\nabla U(x) \rangle \le -m(\|x\|_2 - R)_+ \|w\|_2 \le -m(\|x\|_2 - R)_+^2 = -m \cdot a(x)$$

3. $a(x) \ge \frac{1}{2} \|x\|_2^2 - 2R^2$. One can first verify that $a(x) \ge (\|x\|_2 - R)^2 - R^2$. Next, by Young's inequality, $(\|x\|_2 - R)^2 = \|x\|_2^2 + R^2 - 2\|x\|_2^2 + R^2 - \frac{1}{2}\|x\|_2^2 - 2R^2 = \frac{1}{2}\|x\|_2^2 - R^2$.

Therefore,

$$\begin{aligned} \frac{d}{dt} \mathbb{E}\left[a(x_t)\right] &= \mathbb{E}\left[\langle \nabla a(x_t), -\nabla U(x_t)dt \rangle\right] + \frac{1}{2} \mathbb{E}\left[\operatorname{tr}\left(M(x_t)^2 \nabla^2 a(x)\right)\right] \leq -m \mathbb{E}\left[a(x_t)\right] + \beta^2 \\ \Rightarrow \quad \frac{d}{dt} \left(\mathbb{E}\left[a(x_t)\right] - \frac{\beta^2}{m}\right) \leq -m \left(\mathbb{E}\left[a(x_t)\right] - \frac{\beta^2}{m}\right) \\ \Rightarrow \quad \frac{d}{dt} \left(\mathbb{E}\left[a(x_t)\right] - R^2 - \frac{\beta^2}{m}\right) \leq -m \left(\mathbb{E}\left[a(x_t)\right] - R^2 - \frac{\beta^2}{m}\right) \end{aligned}$$

Thus if $\mathbb{E}\left[\|x_0\|_2^2\right] \leq R^2 + \frac{\beta^2}{m}$, then $\mathbb{E}\left[a(x_0)\right] \leq R^2 - \frac{\beta^2}{m}$, then $\left(\mathbb{E}\left[a(x_0)\right] - R^2 - \frac{\beta^2}{m}\right) \leq 0$, and $\left(\mathbb{E}\left[a(x_t)\right] - R^2 + \frac{\beta^2}{m}\right) \leq e^{-mt} \cdot 0 \leq 0$ for all t. This implies that, for all t,

$$\mathbb{E}\left[\|x_t\|_2^2\right] \le \mathbb{E}\left[2a(x_t) + 4R^2\right] \le 6\left(R^2 + \frac{\beta^2}{m}\right)$$

For our second claim that $\mathbb{E}_{p^*}\left[\|x\|_2^2\right] \leq R^2 + \frac{\beta^2}{m}$, we can use the fact that if $x_0 \sim p^*$, then $\mathbb{E}\left[a(x_t)\right]$ does not change as p^* is invariant, so that

$$0 = \frac{d}{dt} \mathbb{E}\left[a(x_t)\right] \le -m\mathbb{E}\left[a(x_t)\right] + \beta^2$$

Thus

$$\mathbb{E}\left[a(x_t)\right] \le \frac{\beta^2}{m}$$

Again,

$$\mathbb{E}_{p^*}\left[\left\|x\right\|_2^2\right] = \mathbb{E}\left[\left\|x_t\right\|_2^2\right] \le 2\mathbb{E}\left[a(x_t)\right] + 4R^2 \le 4\left(R^2 + \frac{\beta^2}{m}\right)$$

Lemma 8 Let the sequence $y_{k\delta}$ be as defined in (1). Assuming that $\delta \leq m/(16L^2)$ and $\mathbb{E}\left[\|y_0\|_2^2\right] \leq 2\left(R^2 + \frac{\beta^2}{m}\right)$ Then for all k,

$$\mathbb{E}\left[\|y_{k\delta}\|_{2}^{2}\right] \leq 8\left(R^{2} + \frac{\beta^{2}}{m}\right)$$

Proof

Let $a(w) := (||w||_2 - R)^2_+$. We can verify that

$$\nabla a(w) = (\|w\|_2 - R)_+ \frac{w}{\|w\|_2}$$

$$\nabla^2 a(w) = \mathbb{1} \{\|w\|_2 \ge R\} \frac{ww^T}{\|w\|_2^2} + (\|w\|_2 - R)_+ \frac{1}{\|w\|_2} \left(I - \frac{ww^T}{\|w\|_2^2}\right)$$

Observe that

1. $\|\nabla^2 a(w)\|_2 \le 2\mathbb{1}\{\|w\|_2 \ge R\} \le 2$ 2. $\langle \nabla a(w), -\nabla U(w) \rangle \le -ma(w).$ 3. $a(w) \ge \frac{1}{2} \|w\|_2^2 - 2R^2.$

Using Taylor's Theorem, and taking expectation of $y_{(k+1)\delta}$ conditioned on $y_{k\delta}$,

$$\mathbb{E}\left[a(y_{(k+1)\delta})\right] = \mathbb{E}\left[a(y_{k\delta})\right] + \mathbb{E}\left[\left\langle \nabla a(y_{k\delta}), y_{(k+1)\delta} - y_{k\delta} \right\rangle\right] \\ + \mathbb{E}\left[\int_{0}^{1} \int_{0}^{t} \left\langle \nabla^{2} a(y_{k\delta} + s(y_{(k+1)\delta} - y_{k\delta}), (y_{(k+1)\delta} - y_{k\delta})(y_{(k+1)\delta} - y_{k\delta})^{T} \right\rangle dtds\right] \\ \leq \mathbb{E}\left[a(y_{k\delta})\right] + \mathbb{E}\left[\left\langle \nabla a(y_{k\delta}), y_{(k+1)\delta} - y_{k\delta} \right\rangle\right] + \mathbb{E}\left[\left\|(y_{(k+1)\delta} - y_{k\delta})\right\|_{2}^{2} ds\right] \\ \leq \mathbb{E}\left[a(y_{k\delta})\right] + \mathbb{E}\left[\left\langle \nabla a(y_{k\delta}), -\delta \nabla U(y_{k\delta}) \right\rangle\right] + 2\delta^{2} \|\nabla U(y_{k\delta})\|_{2}^{2} + 2\delta \mathbb{E}\left[\operatorname{tr}\left(M(y_{k\delta})^{2}\right)\right] \\ \leq \mathbb{E}\left[a(y_{k\delta})\right] - m\delta \mathbb{E}\left[a(y_{k\delta})\right] + 2\delta^{2} \mathbb{E}\left[\left\|\nabla U(y_{k\delta})\right\|_{2}^{2}\right] + 2\delta \mathbb{E}\left[\operatorname{tr}\left(M(y_{k\delta})^{2}\right)\right] \\ \leq \mathbb{E}\left[a(y_{k\delta})\right] - m\delta \mathbb{E}\left[a(y_{k\delta})\right] + 2\delta^{2} L^{2} \mathbb{E}\left[\left\|y_{k\delta}\right\|_{2}^{2}\right] + 2\delta\beta^{2} \\ \leq \mathbb{E}\left[a(y_{k\delta})\right] - m\delta \mathbb{E}\left[a(y_{k\delta})\right] + 4\delta^{2} L^{2} \mathbb{E}\left[a(y_{k\delta})\right] + 8\delta^{2} L^{2} R^{2} + 2\delta\beta^{2} \\ \leq (1 - m\delta/2)\mathbb{E}\left[a(y_{k\delta})\right] + m\delta R^{2} + 2\delta\beta^{2}$$

Where the first inequality uses the upper bound on $\|\nabla^2 a(y)\|_2$ above, the second inequality uses the fact that $y_{(k+1)\delta} \sim \mathcal{N}(y_{k\delta} - \delta \nabla U(y_{k\delta}), \delta M(y_{k\delta})^2)$, the third inequality uses claim 2. at the start of this proof, the fourth inequality uses item 2 of Assumption B. The fifth inequality uses claim 3. above, the sixth inequality uses our assumption that $\delta \leq \frac{m}{16L^2}$.

