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Abstract

Factorizing tensors has recently become an impor-
tant optimization module in a number of machine
learning pipelines, especially in latent variable
models. We show how to do this efficiently in
the streaming setting. Given a set of n vectors,
each in Rd, we present algorithms to select a sub-
linear number of these vectors as coreset, while
guaranteeing that the CP decomposition of the
p-moment tensor of the coreset approximates the
corresponding decomposition of the p-moment
tensor computed from the full data. We introduce
two novel algorithmic techniques: online filtering
and kernelization. Using these two, we present
four algorithms that achieve different tradeoffs of
coreset size, update time and working space, beat-
ing or matching various state of the art algorithms.
In the case of matrices (2-ordered tensor), our on-
line row sampling algorithm guarantees (1 ± ε)
relative error spectral approximation. We show
applications of our algorithms in learning single
topic modeling.

1. Introduction
Much of the data that is consumed in data mining and ma-
chine learning applications arrives in a streaming manner.
The data is conventionally treated as a matrix, with a row
representing a single data point and the columns its corre-
sponding features. Since the matrix is typically large, it is
advantageous to be able to store only a small number of
rows and still preserve some of its “useful” properties. One
such abstract property that has proven useful in a number of
different settings, such as solving regression, finding vari-
ous factorizations, is subspace preservation. Given a matrix
A ∈ Rn×d, an m× d matrix C is its subspace preserving
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matrix for the `2 norm if, ∀x ∈ Rd,∣∣ ∑
ãj∈C

(ãTj x)2 −
∑
ai∈A

(aTi x)2
∣∣ ≤ ε · ∑

ai∈A

(aTi x)2

We typically desire m � n and ãj’s represent the sub-
sampled and rescaled rows from A. Such a sample C is
often referred to as a coreset. This property has been used
to obtain approximate solutions to many problems such as
regression, low-rank approximation, etc (Woodruff et al.,
2014) while having m to be at most O(d2). Such property
has been defined for other `p norms too (Dasgupta et al.,
2009; Cohen & Peng, 2015; Clarkson et al., 2016).

Matrices are ubiquitous, and depending on the application,
one can assume that the data is coming from a generative
model, i.e., there is some distribution from which every
incoming data point (or row) is sampled and given to user.
Many a time, the goal is to know the hidden variables of this
generative model. An obvious way to learn these variables
is by representing data (matrix) by its low-rank representa-
tion. However, we know that a low-rank representation of a
matrix is not unique as there are various ways (such as SVD,
QR, LU) to decompose a matrix. So it difficult to realize
the hidden variables just by the low-rank decomposition
of the data matrix. This is one of the reasons to look at
higher order moments of the data i.e. tensors. Tensors are
formed by outer product of data vectors, i.e. for a dataset
A ∈ Rn×d one can use a p order tensor T ∈ Rd×...×d as
T =

∑n
i=1 ai⊗p, where p is set by user depending on the

number of latent variables one is expecting in the genera-
tive model (Ma et al., 2016). The decomposition of such a
tensor is unique under a mild assumption (Kruskal, 1977).
Factorization of tensors into its constituent elements has
found uses in many machine learning applications such as
topic modeling (Anandkumar et al., 2014), various latent
variable models (Anandkumar et al., 2012; Hsu et al., 2012;
Jenatton et al., 2012), training neural networks (Janzamin
et al., 2015) etc.

For a p-order moment tensor T =
∑
i ai⊗p created using

the set of vectors {ai} and for x ∈ Rd one of the important
property one needs to preserve is T (x,··· ,x) =

∑
i(a

T
i x)p.

This operation is also called tensor contraction (Song et al.,
2016). Now if we wish to “approximate” it using only a
subset of the rows in A, the above property for `2 norm
subspace preservation does not suffice.
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For tensor factorization, which is performed using power
iteration, a coreset C ⊆ {ai}, in order to give a guaranteed
approximation to the tensor factorization, needs to satisfy
the following natural extension of the `2 subspace preserva-
tion condition: ∑

ai∈A

(ai
Tx)p ≈

∑
ãj∈C

(ãTj x)p

Ensuring this tensor contraction property enables one to
approximate the CP decomposition of T using only the
vectors ãi’s via power iteration method (Anandkumar et al.,
2014). A related notion is that of `p subspace embedding
where we need that C satisfies the following, ∀x ∈ Rd∑

ai∈A

|aiTx|p ≈
∑
ãj∈C

|ãTj x|p

In this work, we show that it is possible to create coresets
for the above property in streaming and restricted streaming
(online) setting. In restricted streaming setting an incoming
point, when it arrives, is either chosen in the set or discarded
forever. We consider the following formalization of the
above two properties. Given a query space of vectors Q ⊆
Rd and ε > 0, we aim to choose a set C which contains
sampled and rescaled rows from A to ensure that ∀x ∈ Q
with probability at least 0.99, the following properties hold,∣∣ ∑

ãj∈C

(ãTj x)p −
∑
ai∈A

(aTi x)p
∣∣ ≤ ε · ∑

ai∈A

|aTi x|p (1)

∣∣ ∑
ãj∈C

|ãTj x|p −
∑
ai∈A

|aTi x|p
∣∣ ≤ ε · ∑

ai∈A

|aTi x|p (2)

Note that neither property follows from the other. For even
values of p, the above properties are identical and imply a
relative error approximation as well. For odd values of p,
the `p subspace embedding as equation (2) gives a relative
error approximation but the tensor contraction as equation
(1) implies an additive error approximation, which becomes
relative error under non-negativity constraints on ai and x.
This happens, for instance, for the important use case of
topic modeling, where p = 3 typically.