Taking expectation wrt $y_{k\delta}$,

$$\mathbb{E}\left[a(y_{(k+1)\delta})\right] \le \mathbb{E}\left[a(y_k)\right] - m\delta\left(\mathbb{E}\left[a(y_{k\delta})\right] - 2R^2 + 2\beta^2/m\right)$$

$$\Rightarrow \qquad \mathbb{E}\left[a(y_{(k+1)\delta})\right] - (2R^2/2 + 2\beta^2/m) \le (1 - m\delta)\left(\mathbb{E}\left[a(y_{k\delta})\right] - (2R^2 + 2\beta^2/m\right)$$

Thus, if $\mathbb{E}\left[\|y_0\|_2^2\right] \leq 2R^2 + 2\beta^2/m$, then $\mathbb{E}\left[a(y_0)\right] - \left(2R^2 + 2\beta^2/m\right) \leq 0$, then $\mathbb{E}\left[a(y_{k\delta})\right] - \left(2R^2 + 2\beta^2/m\right) \leq 0$ for all k, which implies that

$$\mathbb{E}\left[\left\|y_{k\delta}\right\|_{2}^{2}\right] \leq 2\mathbb{E}\left[a(y_{k\delta})\right] + 4R^{2} \leq 8\left(R^{2} + \beta^{2}/m\right)$$

for all k.

Lemma 9 Let the sequence $w_{k\delta}$ be as defined in (1). Assuming that $\delta \leq m/(16L^2)$ and $\mathbb{E}\left[\|w_0\|_2^2\right] \leq 2\left(R^2 + \frac{\beta^2}{m}\right)$ Then for all k,

$$\mathbb{E}\left[\|w_{k\delta}\|_{2}^{2}\right] \leq 8\left(R^{2} + \frac{\beta^{2}}{m}\right)$$

Proof

The proof is almost identical to that of Lemma 8. Let $a(w) := (||w||_2 - R)^2_+$. We can verify that

$$\nabla a(w) = (\|w\|_2 - R)_+ \frac{w}{\|w\|_2}$$

$$\nabla^2 a(y) = \mathbb{1} \{\|w\|_2 \ge R\} \frac{ww^T}{\|w\|_2^2} + (\|w\|_2 - R)_+ \frac{1}{\|w\|_2} \left(I - \frac{ww^T}{\|w\|_2^2}\right)$$

Observe that

$$\begin{split} &1. \ \left\|\nabla^2 a(w)\right\|_2 \leq 2\mathbbm{1}\left\{\|w\|_2 \geq R\right\} \leq 2\\ &2. \ \left\langle\nabla a(w), -\nabla U(w)\right\rangle \leq -ma(w). \end{split}$$

3.
$$a(w) \ge \frac{1}{2} ||w||_2^2 - 2R^2$$
.

The proofs are identical to the proof at the start of Lemma 9, so we omit them here.

Using Taylor's Theorem, and taking expectation of $w_{(k+1)\delta}$ conditioned on $w_{k\delta}$,

$$\mathbb{E}\left[a(w_{(k+1)\delta})\right]$$

$$=\mathbb{E}\left[a(w_{k\delta})\right] + \mathbb{E}\left[\left\langle \nabla a(w_{k\delta}), w_{(k+1)\delta} - w_{k\delta} \right\rangle\right]$$

$$+ \mathbb{E}\left[\int_{0}^{1} \int_{0}^{t} \left\langle \nabla^{2} a(w_{k\delta} + s(w_{(k+1)\delta} - w_{k\delta}), (w_{(k+1)\delta} - w_{k\delta})(w_{(k+1)\delta} - w_{k\delta})^{T} \right\rangle dtds\right]$$

$$\leq \mathbb{E}\left[a(w_{k\delta})\right] + \mathbb{E}\left[\left\langle \nabla a(w_{k\delta}), w_{(k+1)\delta} - w_{k\delta} \right\rangle\right] + \mathbb{E}\left[\left\|(w_{(k+1)\delta} - w_{k\delta})\right\|_{2}^{2} ds\right]$$

$$\leq \mathbb{E}\left[a(w_{k\delta})\right] + \mathbb{E}\left[\left\langle \nabla a(w_{k\delta}), -\delta \nabla U(w_{k\delta}) \right\rangle\right] + 2\delta^{2} \|\nabla U(w_{k\delta})\|_{2}^{2} + 2\delta \mathbb{E}\left[\left\|\xi(w_{k\delta}, \eta_{k})\right\|_{2}^{2}\right]$$

$$\leq \mathbb{E}\left[a(w_{k\delta})\right] - m\delta \mathbb{E}\left[a(w_{k\delta})\right] + 2\delta^{2} \mathbb{E}\left[\left\|\nabla U(w_{k\delta})\right\|_{2}^{2}\right] + 2\delta \mathbb{E}\left[\left\|\xi(w_{k\delta}, \eta_{k})\right\|_{2}^{2}\right]$$

$$\leq \mathbb{E}\left[a(w_{k\delta})\right] - m\delta \mathbb{E}\left[a(w_{k\delta})\right] + 2\delta^{2} L^{2} \mathbb{E}\left[\left\|w_{k\delta}\right\|_{2}^{2}\right] + 2\delta\beta^{2}$$

$$\leq \mathbb{E}\left[a(w_{k\delta})\right] - m\delta \mathbb{E}\left[a(w_{k\delta})\right] + 2\delta^{2} L^{2} a(w_{k\delta}) + 2\delta^{2} L^{2} R^{2} + 2\delta\beta^{2}$$

$$\leq (1 - m\delta/2)a(w_{k\delta}) + m\delta R^{2} + 2\delta\beta^{2}$$

Where the first inequality uses the upper bound on $\|\nabla^2 a(y)\|_2$ above, the second inequality uses the fact that $w_{(k+1)\delta} = (y_{k\delta} - \delta \nabla U(y_{k\delta}) = \xi(w_{k\delta}, \eta_k))$, and $\mathbb{E}\left[\xi(w_{k\delta}, \eta_k)|w_{k\delta}\right] = 0$, the third inequality uses claim 2. at the start of this proof, the fourth inequality uses item 2 of Assumption B. The fifth inequality uses claim 3. above, the sixth inequality uses our assumption that $\delta \leq \frac{m}{16L^2}$.

Taking expectation wrt $w_{k\delta}$,

$$\mathbb{E}\left[a(w_{(k+1)\delta})\right] \leq \mathbb{E}\left[a(w_k)\right] - m\delta\left(\mathbb{E}\left[a(w_{k\delta})\right] - 2R^2 + 2\beta^2/m\right)$$

$$\Rightarrow \quad \mathbb{E}\left[a(w_{(k+1)\delta})\right] - (2R^2/2 + 2\beta^2/m) \leq (1 - m\delta)\left(\mathbb{E}\left[a(w_{k\delta})\right] - (2R^2 + 2\beta^2/m\right)$$

Thus, if $\mathbb{E}\left[\|w_0\|_2^2\right] \leq 2R^2 + 2\beta^2/m$, then $\mathbb{E}\left[a(w_0)\right] - \left(2R^2 + 2\beta^2/m\right) \leq 0$, then $\mathbb{E}\left[a(w_{k\delta})\right] - \left(2R^2 + 2\beta^2/m\right) \leq 0$ for all k, which implies that

$$\mathbb{E}\left[\left\|w_{k\delta}\right\|_{2}^{2}\right] \leq 2\mathbb{E}\left[a(w_{k\delta})\right] + 4R^{2} \leq 8\left(R^{2} + \beta^{2}/m\right)$$

for all k.

C.2. Divergence Bounds

Lemma 10 Let x_t be as defined in (20) (or equivalently (22) or (27)), initialized at x_0 . Then for any $T \leq \frac{1}{16L}$,

$$\mathbb{E}\left[\|x_{T} - x_{0}\|_{2}^{2}\right] \leq 8\left(T\beta^{2} + T^{2}L^{2}\mathbb{E}\left[\|x_{0}\|_{2}^{2}\right]\right)$$

If we additionally assume that $\mathbb{E}\left[\left\|x_0\right\|_2^2\right] \le 8\left(R^2 + \beta^2/m\right)$ and $T \le \frac{\beta^2}{8L^2(R^2 + \beta^2/m)}$, then

$$\mathbb{E}\left[\left\|x_T - x_0\right\|_2^2\right] \le 16T\beta^2$$

Proof

_	-	

By Ito's Lemma,

$$\begin{aligned} \frac{d}{dt} \mathbb{E} \left[\|x_t\|_2^2 \right] \\ =& 2\mathbb{E} \left[\langle \nabla U(x_t), x_t - x_0 \rangle \right] + \mathbb{E} \left[\operatorname{tr} \left(M(x_t)^2 \right) \right] \\ \leq& 2L\mathbb{E} \left[\|x_t\|_2 \|x_t - x_0\|_2 \right] + \beta^2 \\ \leq& 2L\mathbb{E} \left[\|x_t - x_0\|_2^2 \right] + 2L\mathbb{E} \left[\|x_0\|_2 \|x_t - x_0\|_2 \right] + \beta^2 \\ \leq& 2L\mathbb{E} \left[\|x_t - x_0\|_2^2 \right] + L^2 T\mathbb{E} \left[\|x_0\|_2^2 \right] + \frac{1}{T} \mathbb{E} \left[\|x_t - x_0\|_2^2 \right] + \beta^2 \\ \leq& \frac{2}{T} \mathbb{E} \left[\|x_t - x_0\|_2^2 \right] + \left(L^2 T\mathbb{E} \left[\|x_0\|_2^2 \right] + \beta^2 \right) \end{aligned}$$

where the first inequality is by item 1 of Assumption A and item 2 of Assumption B, the second inequality is by triangle inequality, the third inequality is by Young's inequality, the last inequality is by our assumption on T.