Our Contributions: We propose various methods to sam-
ple rows in streaming manner for a p order tensor, which
is further decomposed to know the latent factors. For a
given matrix A ∈ Rn×d, a k-dimensional query space
Q ∈ Rk×d, ε > 0 and p ≥ 2,

• We give an algorithm (LineFilter) that is able
to select rows, it takes O(d2) update time, and re-
turns a sample of size O(n

1−2/pdk
ε2 (1 + log ‖A‖ −

d−1 mini log ‖ai‖)) such that the set of selected rows

forms a coreset having the guarantees stated in equa-
tions (1) and (2) (Theorem 4.1). It is a streaming algo-
rithm but also works well in the restricted streaming
(online) setting.

• We improve the sampling complexity of our coreset
to O(dp/2k(log n)10ε−5) by a streaming algorithm
(LineFilter+StreamingLW) with amortized up-
date time O(d2) (Theorem 4.2). It requires slightly
higher working space O(dp/2k(log n)11ε−5).

• For integer value p ≥ 2 we present a kernelization
technique which, for any vector v, creates two vectors
v̀ and v́ such that for any x,y ∈ Rd,

|xTy|p = |x̀T ỳ| · |x́T ý|

Using this technique, we give an algorithm
(KernelFilter) which takesO(ndp) time and sam-
ples O(d

p/2k
ε2 (1 + p(log ‖A‖ − d−p/2 mini log ‖ai‖))

vectors to create a coreset having the same guar-
antee as (1) and (2) (Theorem 4.3) for even value
p. For odd value p it takes O(ndp+1) time and
samples O(n

1/(p+1)dp/2k
ε2 (1 + (p + 1)(log ‖A‖ −

d−dp/2emini log ‖ai‖))p/(p+1)) vectors to create a
coreset having the same guarantee as (1) and (2) (The-
orem 4.4). Both update time and working space of
the algorithm for even p is O(dp) and for odd p it is
O(dp+1). It is a streaming algorithm but also works
well in the restricted streaming (online) setting.

• For integer value p ≥ 2 we combine both on-
line algorithms and propose another online algo-
rithm (LineFilter+KernelFilter) which has
O(d2) amortized update time and returns O(d

p/2k
ε2 (1 +

p(log ‖A‖ − d−p/2 mini log ‖ai‖)) for even p and

O(n
(p−2)/(p2+p)dp/2+1/4k5/4

ε2 (1 + (p + 1)(log ‖A‖ −
d−dp/2emini log ‖ai‖))p/(p+1)) vectors for odd p as
coreset with same guarantees as equation (1) and (2)
(Theorem 4.5). Here the working space is same as
KernelFilter. The factor n(p−2)/(p

2+p) ≤ n1/10.

• For the p = 2 case, both LineFilter and
KernelFilter translate to an online algorithm for
sampling rows of the matrix A, while guaranteeing a
relative error spectral approximation (Theorem A.5).
This is an improvement (albeit marginal) over the
online row sampling result by (Cohen et al., 2016).
The additional benefit of this new online algorithm
over (Cohen et al., 2016) is that it does not need knowl-
edge of σmin(A) to give a relative error approximation.

The rest of this paper is organized as follows: In section 2,
we look at some preliminaries for tensors and coresets. We
also describe the notation used throughout the paper. Section
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3 discusses related work. In section 4, we state all the four
streaming algorithms along with their guarantees. We also
show how our problem of preserving tensor contraction
relates to preserving `p subspace embedding. In section
5, we describe the guarantees given by our algorithm and
some proofs. In section 6, we describe how our algorithm
can be used in case of streaming single topic modeling. We
give empirical results that compare our sampling scheme
with other schemes. Proofs of theorems and the supporting
lemmas have been delegated to the appendix A available in
the supplementary material.

2. Preliminaries
A scalar is denoted by a lower case letter, e.g., p while a
vector is denoted by a boldface lower case letter, e.g., a.
By default, all vectors are considered as column vectors
unless specified otherwise. Matrices and sets are denoted
by boldface upper case letters, e.g., A. Specifically, A de-
notes an n × d matrix with set of rows {ai} and, in the
streaming setting, Ai represents the matrix formed by the
first i rows of A that have arrived. We will interchangeably
refer to the set {ai} as the input set of vectors as well as
the rows of the matrix A. A tensor is denoted by a bold
calligraphy letter e.g. T . Given a set of d−dimensional
vectors a1, . . . ,an, from which a p-order symmetric ten-
sor T is obtained as T =

∑n
i ai⊗p i.e., the sum of the

p-order outer product of each of the vectors. It is easy
to see that a symmetric tensor T satisfies the following:
∀i1, i2,··· , ip; Ti1,i2,···,ip = Ti2,i1,···,ip =···= Tip,ip−1,···,i1 ,
i.e. equal for all possible permutations of (i1, i2,··· , ip). We
define the scalar quantity, also known as tensor contraction,
as T (x, . . . ,x) =

∑n
i=1(aTi x)p, where x ∈ Rd. There are

three widely used tensor decomposition techniques known
as CANDECOMP/PARAFAC(CP), Tucker and Tensor Train
decomposition (Kolda & Bader, 2009; Oseledets, 2011).
Our work focuses on CP decomposition.

We denote 2-norm for a vector x as ‖x‖, and any p-norm,
for p 6= 2 as ‖x‖p. We denote the 2-norm or spectral norm
of a matrix A by ‖A‖ and for a tensor T by ‖T ‖ which is
supx|x6=0 T (x, . . . ,x)/‖x‖p.

Coreset: It is a small summary of data which can give
provable guarantees for a particular optimization problem.
Formally, given a set X ⊆ Rd, query set Q, a non-negative
cost function fq(x) with parameter q ∈ Q and data point
x ∈ X, a set of subsampled and appropriately reweighed
points C is called a coreset if ∀q ∈ Q, |

∑
x∈X fq(x) −∑

x̃∈C fq(x̃)| ≤ ε
∑

x∈X fq(x), for some ε > 0.

To guarantee the above approximation, one can define a set
of scores, termed as sensitivities (Langberg & Schulman,
2010) corresponding to each data point. This can be used
to create coresets via importance sampling. The sensitivity

of a point x is sx = supq∈Q
fq(x)∑

x′∈X fq(x′)
. In (Langberg

& Schulman, 2010), authors show that using any upper
bounds to the sensitivity scores, we can create a probability
distribution, which can be used to sample a coreset. The size
of the coreset depends on the sum of these upper bounds
and the dimension of the query space.

3. Related Work
Coresets are small summaries of data which can be used as
a proxy to the original data with provable guarantees. The
term was first introduced in (Agarwal et al., 2004), where
they used coresets for the shape fitting problem. Coresets
for clustering problems were described in (Har-Peled &
Mazumdar, 2004). In (Feldman & Langberg, 2011), authors
gave a generalized framework to construct coresets based on
importance sampling using sensitivity scores introduced in
(Langberg & Schulman, 2010). Interested reader can check
(Woodruff et al., 2014; Braverman et al., 2016; Bachem
et al., 2017). Various online sampling schemes for spectral
approximation are discussed in (Cohen et al., 2016; 2017).

Tensor decomposition is unique under minimal assumptions
(Kruskal, 1977). Therefore it has become very popular in
various latent variable modeling applications (Anandkumar
et al., 2012; Hsu et al., 2012; Anandkumar et al., 2014), neu-
ral networks (Janzamin et al., 2015) etc. However, in general
(i.e., without any assumption), most of the tensor problems,
including tensor decomposition, are NP-hard (Hillar & Lim,
2013). There has been much work on fast tensor decom-
position techniques. Various tensor sketching methods for
tensor operations are discussed in (Bhojanapalli & Sanghavi,
2015; Wang et al., 2015; Song et al., 2016). For 3-order, or-
thogonally decomposable tensors, (Song et al., 2016) gives
a sub-linear time algorithm for tensor decomposition, which
requires the knowledge of norms of slices of the tensor. The
area of online tensor power iterations has also been explored
in (Huang et al., 2015; Wang & Anandkumar, 2016). Var-
ious heuristics for tensor sketching as well as RandNLA
techniques (Woodruff et al., 2014) over matricized tensors
for estimating low-rank tensor approximation have been
studied in (Song et al., 2019). There are few algorithms that
use randomized techniques to make CP-ALS, i.e., CP tensor
decomposition based on alternating least square method are
more practical (Battaglino et al., 2018; Erichson et al., 2020).
Here the author shows various randomized techniques based
on sampling and projection to improve the running time and
robustness of the CP decomposition. In (Erichson et al.,
2020), authors also show that their randomized projection
based algorithm can also be used in power iteration based
tensor decomposition. For many of these decomposition
techniques, our algorithm can be used as a prepossessing.

In the online setting, for a matrix A ∈ Rn×d where rows
are coming in streaming manner, the guarantee achieved by
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Table 1. Table comparing existing work (first four rows) and current contributions. StreamingXX refers to the obvious extension of the
XX algorithm to the streaming model using merge-reduce.

ALGORITHM SAMPLE SIZE Õ(·) UPDATE TIME WORKING SPACE Õ(·)
STREAMINGWCB (DASGUPTA ET AL., 2009) dpkε−2 d5p log d dpkε−2

STREAMINGLW (COHEN & PENG, 2015) dp/2kε−5 dCp log d dp/2kε−5

STREAMINGFC (CLARKSON ET AL., 2016) d7p/2ε−2 d d7p/2ε−2

STREAMING (DICKENS ET AL., 2018) nγdε−2 nγd5 nγd

LINEFILTER (THEOREM 4.1) n1−2/pdkε−2 d2 d2

LINEFILTER+STREAMINGLW (THEOREM 4.2) dp/2kε−5 d2 dp/2kε−5

KERNELFILTER (THEOREM 4.3)(EVEN p) dp/2kε−2 dp dp

KERNELFILTER (THEOREM 4.4)(ODD p) n1/(p+1)dp/2kε−2 dp+1 dp+1

LINEFILTER+KERNELFILTER (THEOREM 4.5)(EVEN p) dp/2kε−2 d2 dp

LINEFILTER+KERNELFILTER (THEOREM 4.5)(ODD p) n(p−2)/(p2+p)dp/2+1/4k5/4ε−2 d2 dp+1

(Cohen et al., 2016) while preserving additive error spectral
approximation |‖Ax‖2−‖Cx‖2| ≤ ε‖Ax‖2+δ, ∀x ∈ Rd,
with sample size O(d(log d)(log ε‖A‖2/δ)).