Applying Gronwall's inequality for $t \in [0, T]$,

$$\left(\mathbb{E} \left[\|x_t - x_0\|_2^2 \right] + L^2 T^2 \mathbb{E} \left[\|x_0\|_2^2 \right] + T\beta^2 \right)$$

$$\leq e^2 \left(\mathbb{E} \left[\|x_0 - x_0\| \right] + L^2 T^2 \mathbb{E} \left[\|x_0\|_2^2 \right] + T\beta^2 \right)$$

$$\leq 8L^2 T^2 \mathbb{E} \left[\|x_0\|_2^2 \right] + T\beta^2$$

This concludes our proof.

Lemma 11 Let y_t be as defined in (21) (or equivalently (22) or (27)), initialized at y_0 . Then for any T,

$$\mathbb{E}\left[\|y_T - y_0\|_2^2\right] \le T^2 L^2 \mathbb{E}\left[\|y_0\|_2^2\right] + T\beta^2$$

If we additionally assume that $\mathbb{E}\left[\|y_0\|_2^2\right] \le 8(R^2 + \beta^2/m)$ and $T \le \frac{\beta^2}{8L^2(R^2 + \beta^2/m)}$, then
 $\mathbb{E}\left[\|y_T - y_0\|_2^2\right] \le 2T\beta^2$

Proof

Notice from the definition in (21) that $y_T - y_0 \sim \mathcal{N}(-T\nabla U(y_0), TM(y_0)^2)$, the conclusion immediately follows from where the inequality is by item 1 of Assumption A and item 2 of Assumption B, and the fact that

$$\operatorname{tr}(M(x)^{2}) = \operatorname{tr}(\mathbb{E}\left[\xi(x,\eta)\xi(x,\eta)^{T}\right]) = \mathbb{E}\left[\left\|\xi(x,\eta)\right\|_{2}^{2}\right]$$

Lemma 12 Let v_t be as defined in (29), initialized at v_0 . Then for any $T = n\delta$,

$$\mathbb{E}\left[\|v_T - v_0\|_2^2\right] \le T^2 L^2 \mathbb{E}\left[\|v_0\|_2^2\right] + T\beta^2$$

If we additionally assume that $\mathbb{E}\left[\|v_0\|_2^2\right] \le 8(R^2 + \beta^2/m)$ and $T \le \frac{\beta^2}{8L^2(R^2 + \beta^2/m)}$, then
 $\mathbb{E}\left[\|v_T - v_0\|_2^2\right] \le 2T\beta^2$

Proof

From (29),

$$v_T - v_0 = -T\nabla U(v_0) + \sqrt{\delta} \sum_{i=0}^{n-1} \xi(v_0, \eta_i)$$

Conditioned on the randomness up to time $i, \mathbb{E} \left[\xi(v_0, \eta_{i+1}) \right] = 0$. Thus

$$\mathbb{E}\left[\left\|v_{T}-v_{0}\right\|_{2}^{2}\right]$$
$$=T^{2}\mathbb{E}\left[\left\|\nabla U(v_{0})\right\|_{2}^{2}\right]+\delta\sum_{i=0}^{n-1}\mathbb{E}\left[\left\|\xi(v_{0},\eta_{i})\right\|_{2}^{2}\right]$$
$$\leq T^{2}L^{2}\mathbb{E}\left[\left\|v_{0}\right\|_{2}^{2}\right]+T\beta^{2}$$

where the inequality is by item 1 of Assumption A and item 2 of Assumption B.

Lemma 13 Let w_t be as defined in (31), initialized at w_0 . Then for any $T = n\delta$ such that $T \leq \frac{1}{2L}$,

$$\mathbb{E}\left[\left\|w_{T}-w_{0}\right\|_{2}^{2}\right] \leq 16\left(T^{2}L^{2}\mathbb{E}\left[\left\|w_{0}\right\|_{2}^{2}\right]+T\beta^{2}\right)$$

If we additionally assume that $\mathbb{E}\left[\|w_0\|_2^2\right] \leq 8(R^2 + \beta^2/m)$ and $T \leq \frac{\beta^2}{8L^2(R^2 + \beta^2/m)}$, then

$$\mathbb{E}\left[\left\|w_T - w_0\right\|_2^2\right] \le 32T\beta^2$$

Proof

$$\mathbb{E}\left[\left\|w_{(k+1)\delta} - w_{0}\right\|_{2}^{2}\right]$$
$$=\mathbb{E}\left[\left\|w_{k\delta} - \delta\nabla U(w_{k\delta}) + \sqrt{\delta}\xi(w_{k\delta}, \eta_{k}) - w_{0}\right\|_{2}^{2}\right]$$
$$=\mathbb{E}\left[\left\|w_{k\delta} - \delta\nabla U(w_{k\delta}) - w_{0}\right\|_{2}^{2}\right] + \delta\mathbb{E}\left[\left\|\xi(w_{k\delta}, \eta_{k})\right\|_{2}^{2}\right]$$
(36)

We can bound $\delta \mathbb{E}\left[\|\xi(w_{k\delta},\eta_k)\|_2^2\right] \leq \delta \beta^2$ by item 2 of Assumption B.

$$\mathbb{E}\left[\|w_{k\delta} - \delta \nabla U(w_{k\delta}) - w_0\|_2^2 \right] \\\leq \mathbb{E}\left[(\|w_{k\delta} - w_0 - \delta (\nabla U(w_{k\delta}) - \nabla U(w_0))\|_2 + \delta \|\nabla U(w_0)\|_2)^2 \\\leq \left(1 + \frac{1}{n} \right) \mathbb{E}\left[\|w_{k\delta} - w_0 - \delta (\nabla U(w_{k\delta}) - \nabla U(w_0))\|_2^2 \right] \\+ (1 + n) \delta^2 \mathbb{E}\left[\|\nabla U(w_0)\|_2^2 \right] \\\leq \left(1 + \frac{1}{n} \right) (1 + \delta L)^2 \mathbb{E}\left[\|w_{k\delta} - w_0\|_2^2 \right] + 2n \delta^2 L^2 \mathbb{E}\left[\|w_0\|_2^2 \right] \\\leq e^{1/n + 2\delta L} \mathbb{E}\left[\|w_{k\delta} - w_0\|_2^2 \right] + 2n \delta^2 L^2 \mathbb{E}\left[\|w_0\|_2^2 \right]$$

where the first inequality is by triangle inequality, the second inequality is by Young's inequality, the third inequality is by item 1 of Assumption A.

Inserting the above into (36) gives

$$\mathbb{E}\left[\left\|w_{(k+1)\delta} - w_{0}\right\|_{2}^{2}\right] \leq e^{1/n + 2\delta L} \mathbb{E}\left[\left\|w_{k\delta} - w_{0}\right\|_{2}^{2}\right] + 2n\delta^{2}L^{2} \mathbb{E}\left[\left\|w_{0}\right\|_{2}^{2}\right] + \delta\beta^{2}$$

Applying the above recursively for k = 1...n, we see that

$$\mathbb{E}\left[\left\|w_{n\delta} - w_{0}\right\|_{2}^{2}\right]$$

$$\leq \sum_{k=0}^{n-1} e^{(n-k)\cdot(1/n+2\delta L)} \cdot \left(2n\delta^{2}L^{2}\mathbb{E}\left[\left\|w_{0}\right\|_{2}^{2}\right] + \delta\beta^{2}\right)$$

$$\leq 16\left(n^{2}\delta^{2}L^{2}\mathbb{E}\left[\left\|w_{0}\right\|_{2}^{2}\right] + n\delta\beta^{2}\right)$$

$$= 16\left(T^{2}L^{2}\mathbb{E}\left[\left\|w_{0}\right\|_{2}^{2}\right] + T\beta^{2}\right)$$

C.3. Discretization Bounds

Lemma 14 Let $v_{k\delta}$ and $w_{k\delta}$ be as defined in (29) and (31). Then for any δ , n, such that $T := n\delta \leq \frac{1}{16L}$,

$$\mathbb{E}\left[\|v_{T} - w_{T}\|_{2}^{2}\right] \leq 8\left(2T^{2}L^{2}\left(T^{2}L^{2}\mathbb{E}\left[\|v_{0}\|_{2}^{2}\right] + T\beta^{2}\right) + TL_{\xi}^{2}\left(16\left(T^{2}L^{2}\mathbb{E}\left[\|w_{0}\|_{2}^{2}\right] + T\beta^{2}\right)\right)\right)$$

If we additionally assume that $\mathbb{E}\left[\|v_{0}\|_{2}^{2}\right] \leq 8\left(R^{2} + \beta^{2}/m\right)$, $\mathbb{E}\left[\|w_{0}\|_{2}^{2}\right] \leq 8\left(R^{2} + \beta^{2}/m\right)$ and $T \leq \frac{\beta^{2}}{8L^{2}(R^{2} + \beta^{2}/m)}$, then
 $\mathbb{E}\left[\|v_{T} - w_{T}\|_{2}^{2}\right] \leq 32\left(T^{2}L^{2} + TL_{\xi}^{2}\right)T\beta^{2}$

Proof

Using the fact that conditioned on the randomness up to step k, $\mathbb{E}[\xi(v_0, \eta_{k+1}) - \xi(w_{k\delta}, \eta_{k+1})] = 0$, we can show that for any $k \leq n$,

$$\mathbb{E}\left[\left\|v_{(k+1)\delta} - w_{(k+1)\delta}\right\|_{2}^{2}\right]$$

$$=\mathbb{E}\left[\left\|v_{k\delta} - \delta\nabla U(v_{0}) - w_{k\delta} + \delta\nabla U(w_{k\delta}) + \sqrt{\delta}\xi(w_{0},\eta_{k}) - \sqrt{\delta}\xi(w_{k\delta},\eta_{k})\right\|_{2}^{2}\right]$$

$$=\mathbb{E}\left[\left\|v_{k\delta} - \delta\nabla U(v_{0}) - w_{k\delta} + \delta\nabla U(w_{k\delta})\right\|_{2}^{2}\right] + \delta\mathbb{E}\left[\left\|\xi(w_{0},\eta_{k}) - \xi(w_{k\delta},\eta_{k})\right\|_{2}^{2}\right]$$
(37)

where the first inequality is by (Assumption on smoothness of U and xi).

Using (smoothness of xi), and Lemma 12, we can bound

$$\delta \mathbb{E} \left[\left\| \xi(w_0, \eta_k) - \xi(w_{k\delta}, \eta_k) \right\|_2^2 \right]$$

$$\leq \delta L_{\xi}^2 \mathbb{E} \left[\left\| w_{k\delta} - w_0 \right\|_2^2 \right]$$

$$\leq \delta L_{\xi}^2 \left(16 \left(T^2 L^2 \mathbb{E} \left[\left\| w_0 \right\|_2^2 \right] + T\beta^2 \right) \right)$$

We can also bound

$$\mathbb{E}\left[\left\|v_{k\delta} - \delta\nabla U(v_0) - w_{k\delta} + \delta\nabla U(w_{k\delta})\right\|_2^2\right]$$

$$\leq \left(1 + \frac{1}{n}\right) \mathbb{E}\left[\left\|v_{k\delta} - \delta\nabla U(v_{k\delta}) - w_{k\delta} + \delta\nabla U(w_{k\delta})\right\|_2^2\right] + (1 + n)\delta^2 \mathbb{E}\left[\left\|\nabla U(v_{k\delta}) - \nabla U(v_0)\right\|_2^2\right]$$

$$\leq \left(1 + \frac{1}{n}\right) (1 + \delta L)^2 \mathbb{E}\left[\left\|v_{k\delta} - w_{k\delta}\right\|_2^2\right] + 2n\delta^2 L^2 \mathbb{E}\left[\left\|v_{k\delta} - v_0\right\|_2^2\right]$$

$$\leq e^{1/n + 2\delta L} E \|v_{k\delta} - w_{k\delta}\|_2^2 + 2n\delta^2 L^2 \mathbb{E}\left[\left\|v_{k\delta} - v_0\right\|_2^2\right]$$

$$\leq e^{1/n + 2\delta L} E \|v_{k\delta} - w_{k\delta}\|_2^2 + 2n\delta^2 L^2 \left(T^2 L^2 \mathbb{E}\left[\left\|v_0\right\|_2^2\right] + T\beta^2\right)$$

where the first inequality is by Young's inequality and the second inequality is by item 1 of Assumption A, the fourth inequality uses Lemma 12.

Substituting the above two equation blocks into (37), and applying recursively for k = 0...n - 1 gives

$$\begin{split} & \mathbb{E}\left[\|v_{T} - w_{T}\|_{2}^{2}\right] \\ = & \mathbb{E}\left[\|v_{n\delta} - w_{n\delta}\|_{2}^{2}\right] \\ \leq & e^{1+2n\delta L} \left(2n^{2}\delta^{2}L^{2} \left(T^{2}L^{2}\mathbb{E}\left[\|v_{0}\|_{2}^{2}\right] + T\beta^{2}\right) + n\delta L_{\xi}^{2} \left(16 \left(T^{2}L^{2}\mathbb{E}\left[\|w_{0}\|_{2}^{2}\right] + T\beta^{2}\right)\right)\right) \\ \leq & 8 \left(2T^{2}L^{2} \left(T^{2}L^{2}\mathbb{E}\left[\|v_{0}\|_{2}^{2}\right] + T\beta^{2}\right) + TL_{\xi}^{2} \left(16 \left(T^{2}L^{2}\mathbb{E}\left[\|w_{0}\|_{2}^{2}\right] + T\beta^{2}\right)\right)\right) \end{split}$$

the last inequality is by noting that $T = n\delta \leq \frac{1}{4L}$.

D. Regularity of M and N

Lemma 15

1.
$$tr(M(x)^2) \leq \beta^2$$

2. $tr((M(x)^2 - M(y)^2)^2) \leq 16\beta^2 L_{\xi}^2 ||x - y||_2^2$
3. $tr((M(x)^2 - M(y)^2)^2) \leq 32\beta^3 L_{\xi} ||x - y||_2$

Proof

In this proof, we will use the fact that $\xi(\cdot, \eta)$ is L_{ξ} -Lipschitz from Assumption B.

The first property is easy to see:

$$\operatorname{tr}(M(x)^{2}) = \operatorname{tr}(\mathbb{E}_{\eta} \left[\xi(x,\eta)\xi(x,\eta)^{T}\right]) = \mathbb{E}_{\eta} \left[\operatorname{tr}(\xi(x,\eta)\xi(x,\eta)^{T})\right] = \mathbb{E}_{\eta} \left[\left\|\xi(x,\eta)\right\|_{2}^{2}\right] < \beta^{2}$$

We now prove the second and third claims. Consider a fixed x and fixed y, let $u_{\eta} := \xi(x, \eta), v_{\eta} := \xi(y, \eta)$. Then

$$\operatorname{tr}\left(\left(M(x)^{2}-M(y)^{2}\right)^{2}\right)$$

$$= \operatorname{tr}\left(\left(\mathbb{E}_{\eta}\left[u_{\eta}u_{\eta}^{T}-v_{\eta}v_{\eta}^{T}\right]\right)^{2}\right)$$

$$= \operatorname{tr}\left(\mathbb{E}_{\eta,\eta'}\left[\left(u_{\eta}u_{\eta}^{T}-v_{\eta}v_{\eta}^{T}\right)\left(u_{\eta'}u_{\eta'}^{T}-v_{\eta'}v_{\eta'}^{T}\right)\right]\right)$$

$$= \mathbb{E}_{\eta,\eta'}\left[\operatorname{tr}\left(\left(u_{\eta}u_{\eta}^{T}-v_{\eta}v_{\eta}^{T}\right)\left(u_{\eta'}u_{\eta'}^{T}-v_{\eta'}v_{\eta'}^{T}\right)\right)\right]$$