The problem of `p subspace embedding has been explored
in both offline (Dasgupta et al., 2009; Woodruff & Zhang,
2013; Cohen & Peng, 2015; Clarkson et al., 2016) and
streaming setting (Dickens et al., 2018). As any offline algo-
rithm to construct coresets can be used as a streaming algo-
rithm (Har-Peled & Mazumdar, 2004) using merge-reduce,
we use the known offline algorithms and summarize the
results of their streaming version in table1 1. The algorithm
in (Woodruff & Zhang, 2013) samples O(n1−2/ppoly(d))
rows and gives poly(d) error relative subspace embedding
but in O(nnz(A)) time. For streaming `p subspace embed-
ding (Dickens et al., 2018), give a one pass deterministic
algorithm for `p subspace embedding for 1 ≤ p ≤ ∞. For
some constant γ ∈ (0, 1) the algorithm takes O(nγd) space
andO(nγd2+nγd5 log n) update time to return a 1/dO(1/γ)

relative error subspace embedding for any `p norm.

4. Algorithms and Guarantees
In this section we propose all the four streaming algorithms
which are based on two major contributions. We first in-
troduce the two algorithmic modules–LineFilter and
KernelFilter. For real value p ≥ 2, LineFilter,
on arrival of each row, simply decides whether to sample it
or not. The sampling probability is computed based on the
stream seen till now, where as KernelFilter works for
integer value p ≥ 2, for every incoming row ai, the decision
of sampling it, depends on two rows ài and ái we define
from ai such that: for any vector x, there is a similar trans-
formation (x̀ and x́) and we get, |aTi x|p = |àTi x̀| · |áTi x́|.
For even value p we define |aTi x|p = |áTi x́|2 and for odd
value p we define |aTi x|p = |áTi x́|2p/(p+1). We call it
kernelization. A similar kernelization is also discussed in

1LineFilter, KernelFilter and their combination can
also be used as online algorithm. Update times are amortized for
streaming algorithms.

(Schechtman, 2011) for even value `p subspace embedding.

Note that both LineFilter and KernelFilter are
restricted streaming algorithms in the sense that each row is
selected / processed only when it arrives. This online nature
of the two modules allows us to use these as modules in
order to create the following algorithms

1. LineFilter+StreamingLW: Here, the output
streams of LineFilter is fed to a StreamingLW,
which is a merge-and-reduce based streaming algo-
rithm based on Lewis Weights (Cohen & Peng, 2015).
Here the StreamingLW outputs the final coreset.

2. LineFilter+KernelFilter: Here, the output
streams from LineFilter is first kernelized. It is
then passed to KernelFilter, which outputs the
final coreset.

Note that LineFilter+StreamingLW is a streaming
algorithm which works for any p ≥ 2 where as the algo-
rithm LineFilter+KernelFilter even works in a
restricted streaming setting for integer valued p ≥ 2.

The algorithms LineFilter and KernelFilter call
a function Score(·), which computes a score for every
incoming row, based on the score, the sampling probability
of the row is decided. The score depends on the incoming
row (say xi) and some prior knowledge (say M) of the
data, which it has already seen. Here, we define M =
XT
i−1Xi−1 and Q is its orthonormal column basis. Here

Xi−1 represents the matrix with rows {x1,... ,xi−1} which
have arrived so far. We present Score(·) as algorithm 1.

In the function Score(·) if the incoming row xi lies in the
subspace spanned by Q (i.e. if ‖Qxi‖ = ‖xi‖), then the
algorithm Score(·) does not require to compute inverse or
pseudo-inverse of M hence it takes O(m2) time. If it does
not lie in the subspace then it takes O(m3) where xi ∈ Rm.
Here we have used a modified version of Sherman Mor-
rison formula (Sherman & Morrison, 1950) to compute
(XT

i Xi)
† = (XT

i−1Xi−1 + xix
T
i )† = (M+ xix

T
i )†. Note
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Algorithm 1 Score(xi,M,Minv,Q)
if xi ∈ column-space(Q) then
Minv = Minv − (Minv)xix

T
i (Minv)

1+xTi (Minv)xi

M = M + (xix
T
i )

else
M = M + xix

T
i ; Minv = M†

Q = orthonormal-column-basis(M)
end if
ẽi = xTi (Minv)xi
Return ẽi,M,Minv,Q

that in our setup M need not be full rank, and we use the
formula (XiXi)

† = M† − M†xix
T
i M

†

1+xTi M
†xi

. We prove the cor-
rectness of the formula as a lemma in the appendix A.2.

4.1. LineFilter

Here we present our first streaming algorithm which en-
sures equation (1) for integer valued p ≥ 2 and equation (2)
for any real p ≥ 2. The algorithm can also be used in re-
stricted steaming (online) settings where for every incoming
row, we get only one chance to decide whether to sample
it or not. Due to its nature of filtering out rows, we call it
LineFilter algorithm. The algorithm tries to reduce the
variance of the difference between the cost from the original
and the sampled term. In order to achieve that, we use sensi-
tivity based framework to decide the sampling probability of
each row. The sampling probability of a row is proportional
to its sensitivity scores. In some sense, the sensitivity score
of a row captures the fact that how much the variance of the
difference is going to get affected if that row is not present
in the set of sampled rows. We discuss it in detail in section
5. Now we present the LineFilter algorithm.