For any fixed η and η' , let's further simplify notation by letting u, u', v, v' denote $u_{\eta}, u_{\eta'}, v_{\eta}, v_{\eta'}$. Thus

$$\begin{aligned} & \operatorname{tr}((uu^{T} - vv^{T})(u'u'^{T} - v'v'^{T})) \\ = & \operatorname{tr}(((u - v)v^{T} + v(u - v)^{T} + (u - v)(u - v)^{T})((u' - v')v'^{T} + v'(u' - v')^{T} + (u' - v')(u' - v')^{T})) \\ = & \operatorname{tr}((u - v)v^{T}(u' - v')v'^{T}) + \operatorname{tr}((u - v)v^{T}v'(u' - v')^{T}) + \operatorname{tr}((u - v)v^{T}(u' - v')(u' - v')^{T})) \\ & \quad + \operatorname{tr}(v(u - v)^{T}(u' - v')v'^{T}) + \operatorname{tr}(v(u - v)^{T}v'(u' - v')^{T}) + \operatorname{tr}(v(u - v)^{T}(u' - v')(u' - v')^{T})) \\ & \quad + \operatorname{tr}((u - v)(u - v)^{T}(u' - v')v'^{T}) + \operatorname{tr}((u - v)(u - v)^{T}v'(u' - v')^{T})) \\ & \quad + \operatorname{tr}((u - v)(u - v)^{T}(u' - v')(u' - v')^{T}) \\ & \quad + \operatorname{tr}(u - v)(u - v)^{T}(u' - v')(u' - v')^{T}) \\ & \quad \leq \min\left\{16\beta^{2}L_{\xi}^{2}\|x - y\|_{2}^{2}, 32\beta^{3}L_{\xi}\|x - y\|_{2}\right\} \end{aligned}$$

Where the last inequality uses Assumption B.2 and B.3; in particular, $||v||_2 \le \beta$ and $||u - v||_2 \le \min \{2\beta, L_{\xi} ||x - y||_2\}$. This proves 2. and 3. of the Lemma statement.

Lemma 16 Let N(x) be as defined in (6) and L_N be as defined in (7). Then

1.
$$tr(N(x)^2) \leq \beta^2$$

2. $tr((N(x) - N(y))^2) \leq L_N^2 ||x - y||_2^2$
3. $tr((N(x) - N(y))^2) \leq \frac{8\beta^2}{c_m} \cdot L_N ||x - y||_2$

Proof of Lemma 16

The first inequality holds because $N(x)^2 := M(x)^2 - c_m^2 I$, and then applying Lemma 15.1, and the fact that $\operatorname{tr}(M(x)^2 - c_m^2 I) \leq \operatorname{tr}(M(x)^2)$ by Assumption B.4.

The second inequality is a immediate consequence of Lemma 17, Lemma 15.2, and the fact that $\lambda_{min}(N(x)^2) = \lambda_{min}(M(x)^2 - c_m^2) \ge c_m^2$ by Assumption B.4.

The proof for the third inequality is similar to the second inequality, and follows from Lemma 15 and Lemma 17.

Lemma 17 (Simplified version of Lemma 1 from (Eldan et al., 2018)) Let A, B be positive definite matrices. Then

$$tr\left(\left(\sqrt{A}-\sqrt{B}\right)^2\right) \le tr\left((A-B)^2A^{-1}\right)$$

E. Defining f and related inequalities

In this section, we define the Lyapunov function f which is central to the proof of our main results. Here, we give an overview of the various functions defined in this section:

- 1. $g(z) : \mathbb{R}^d \to \mathbb{R}^+$: A smoothed version of $||z||_2$, with bounded derivatives up to third order.
- 2. $q(r) : \mathbb{R}^+ \to \mathbb{R}^+$: A concave potential function, similar to the one defined in (Eberle, 2016), which has bounded derivatives up to third order everywhere except at r = 0.
- 3. $f(z) = q(g(z)) : \mathbb{R}^d \to \mathbb{R}^+$, a concave function which upper and lower bounds $||z||_2$ within a constant factor, has bounded derivatives up to third order everywhere.

Lemma 18 (Properties of f) Let ϵ satisfy $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$. We define the function

$$f(z) := q(g(z))$$

Where q is as defined in (39) Appendix E.1, and g is as defined in Lemma 20 (with parameter ϵ). Then

1. (a)
$$\nabla f(z) = q'(g(z)) \cdot \nabla g(z)$$

(b) For $||z||_2 \ge 2\epsilon$, $\nabla f(z) = q'(g(z)) \frac{z}{||z||_2}$
(c) For all z , $||\nabla f(z)||_2 \le 1$.

- 2. (a) $\nabla^2 f(z) = q''(g(z))\nabla g(z)\nabla g(z)^T + q'(g(z))\nabla^2 g(z)$
 - (b) For $r \ge 2\epsilon$, $\nabla^2 f(z) = q''(g(z)) \frac{zz^T}{\|z\|_2^2} + q'(g(z)) \frac{1}{\|z\|_2} \left(I \frac{zz^T}{\|z\|_2^2}\right)$
 - (c) For all z, $\left\| \nabla^2 f(z) \right\|_2 \leq \frac{2}{\epsilon}$
 - (d) For all $z, v, v^T \nabla^2 f(z) v \leq \frac{q'(g(z))}{\|z\|_2}$

3. For any
$$z$$
, $\left\|\nabla^{3}f(z)\right\|_{2} \leq \frac{9}{\epsilon^{2}}$
4. For any z , $f(z) \in \left[\frac{1}{2}\exp\left(-\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right)g(\|z\|_{2}), g(\|z\|_{2})\right] \in \left[\frac{1}{2}\exp\left(-\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right)(\|z\|_{2}-2\epsilon), \|z\|_{2}\right]$

Proof of Lemma 18

- 1. (a) chain rule
 - (b) Use definition of $\nabla g(z)$ from Lemma 20.
 - (c) By definition, $\nabla f(z) = q'(g(z))\nabla g(z)$. From Lemma 21, $|q'(g(z))| \le 1$. By definition, $\nabla g(z) = h'(||z||_2) \frac{z}{||z||_2}$. Our conclusion follows from $h' \le 1$ using item 2 of Lemma 19.
- 2. (a) chain rule
 - (b) by item 2 b) of Lemma 20
 - (c) by item 1 c) and item 2 d) of Lemma 20, and item 3 and item 4 of Lemma 21, and our assumption that $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q + \mathcal{R}_q^2 + 1}$.
 - (d) by item 4 of Lemma 21), and items 2 c) and 2 d) of Lemma 20, and our expression for $\nabla^2 f(z)$ established in item 2 a).
- 3. It can be verified that

$$\nabla^3 f(z) = q^{\prime\prime\prime}(g(z)) \cdot \nabla g(z)^{\bigotimes 3} + q^{\prime\prime}(g(z)) \nabla g(z) \bigotimes \nabla^2 g(z) + q^{\prime\prime}(g(z)) \nabla^2 g(z) \bigotimes \nabla g(z)$$
$$+ q^{\prime\prime}(g(z)) \nabla g(z) \bigotimes \nabla^2 g(z) + q^{\prime}(g(z)) \nabla^3 g(z)$$

Thus

$$\begin{split} \left\| \nabla^3 f(z) \right\|_2 &\leq |q'''(g(z))| \| \nabla g(z) \|_2^3 + 3q''(g(z)) \| \nabla g(z) \|_2 \left\| \nabla^2 g(z) \right\|_2 + q'(g(z)) \left\| \nabla^3 g(z) \right\| \\ &\leq 5 \left(\alpha_q + \frac{1}{\mathcal{R}_q^2} \right) \left(\alpha_q \mathcal{R}_q^2 + 1 \right) + 3 \left(\frac{5 \alpha_q \mathcal{R}_q}{4} + \frac{4}{\mathcal{R}_q} \right) \cdot \frac{1}{\epsilon} + \frac{1}{\epsilon^2} \\ &\leq \frac{9}{\epsilon^2} \end{split}$$

Where the first inequality uses Lemma 21 and Lemma 20, and the second inequality assumes that $\epsilon \leq \frac{\mathcal{R}_q}{\alpha_q \mathcal{R}_q^2 + 1}$ 4.

$$f(z) \in \left[\frac{1}{2}\exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)g(\|z\|_2), g(\|z\|_2)\right] \in \left[\frac{1}{2}\exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)(\|z\|_2 - 2\epsilon), \|z\|_2\right]$$

The first containment is by Lemma 21.2.: $\frac{1}{2} \exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right) \cdot g(z) \leq q(g(z)) \leq g(z)$. The second containment is by Lemma 20.4: $g(\|z\|_2) \in [\|z\|_2 - 2\epsilon, \|z\|_2]$.

Lemma 19 (Properties of h) *Given a parameter* ϵ , *define*

$$h(r) := \begin{cases} \frac{r^3}{6\epsilon^2}, & \text{for } r \in [0,\epsilon] \\ \frac{\epsilon}{6} + \frac{r-\epsilon}{2} + \frac{(r-\epsilon)^2}{2\epsilon} - \frac{(r-\epsilon)^3}{6\epsilon^2}, & \text{for } r \in [\epsilon, 2\epsilon] \\ r, & \text{for } r \ge 2\epsilon \end{cases}$$

1. The derivatives of h are as follows:

$$h'(r) = \begin{cases} \frac{r^2}{2\epsilon^2}, & \text{for } r \in [0, \epsilon] \\ \frac{1}{2} + \frac{r-\epsilon}{\epsilon} - \frac{(r-\epsilon)^2}{2\epsilon^2}, & \text{for } r \in [\epsilon, 2\epsilon] \\ 1, & \text{for } r \ge 2\epsilon \end{cases}$$
$$h''(r) = \begin{cases} \frac{r}{\epsilon^2}, & \text{for } r \in [0, \epsilon] \\ \frac{1}{\epsilon} - \frac{r-\epsilon}{\epsilon^2}, & \text{for } r \in [\epsilon, 2\epsilon] \\ 0, & \text{for } r \ge 2\epsilon \end{cases}$$
$$h'''(r) = \begin{cases} \frac{1}{\epsilon^2}, & \text{for } r \in [0, \epsilon] \\ -\frac{1}{\epsilon^2}, & \text{for } r \in [\epsilon, 2\epsilon] \\ 0, & \text{for } r \ge 2\epsilon \end{cases}$$

- 2. (a) h' is positive, motonically increasing. (b) h'(0) = 0, h'(r) = 1 for $r \ge \epsilon$ (c) $\frac{h'(r)}{r} \le \min\left\{\frac{1}{\epsilon}, \frac{1}{r}\right\}$ for all r
- 3. (a) h''(r) is positive
- (b) h''(r) = 0 for r = 0 and $r \ge 2\epsilon$ (c) $h''(r) \le \frac{1}{\epsilon}$ (d) $\frac{h''(r)}{r} \le \frac{1}{\epsilon^2}$ 4. $|h'''(r)| \le \frac{1}{\epsilon^2}$ 5. $r - 2\epsilon < h(r) < r$

Proof of Lemma 19

The claims can all be verified with simple algebra.

Lemma 20 (Properties of g) Given a parameter ϵ , let us define

$$g(z) := h(||z||_2)$$

Where h is as defined in Lemma 19 (using parameter ϵ). Then

1. (a) $\nabla g(z) = h'(||z||_2) \frac{z}{||z||_2}$ (b) For $||z||_2 \ge 2\epsilon$, $\nabla g(z) = \frac{z}{||z||_2}$. (c) For any $||z||_2$, $||\nabla g(z)||_2 \le 1$ 2. (a) $\nabla^2 g(z) = h''(||z||_2) \frac{zz^T}{||z||_2^2} + h'(||z||_2) \frac{1}{||z||_2} \left(I - \frac{zz^T}{||z||_2^2}\right)$ (b) For $||z||_2 \ge 2\epsilon$, $\nabla^2 g(z) = \frac{1}{||z||_2} \left(I - \frac{zz^T}{||z||_2^2}\right)$. (c) For $||z||_2 \ge 2\epsilon$, $||\nabla^2 g(z)||_2 = \frac{1}{||z||_2}$ (d) For all z, $||\nabla^2 g(z)||_2 \le \frac{1}{\epsilon}$ 3. $||\nabla^3 g(z)||_2 \le \frac{5}{\epsilon^2}$ 4. $||z||_2 - 2\epsilon \le g(z) \le ||z||_2$.

Proof of Lemma 20

All the properties can be verified with algebra. We provide a proof for 3. since it is a bit involved.

Let us define the functions $\kappa^1(z) = \nabla(\|z\|_2), \kappa^2(z) = \nabla^2(\|z\|_2), \kappa^3(z) = \nabla^3(\|z\|_2)$. Specifically,

$$\begin{split} \kappa^{1}(z) &= \frac{z}{\|z\|_{2}} \\ \kappa^{2}(z) &= \frac{1}{\|z\|_{2}} \left(I - \frac{zz^{T}}{\|z\|_{2}^{2}} \right) \\ \kappa^{3}(z) &= -\frac{1}{\|z\|_{2}^{2}} \frac{z}{\|z\|_{2}} \bigotimes \left(I - \frac{zz^{T}}{\|z\|_{2}^{2}} \right) + \frac{1}{\|z\|_{2}} \left(\frac{z}{\|z\|_{2}} \bigotimes \kappa^{2}(z) + \kappa^{2}(z) \bigotimes \frac{z}{\|z\|_{2}} \right) \end{split}$$

It can be verified that

$$\begin{split} \left\|\kappa^{2}(z)\right\|_{2} = & \frac{1}{\|z\|_{2}} \\ \left\|\kappa^{3}(z)\right\|_{2} = & \frac{1}{\|z\|_{2}^{2}} \end{split}$$

It can be verified that $\nabla^2 g(z)$ has the following form:

$$\nabla^3 g(z) = h'''(\|z\|_2) \left(\kappa^1(z)\right)^{\bigotimes 3} + h''(\|z\|_2)\kappa^1(z) \bigotimes \kappa^2(z) + h''(\|z\|_2)\kappa^2(z) \bigotimes \kappa^1(z) \\ + h'(\|z\|_2)\kappa^3(z) + h''(\|z\|_2)\kappa^1(z) \bigotimes \kappa^2(z)$$

Thus

$$\left\|\nabla^3 g(z)\right\|_2 \le |h^{\prime\prime\prime}(\|z\|_2)| + 3\frac{h^{\prime\prime}(\|z\|_2)}{\|z\|_2} + \frac{h^{\prime}(\|z\|_2)}{\|z\|_2^2} \le \frac{5}{\epsilon^2}$$

Where we use properties of h from Lemma 19.

The last claim follows immediately from Lemma 19.4.

E.1. Defining q

In this section, we define the function q that is used in Lemma 18. Our construction is a slight modification to the original construction in (Eberle, 2011).

Let α_q and \mathcal{R}_q be as defined in (7). We begin by defining auxiliary functions $\psi(r)$, $\Psi(r)$ and $\nu(r)$, all from \mathbb{R}^+ to \mathbb{R} :

$$\psi(r) := e^{-\alpha_q \tau(r)}, \qquad \Psi(r) := \int_0^r \psi(s) ds, \qquad \nu(r) := 1 - \frac{1}{2} \frac{\int_0^r \frac{\mu(s)\Psi(s)}{\psi(s)} ds}{\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)} ds}, \qquad (38)$$

Where $\tau(r)$ and $\mu(r)$ are as defined in Lemma 22 and Lemma 23 with $\mathcal{R} = \mathcal{R}_q$.

Finally we define q as

$$q(r) := \int_0^r \psi(s)\nu(s)ds.$$
(39)

We now state some useful properties of the distance function q.

Lemma 21 The function q defined in (39) has the following properties.