Algorithm 2 LineFilter
Require: Streaming rows ai, i = 1, ···n, p ≥ 2, r > 1
Ensure: Coreset C satisfying eqn (1) and (2) w.h.p.
M = Minv = 0d×d, L = 0, C = ∅
Q = orthonormal-column-basis(M)
while i ≤ n do

[ẽi,M,Minv,Q] = Score(ai,M,Minv,Q)
l̃i = min{ip/2−1(ẽi)

p/2, 1}
L = L+ l̃i; pi = min{rl̃i/L, 1}
Sample ai/ p

√
pi in C with probability pi

end while
Return C

Every time a row ai ∈ Rd comes, the LineFilter calls
the function 1 (i.e. Score(·)) which returns a score ẽi.
Then LineFilter computes l̃i, which is an upper bound
to its sensitivity score. Based on l̃i the row’s sampling
probability is decided. We formally define and discuss

sensitivity scores of our problem in section 5.

Now for the Score(·) function there can be at most d oc-
casions where an incoming row is not in the row space of
the previously seen rows, i.e. Q. In these cases Score(·)
takes O(d3) time and for the other, at least n− d, cases by
Sherman Morrison formula it takes O(d2) time to return ẽi.
Hence the entire algorithm just takes O(nd2) time. Now we
summarize the guarantees of LineFilter.

Theorem 4.1. Given A ∈ Rn×d whose rows are coming
in streaming manner, LineFilter selects a set C of size
O(n

1−2/pdk
ε2 (1 + log ‖A‖−d−1 mini log ‖ai‖)) using both

working space and update timeO(d2). Suppose Q is a fixed
k-dimensional subspace, then with probability at least 0.99,
for integer value p ≥ 2, ε > 0, ∀x ∈ Q, the set C satisfies
both p-order tensor contraction and `p subspace embedding
as in equations (1) and (2) respectively.

It can be used to get an `p subspace embedding for any
real p ≥ 2. It is worth noting that LineFilter benefits
by taking very less working space and computation time,
which are independent of p. However LineFilter gives
a coreset which is sub-linear to input size but as p increases
the coreset size tends towards O(n).

4.2. LineFilter+StreamingLW

Now we present a streaming algorithm which returns a
coreset for the same problem with its coreset size smaller
than that of LineFilter. Here first we want to point out
that our coresets for tensor contraction i.e., equation (1),
also preserve `p subspace embedding i.e., equation (2). This
is mainly due to two reasons. First is that our coreset is a
subsample of original data, and second is because of the
way we define our sampling probability.

For simplicity, we show this relation in the complete offline
setting, where we have access to the entire data A. For a ma-
trix A ∈ Rn×d, we intend to preserve the tensor contraction
property in equation (1). We create C by sampling original
rows ai with appropriate scaling. We analyze the variance of
the difference between the tensor contraction from original
and sampled term, through Bernstein inequality (Dubhashi
& Panconesi, 2009) and try to reduce it. Here we use sensi-
tivity based framework to decide our sampling probability
where we know sensitivity scores are well defined for posi-
tive cost function (Langberg & Schulman, 2010). Now with
the tensor contraction problem for odd p and for some x,
the cost (aTi x)p could be negative. So for every row i we
define the sensitivity score as follows,

si = sup
x

|aTi x|p∑n
j=1 |ajTx|p

(3)

Here by sampling enough number of rows based on above
defined sensitivity scores would ensure tensor contraction
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as in (1) and it will also preserve
∑n
i=1 |aTi x|p = ‖Ax‖pp

(Langberg & Schulman, 2010). The sampled rows cre-
ates a coreset C which is `p subspace embedding, i.e. ∀x,
|‖Ax‖pp − ‖Cx‖pp| ≤ ε‖Ax‖pp. We define the online ver-
sion of these scores in section 5 which also preserve tensor
contraction. Sampling based methods used in (Dasgupta
et al., 2009; Cohen & Peng, 2015; Clarkson et al., 2016)
to get a coreset for `p subspace embedding also preserve
tensor contraction. This is because these sampling based
methods reduces the variance of the difference between the
cost function from the original and the sampled terms.

We know that any offline coreset algorithm can be made into
a streaming algorithm using merge and reduce method (Har-
Peled & Mazumdar, 2004). For p ≥ 2, the sampling com-
plexity of (Cohen & Peng, 2015) is best among all the other
methods that we mentioned. Hence here we use Lewis
Weights sampling (Cohen & Peng, 2015) as the offline
method along with merge and reduce for its streaming ver-
sion, which we call StreamingLW. The following lemma
summarizes the guarantee of StreamingLW.
Lemma 4.1. Given a set of n streaming rows {ai}, the
StreamingLW returns a coreset C. For integer p ≥ 2, a
fixed k-dimensional subspace Q, with probability 0.99 and
ε > 0, ∀x ∈ Rd, C satisfies p-order tensor contraction and
`p subspace embedding as in equations (1) and (2).

It requires O(dCp log d) amortized update time and uses
O(dp/2ε−5 log11 n) working space to return a coreset C of
size O(dp/2ε−5 log10 n) here C is a constant.

The proof is fairly straight forward which we discuss in the
appendix A.2.1. It also guarantees `p subspace embedding
for real p ≥ 2. Note that in this case, both update time and
working space depends on d and p.

Now we propose our second algorithm, where we feed the
output of LineFilter to StreamingLW method. Here
every incoming row is fed to LineFilter, which quickly
computes a sampling probability and based on which the
row gets sampled. Now, if it gets sampled, then we pass it to
the StreamingLW method, which returns the final coreset.
The entire algorithm gets an improved amortized update
time compared to StreamingLW and improved sampling
complexity compared to LineFilter. We call this algo-
rithm LineFilter+StreamingLW and summarize its
guarantees in the following theorem.
Theorem 4.2. Given A ∈ Rn×d with rows are coming in
streaming manner. LineFilter+StreamingLW takes
O(d2) amortized update time and uses working space of
O((1−2/p)11dp/2ε−5 log11 n) to return a coreset C of size
O((1− 2/p)10dp/2ε−5 log10 n) such that with at least 0.99
probability, C satisfies both p-order tensor contraction and
`p subspace embedding as in equations (1) and (2).

This is an improved streaming algorithm which gives the

same guarantee as lemma 4.1 but using very less amortized
update time. Hence asymptotically, we get an improvement
in the overall run time of the algorithm and yet get a core-
set which is smaller than that of LineFilter. Similar
to StreamingLW, LineFilter+StreamingLW also
ensures `p subspace embedding for real p ≥ 2. It is im-
portant to note that we could improve the run time of the
streaming result because our LineFilter can be used in
an online manner, which returns a sub-linear size coreset
(i.e., o(n)) and its update time is less than the amortized
update time of StreamingLW. The proof of the above
theorem is discussed in the appendix A.2.2. Note that
LineFilter+StreamingLW is a streaming algorithm,
whereas LineFilter or the next algorithm that we pro-
pose works even in a restricted streaming setting.

4.3. KernelFilter

Now we discuss our second module which is also a stream-
ing algorithm for the tensor contraction guarantee as equa-
tion (1). First we give a reduction from p-order function to
q-order function, where q ≤ 2.

Lemma 4.2. For an integer value p ≥ 2, a vector x ∈ Rd
can be transformed to (x̀ and x́) such that for any two
d-dimensional vectors x and y with their similar transfor-
mations we get,

|xTy|p = |x̀T ỳ| · |x́T ý| =

{
|x́T ý|2 if p even
|x́T ý|2p/(p+1) if p odd

For even valued p, (x̀, ỳ) are same as (x́, ý). So we define
|xTy|p = |x́T ý|2. For odd value p, (x̀, ỳ) are not same as
(x́, ý) and we define |xTy|p = |x́T ý|2p/(p+1). The proof is
discussed in more detail in the appendix A.4.

Now we give a streaming algorithm which is in the same
spirit of LineFilter. For every incoming row ai it com-
putes the sampling probability based on its kernelized row
ái and the counterpart of the previously seen rows. As the
row ái only depends on ai, this algorithm can also be used
in an online setting as well. Since we give a sampling based
coreset, it retains the structure of the input data. So one
need not require to kernelize x into its corresponding higher
dimensional vector. Instead, one can use the same x on the
sampled coreset to compute the desired operation. We call
it KernelFilter and give it as algorithm 3. We sum-
marize the guarantees of KernelFilter in the following
two theorems.

Theorem 4.3. Given A ∈ Rn×d whose rows are com-
ing in a streaming manner and an even value p, the
KernelFilter selects a set C of size O(d

p/2k
ε2 (1 +

p(log ‖A‖ − d−p/2 mini log ‖ai‖)) using working space
and update timeO(dp). Suppose Q is a fixed k-dimensional
subspace, then with probability at least 0.99, ε > 0,∀x ∈ Q
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Algorithm 3 KernelFilter
Require: Streaming rows a1,a2,··· ,an, r > 1, p ≥ 2
Ensure: Coreset C satisfying eqn (1) and (2) w.h.p.

Ḿ = Ḿinv = 0d
dp/2e×ddp/2e ;L = 0;C = ∅

Q́ = orthonormal-column-basis(Ḿ)
while i ≤ n do
ái = vec(ai⊗dp/2e)
[éi, Ḿ, Ḿinv, Q́] = Score(ái, Ḿ, Ḿinv, Q́)
if (p is even) then
l̃i = (éi)

else
l̃i = (éi)

p/(p+1)

end if
L = L+ l̃i; pi = min{rl̃i/L, 1}
Sample ai/ p

√
pi in C with probability pi

end while

we have C satisfying both p-order tensor contraction and `p
subspace embedding as equations (1) and (2) respectively.

Theorem 4.4. Given A ∈ Rn×d whose rows are
coming in a streaming manner and an odd integer
p, p ≥ 3, the algorithm KernelFilter selects a
set C of size O

(
n1/(p+1)dp/2k

ε2 (1 + (p + 1)(log ‖A‖ −
d−dp/2emini log ‖ai‖))p/(p+1)

)
using working space and

update time O(dp+1). Suppose Q is a fixed k-dimensional
subspace, then with probability at least 0.99, ε > 0,∀x ∈ Q
we have C satisfying both p-order tensor contraction and `p
subspace embedding as equations (1) and (2) respectively.