 $\begin{aligned} I. \ \ For \ all \ r &\leq \mathcal{R}_q, \ q''(r) + \alpha_q q'(r) \cdot r \leq -\frac{\exp\left(-\frac{\tau \alpha_q \mathcal{R}_q^2}{3}\right)}{32\mathcal{R}_q^2}q(r) \\ 2. \ \ For \ all \ r, \ \frac{\exp\left(-\frac{\tau \alpha_q \mathcal{R}_q^2}{3}\right)}{2} \cdot r \leq q(r) \leq r \\ 3. \ \ For \ all \ r, \ \frac{\exp\left(-\frac{\tau \alpha_q \mathcal{R}_q^2}{3}\right)}{2} \leq q'(r) \leq 1 \\ 4. \ \ For \ all \ r, \ q''(r) \leq 0 \ and \ |q''(r)| \leq \left(\frac{5\alpha_q \mathcal{R}_q}{4} + \frac{4}{\mathcal{R}_q}\right) \\ 5. \ \ For \ all \ r, \ |q'''(r)| \leq 5\alpha_q + 2\alpha_q \left(\alpha_q \mathcal{R}_q^2 + 1\right) + \frac{2(\alpha_q \mathcal{R}_q^2 + 1)}{\mathcal{R}_q^2} \end{aligned}$

Proof of Lemma 21

Proof of 1. It can be verified that

$$\begin{split} \psi'(r) &= \psi(r)(-\alpha_q \tau'(r))\\ \psi''(r) &= \psi(r) \left(\left(\alpha_q \tau'(r) \right)^2 + \alpha_q \tau''(r) \right)\\ \nu'(r) &= -\frac{1}{2} \frac{\frac{\mu(r)\Psi(r)}{\psi(r)}}{\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)} ds} \end{split}$$

For $r\in [0,\mathcal{R}_q], \tau'(r)=r,$ so that $\psi'(r)=\psi(r)(-\alpha_q r).$ Thus

$$\begin{aligned} q'(r) &= \psi(r)\nu(r) \\ q''(r) &= \psi'(r)\nu(r) + \psi(r)\nu'(r) \\ &= \psi(r)\nu(r)(-\alpha_q r) + \psi(r)\nu'(r) \\ &= -\alpha_q r\nu'(r) + \psi(r)\nu'(r) \\ q''(r) &+ \alpha_q rq'(r) = \psi(r)\nu'(r) \\ &= -\frac{1}{2}\frac{\mu(r)\Psi(r)}{\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)}ds} \\ &= -\frac{1}{2}\frac{\Psi(r)}{\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)}ds} \end{aligned}$$

Where the last equality is by definition of $\mu(r)$ in Lemma 23 and the fact that $r \leq \mathcal{R}_q$.

We can upper bound

$$\int_{0}^{4\mathcal{R}_{q}} \frac{\mu(s)\Psi(s)}{\psi(s)} ds \leq \int_{0}^{4\mathcal{R}_{q}} \frac{\Psi(s)}{\psi(s)} ds \leq \frac{\int_{0}^{4\mathcal{R}_{q}} s ds}{\psi(4\mathcal{R}_{q})} = \frac{16\mathcal{R}_{q}^{2}}{\psi(4\mathcal{R}_{q})} \leq 16\mathcal{R}_{q}^{2} \cdot \exp\left(\frac{7\alpha_{q}\mathcal{R}_{q}^{2}}{3}\right)$$

Where the first inequality is by Lemma 23, the second inequality is by the fact that $\psi(s)$ is monotonically decreasing, the third inequality is by Lemma 22.

Thus

$$q''(r) + \alpha_q r q'(r) \leq -\frac{1}{2} \left(\frac{\exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)}{16 \mathcal{R}_q^2} \right) \Psi(r)$$
$$\leq -\frac{\exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)}{32 \mathcal{R}_q^2} q(r)$$

Where the last inequality is by $\Psi(r) \ge q(r)$.

Proof of 2. Notice first that $\nu(r) \geq \frac{1}{2}$ for all r. Thus

$$\begin{split} q(r) &:= \int_0^r \psi(s)\nu(s)ds \\ &\geq & \frac{1}{2} \int_0^r \psi(s)ds \\ &\geq & \frac{\exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)}{2} \cdot r \end{split}$$

Where the last inequality is by Lemma 22.

Proof of 3. By definition of f, $q'(r) = \psi(r)\nu(r)$, and

$$\frac{\exp\left(-\frac{7\alpha_q \mathcal{R}_q^2}{3}\right)}{2} \le \psi(r)\nu(r) \le 1$$

Where we use Lemma 22 and the fact that $\nu(r) \in [1/2, 1]$

Proof of 4. Recall that

$$q''(r) = \psi'(r)\nu(r) + \psi(r)\nu'(r)$$

That $q^{\prime\prime} \leq 0$ can immediately be verified from the definitions of ψ and $\nu.$

Thus

$$|q''(r)| \leq |\psi'(r)\nu(r)| + |\psi(r)\nu'(r)|$$
$$\leq \alpha_q \tau'(r) + |\psi(r)\nu'(r)|$$

From Lemma 22, we can upper bound $\tau'(r) \leq \frac{5\mathcal{R}_q}{4}$. In addition, $\Psi(r) = \int_0^r \psi(s) \geq r\psi(r)$, so that

$$\frac{\Psi(r)}{\psi(r)} \ge r \tag{40}$$

(Recall again that $\psi(s)$ is monotonically decreasing). Thus $\Psi(r)/r \ge r$ for all r. In addition, using the fact that $\psi(r) \le 1$,

$$\Psi(r) = \int_0^r \psi(s) ds \le r \tag{41}$$

Combining the previous expressions,

$$\begin{split} |\psi(r)\nu'(r)| &= \left|\frac{1}{2}\frac{\mu(r)\Psi(r)}{\int_{0}^{4\mathcal{R}_{q}}\frac{\mu(s)\Psi(s)}{\psi(s)}ds}\right| \\ &\leq \left|\frac{1}{2}\frac{\mu(r)r}{\int_{0}^{\mathcal{R}_{q}}\frac{\Psi(s)}{\psi(s)}ds}\right| \\ &\leq \left|\frac{1}{2}\frac{4\mathcal{R}_{q}}{\int_{0}^{\mathcal{R}_{q}}sds}\right| \\ &\leq \frac{4}{\mathcal{R}_{q}} \end{split}$$

Where the first inequality are by definition of $\mu(r)$ and (41), and the second inequality is by (40) and the fact that $\mu(r) = 0$ for $r \ge 4\mathcal{R}_q$. Combining with our bound on $\psi'(r)\nu(r)$ gives the desired bound.

Proof of 5.

$$q'''(r) = \psi''(r)\nu(r) + 2\psi'(r)\nu'(r) + \psi(r)\nu''(r)$$

We first bound the middle term:

$$\begin{aligned} |\psi'(r)\nu'r)| &= |\psi(r)(\alpha_q\tau'(r))\nu'r)| \\ &\leq \alpha_q |\tau'(r)||\psi(r)\nu'r)| \\ &\leq \frac{5\alpha_q \mathcal{R}_q}{4} \cdot \frac{4}{\mathcal{R}_q} \\ &\leq 5\alpha_q \end{aligned}$$

Where the second last line follows form Lemma 22 and our proof of 4.. Next,

$$\psi''(r) = \psi(r) \left(\alpha_q^2 \tau'(r)^2 - \alpha_q \tau''(r) \right)$$

Thus applying Lemma 22.1 and Lemma 22.3,

$$|\psi''(r)\nu(r)| \le 2\alpha_q^2 \mathcal{R}_q^2 + \alpha_q$$

Finally,

$$\nu^{\prime\prime}(r) = \frac{1}{2\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)}ds} \cdot \frac{d}{dr}\mu(r)\Psi(r)/\psi(r)$$

Expanding the numerator,

$$\frac{d}{dr}\frac{\mu(r)\Psi(r)}{\psi(r)} = \mu'(r)\frac{\Psi(r)}{\psi(r)} + \mu(r) - \mu(r)\frac{\Psi(r)\psi'(r)}{\psi(r)^2}$$
$$= \mu'(r)\frac{\Psi(r)}{\psi(r)} + \mu(r) + \mu(r)\frac{\Psi(r)\psi(r)\alpha_q\tau'(r)}{\psi(r)^2}$$

Thus

$$\psi(r)\nu''(r) = \frac{1}{2\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)}ds} \cdot (\mu'(r)\Psi(r) + \mu(r)\psi(r) + \mu(r)\Psi(r)\alpha_q\tau'(r))$$

Using the same argument as from the proof of 4., we can bound

$$\frac{1}{2\int_0^{4\mathcal{R}_q} \frac{\mu(s)\Psi(s)}{\psi(s)}ds} \leq \frac{1}{2\int_0^{\mathcal{R}_q} sds} \leq \frac{1}{\mathcal{R}_q^2}$$