The working space and the computation time of the above
algorithm are functions of d and p. But compared to
LineFilter, the KernelFilter returns an asymp-
totically smaller coreset. This is because the l̃i ensures
a tighter upper bound of the online sensitivity score com-
pared to what LineFilter gives. Note that although in
the coreset size for odd value p there is factor of n but unlike
LineFilter it decreases with increase in p.

4.4. LineFilter+KernelFilter

Here we briefly sketch our final algorithm. We use our
LineFilter algorithm along with KernelFilter to
give a streaming algorithm that benefits both in
space and time. For every incoming row first the
LineFilter quickly decides its sampling probability
and samples according to it which is then passed to
KernelFilter which returns the final coreset. Now we
state the guarantee of LineFilter+KernelFilter in
the following theorem.

Theorem 4.5. Consider a matrix A ∈ Rn×d whose
rows are coming one at a time and feed to the al-
gorithm LineFilter+KernelFilter, which takes
O(d2) amortized update time and uses O(dp+1) working

space for odd p and O(dp) for even to return C such
that with at least 0.99 probability, ε > 0,∀x ∈ Q, C
satisfies both p-order tensor contraction and `p subspace
embedding as equations (1) and (2) respectively. With
amin = arg mini ‖ai‖ the size of C is as follows for in-
teger p ≥ 2:

• p even: O
(
dp/2k
ε2 (1+p(log ‖A‖−d−p/2 log ‖amin‖))

)
• p odd: O

(
n(p−2)/(p2+p)dp/2+1/4k5/4

ε2 (1 + (p +

1)(log ‖A‖ − d−dp/2e log ‖amin‖))p/(p+1)
)

Note that for integer p ≥ 2, the factor n(p−2)/(p
2+p) in the

odd p case can be upper bounded by n1/10 and in general
it is always o(n1/(p+3)). Since the LineFilter only
chooses a sub-linear number of samples, which are further
passed to KernelFilter, hence the amortized update
time of LineFilter+KernelFilter is same as the
update time of LineFilter, whereas the working space
is same as that of KernelFilter.

4.5. p = 2 case

In the case of a matrix, i.e., p = 2 the LineFilter and
KernelFilter are just the same. This is because, for
every incoming row ai, the kernelization returns the same
row itself. Hence KernelFilter’s sampling process
is exactly the same as LineFilter. While we use the
sensitivity framework, for p = 2, our proofs are novel in the
following sense:

1. When creating the sensitivity scores in the online set-
ting, we do not need to use a regularization term as (Co-
hen et al., 2016), instead relying on a novel analysis
when the matrix is rank deficient. Hence we get a rel-
ative error bound without making the number of sam-
ples depend on the smallest non zero singular value
(which (Cohen et al., 2016) need for online row sam-
pling for matrices).

2. We do not need to use a martingale based argument,
since the sampling probability of a row does not depend
on the previous samples.

Our algorithm gives a coreset which preserves relative er-
ror approximation (i.e., subspace embedding). Note that
lemma 3.5 of (Cohen et al., 2016) can be used to achieve the
same, but it requires the knowledge of σmin(A) (small-
est non zero singular value of A). There we need to
set δ = εσmin(A) which gives sampling complexity as
O(d(log d)(log κ(A))/ε2). Our algorithm gives relative er-
ror approximation even when κ(A) = 1, which is not clear
in (Cohen et al., 2016). We state our guarantees for p = 2
case in the appendix A.5.
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5. Proofs
In this section, we state the supporting lemmas to prove our
main theorems in the previous section. We give sketch of
proof for some lemmas. The detailed proofs are discussed
in appendix A.

5.1. LineFilter

Here we give a sketch of the proof for theorem 4.1. For
ease of notation, the rows are considered numbered accord-
ing to their order of arrival. The supporting lemmas are
for the online setting, which also works for the streaming
case. We show that it is possible to generalize the notion
of sensitivity for the online setting as well as give an upper
bound to it. We define the online sensitivity of any ith row
as : supx∈Q

|aTi x|
p∑i

j=1 |aTj x|p
= supy∈Q′

|uTi y|
p∑i

j=1 |uTj y|p
, where

Q′ = {y|y = ΣVTx,x ∈ Q}, svd(A) = UΣVT and
Q is the query space. Notice that the denominator now
contains a sum only over the rows that have arrived. We
note that while online sampling results often need the use
of martingales as an analysis tool, e.g., (Cohen et al., 2016),
in our setting, the sampling probability of each row does
depend on the previous rows, but not on whether they were
sampled or not. So, the sampling decision of each row is in-
dependent. Hence, the application of Bernstein’s inequality
A.1. suffices.

We first show that the l̃i, as defined in LineFilter used
to compute the sampling probability pi, are upper bounds
to the online sensitivity scores.

Lemma 5.1. Consider A ∈ Rn×d, whose rows are pro-
vided in a streaming manner to LineFilter. Let l̃i =
min{ip/2−1(aTi M

†ai)
p/2, 1}, and M is a d × d matrix

maintained by the algorithm. Then ∀i ∈ [n], l̃i satisfies

l̃i ≥ supx
|aTi x|

p∑i
j=1 |aTj x|p

.