Finally, from Lemma 23, $|\mu'(r)| \leq \frac{\pi}{6\mathcal{R}_q},$ so

$$\begin{aligned} |\psi(r)\nu''(r)| &\leq \frac{\pi/6 + 1 + 5\alpha_q \mathcal{R}_q^2/4}{\mathcal{R}_q^2} \\ &\leq \frac{2(\alpha_q \mathcal{R}_q^2 + 1)}{\mathcal{R}_q^2} \end{aligned}$$

_	

Lemma 22 Let $\tau(r): [0,\infty) \to \mathbb{R}$ be defined as

$$\tau(r) = \begin{cases} \frac{r^2}{2}, & \text{for } r \leq \mathcal{R} \\ \frac{\mathcal{R}^2}{2} + \mathcal{R}(r - \mathcal{R}) + \frac{(r - \mathcal{R})^2}{2} - \frac{(r - \mathcal{R})^3}{3\mathcal{R}}, & \text{for } r \in [\mathcal{R}, 2\mathcal{R}] \\ \frac{5\mathcal{R}^2}{3} + \mathcal{R}(r - 2\mathcal{R}) - \frac{(r - 2\mathcal{R})^2}{2} + \frac{(r - 2\mathcal{R})^3}{12\mathcal{R}}, & \text{for } r \in [2\mathcal{R}, 4\mathcal{R}] \\ \frac{7\mathcal{R}^2}{3}, & \text{for } r \geq 4\mathcal{R} \end{cases}$$

Then

1. $\tau'(r) \in [0, \frac{5\mathcal{R}}{4}]$, with maxima at $r = \frac{3\mathcal{R}}{2}$. $\tau'(r) = 0$ for $r \in \{0\} \bigcup [4\mathcal{R}, \infty)$

2. As a consequence of 1, $\tau(r)$ is monotonically increasing

3. $\tau''(r) \in [-1,1]$

Proof of Lemma 22

We provide the derivatives of τ below. The claims in the Lemma can then be immediately verified.

$$\tau'(r) = \begin{cases} r, & \text{for } r \leq \mathcal{R} \\ \mathcal{R} + (r - \mathcal{R}) - \frac{(r - \mathcal{R})^2}{\mathcal{R}}, & \text{for } r \in [\mathcal{R}, 2\mathcal{R}] \\ \mathcal{R} - (r - 2\mathcal{R}) + \frac{(r - 2\mathcal{R})^2}{4\mathcal{R}}, & \text{for } r \in [2\mathcal{R}, 4\mathcal{R}] \\ 0, & \text{for } r \geq 4\mathcal{R} \end{cases}$$

$$\tau''(r) = \begin{cases} 1, & \text{for } r \leq \mathcal{R} \\ 1 - \frac{2(r-\mathcal{R})}{\mathcal{R}}, & \text{for } r \in [\mathcal{R}, 2\mathcal{R}] \\ -1 + \frac{r-2\mathcal{R}}{2\mathcal{R}}, & \text{for } r \in [2\mathcal{R}, 4\mathcal{R}] \\ 0, & \text{for } r \geq 4\mathcal{R} \end{cases}$$

Lemma 23 Let

$$\mu(r) := \begin{cases} 1, & \text{for } r \leq \mathcal{R} \\ \frac{1}{2} + \frac{1}{2} \cos\left(\frac{\pi(r-\mathcal{R})}{3\mathcal{R}}\right), & \text{for } r \in [\mathcal{R}, 4\mathcal{R}] \\ 0, & \text{for } r \geq 4\mathcal{R} \end{cases}$$

Then

$$\mu'(r) := \begin{cases} 0, & \text{for } r \leq \mathcal{R} \\ -\frac{\pi}{6\mathcal{R}} \sin\left(\frac{\pi(r-\mathcal{R})}{\mathcal{R}}\right), & \text{for } r \in [\mathcal{R}, 4\mathcal{R}] \\ 0, & \text{for } r \geq 4\mathcal{R} \end{cases}$$

Furthermore, $\mu'(r) \in \left[-\frac{\pi}{6\mathcal{R}}, 0\right]$

This Lemma can be easily verified by algebra.

F. Miscellaneous

The following Theorem, taken from (Eldan et al., 2018), establishes a quantitative CLT.

Theorem 5 Let $X_1...X_n$ be random vectors with mean 0, covariance Σ , and $||X_i|| \leq \beta$ almost surely for each *i*. Let $S_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n X_i$, and let *Z* be a Gaussian with covariance Σ , then

$$W_2(S_n, Z) \le \frac{6\sqrt{d\beta}\sqrt{\log n}}{\sqrt{n}}$$

Corollary 24 Let $X_1...X_n$ be random vectors with mean 0, covariance Σ , and $||X_i|| \leq \beta$ almost surely for each *i*. let *Y* be a Gaussian with covariance $n\Sigma$. Then

$$W_2\left(\sum_i X_i, Y\right) \le 6\sqrt{d}\beta\sqrt{\log n}$$

This is simply taking the result of Theorem 5 and scaling the inequality by \sqrt{n} on both sides.

The following Lemma is taken from (Cheng et al., 2019) and included here for completeness.

Lemma 25 For any c > 0, $x > 3 \max \left\{ \frac{1}{c} \log \frac{1}{c}, 0 \right\}$, the inequality

$$\frac{1}{c}\log(x) \le x$$

holds.

Proof

We will consider two cases:

Case 1: If $c \geq \frac{1}{e}$, then the inequality

$$\log(x) \le cx$$

is true for all x.

Case 2: $c \leq \frac{1}{e}$.

In this case, we consider the Lambert W function, defined as the inverse of $f(x) = xe^x$. We will particularly pay attention to W_{-1} which is the lower branch of W. (See Wikipedia for a description of W and W_{-1}).

We can lower bound $W_{-1}(-c)$ using Theorem 1 from (Chatzigeorgiou, 2013):

$$\begin{aligned} \forall u > 0, \quad W_{-1}(-e^{-u-1}) > -u - \sqrt{2u} - 1 \\ \text{equivalently} \quad \forall c \in (0, 1/e), \quad -W_{-1}(-c) < \log\left(\frac{1}{c}\right) + 1 + \sqrt{2\left(\log\left(\frac{1}{c}\right) - 1\right)} - 1 \\ &= \log\left(\frac{1}{c}\right) + \sqrt{2\left(\log\left(\frac{1}{c}\right) - 1\right)} \\ &\leq 3\log\frac{1}{c} \end{aligned}$$

Thus by our assumption,

$$x \ge 3 \cdot \frac{1}{c} \log\left(\frac{1}{c}\right)$$
$$\Rightarrow x \ge \frac{1}{c} (-W_{-1}(-c))$$

then $W_{-1}(-c)$ is defined, so

$$x \ge \frac{1}{c} \max \left\{ -W_{-1}(-c), 1 \right\}$$
$$\Rightarrow (-cx)e^{-cx} \ge -c$$
$$\Rightarrow xe^{-cx} \le 1$$
$$\Rightarrow \log(x) \le cx$$

The first implication is justified as follows: $W_{-1}^{-1}: [-\frac{1}{\epsilon}, \infty) \to (-\infty, -1)$ is monotonically decreasing. Thus its inverse $W_{-1}^{-1}(y) = ye^y$, defined over the domain $(-\infty, -1)$ is also monotonically decreasing. By our assumption, $-cx \leq -3 \log \frac{1}{c} \leq -3$, thus $-cx \in (-\infty, -1]$, thus applying W_{-1}^{-1} to both sides gives us the first implication.

G. Experiment Details

In this section, we provide additional details of our experiments. In particular, we explain the CNN architecture that we use in our experiments. Denote a convolutional layer with p input filters and q output filters by conv(p,q), a fully connected layer with q outputs by fully_connect(q), and a max pooling operation with stride 2 as pool2. Let $ReLU(x) = max\{x, 0\}$. Then the CNN architecture in our paper is the following:

$$\begin{aligned} \mathsf{conv}(3,32) \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{conv}(32,64) \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{pool2} \Rightarrow \mathsf{conv}(64,128) \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{conv}(128,128) \\ \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{pool2} \Rightarrow \mathsf{conv}(128,256) \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{conv}(256,256) \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{pool2} \Rightarrow \mathsf{fully_connect}(1024) \\ \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{fully_connect}(512) \Rightarrow \mathsf{ReLU} \Rightarrow \mathsf{fully_connect}(10). \end{aligned}$$