The proof of this lemma is discussed in the appendix A.1.1.
Although the l̃i’s are computed very quickly but the algo-
rithm gives a loose upper bound due to the factor of ip/2−1

in the definition of l̃i. As i increases, the l̃i also increases.
Now with these upper bounds we get the following.

Lemma 5.2. Let r provided to LineFilter be
O(kε−2

∑n
j=1 l̃j). Let LineFilter returns a coreset C.

Then with probability at least 0.99, ∀x ∈ Q, C satisfies
the p-order tensor contraction as in equation (1) and `p
subspace embedding as in equation (2).

The proof of this lemma is given in the appendix A.1.2.
Now in order to bound the number of samples, we need a
bound on the quantity

∑n
j=1 l̃j which we demonstrate in

the following lemma.

Lemma 5.3. The l̃i in LineFilter algorithm which
satisfies lemma 5.1 and lemma 5.2 has

∑n
i=1 l̃i =

O(n1−2/p(d+ d log ‖A‖ −mini log ‖ai‖)).

Proof. Here we give a sketch of the proof. The detail proof
is discussed in appendix A.1.3. First we bound

∑
i≤n ẽi,

where ẽi are the scores returned by Score(·). At any time
i the algorithm gets ai and it has M = AT

i−1Ai−1 using
which it computes ẽi = aTi (AT

i Ai)
†ai. With incoming row

ai the rank of M increases from 1 to at most d. We say that
the algorithm is in phase-k if the rank of M equals k. For
each phase k ∈ [1, d], let ik denote the index where row
aik caused a phase-change in M i.e. rank of (AT

ik−1Aik−1)

is k − 1, but rank of (AT
ik
Aik) is k. Note that for such

ik, ẽik = 1. There are at most d such indices. Now for a
phase k with i ∈ [ik + 1, ik+1 − 1] we bound the term ẽi.
Suppose the thin-SVD(AT

ik
Aik) = VΣikV

T , all entries
in Σik being positive. We define Xik = VT (AT

ik
Aik)V,

where Xik = Σik is positive definite and hence full
rank. Similarly, for all i in the range we define Xi =
VT (AT

i Ai)V where Xi is positive definite. Further, for
the same range of i we have ai = Vbi with Xi = Xi−1 +
bib

T
i . So, ẽi = aTi (AT

i Ai)
†ai = bTi V

T (V(Xi−1 +
bib

T
i )VT )†Vbi = bTi (Xi−1 +bib

T
i )−1bi. Using matrix

determinant lemma (Harville, 1997) on det(Xi−1 + bib
T
i )

= det(Xi−1)(1 + bTi (Xi−1)−1bi)

≥ det(Xi−1)(1 + bTi (Xi−1 + bib
T
i )−1bi)

= det(Xi−1)(1 + ẽi) ≥ det(Xi−1) exp(ẽi/2)

So finally we get exp(ẽi/2) ≤ det(Xi−1+bib
T
i )

det(Xi−1)
. Now com-

puting other ẽi’s and by a careful analysis we get
∑
i≤n ẽi ≤

ẽ1 − ẽn, which is then used to bound
∑
i≤n l̃i.

With lemmas 5.1, 5.2 and 5.3 we prove that the guarantee
in theorem 4.1 is achieved by LineFilter. The bound
on space is evident from the fact that we are maintain-
ing the matrix M in algorithm which uses O(d2) space
and returns a coreset of size O(n

1−2/pdk
ε2 (1 + log ‖A‖ −

d−1 mini log ‖ai‖)). Further these lemma’s can also be
used to show that LineFilter ensures `p subspace em-
bedding for any real value p ≥ 2.

5.2. KernelFilter

In this section, we give a sketch of the proof of theorem 4.3.
We use sensitivity based framework to decide the sampling
probability of each incoming row. The novelty in this al-
gorithm is by reducing the p order operation to a q order,
where q is either 2 or less than but very close to 2. Now we
give bound on sensitivity score of every incoming row.
Lemma 5.4. Consider A ∈ Rn×d, whose rows are pro-
vided in a streaming manner to KernelFilter. The
term l̃i defined in the algorithm upper bounds the online
sensitivity score, i.e. ∀i ∈ [n], l̃i ≥ supx

|aTi x|
p∑i

j=1 |aTj x|p
.



Streaming Coresets for Symmetric Tensor Factorization

The proof is discussed in the appendix A.4.1. Unlike
LineFilter, the KernelFilter does not use any ad-
ditional factor of i. Hence it gives tighter upper bounds to
the sensitivity scores compared to lemma 5.1. It will be
evident when we sum these upper bounds. Next we show
with these l̃i’s we can claim the following,
Lemma 5.5. In the KernelFilter let r is set as
O(k

∑n
i=1 l̃i/ε

2) then for some fixed k-dimensional sub-
space Q, the set C with probability 0.99 ∀x ∈ Q satisfies
p-order tensor contraction as in equation (1) and `p sub-
space embedding as in equation (2).

We discuss this in detail in the appendix A.4.2. Next we
bound the sum of upper bounds, i.e.

∑
i≤n l̃i.

Lemma 5.6. Let amin = arg mini ‖ai‖ and l̃i’s used in
KernelFilter which satisfy lemma 5.4 and 5.5 has∑n
i=1 l̃i as

• p even: O(dp/2(1 + p(log ‖A‖− d−p/2 log ‖amin‖)))

• p odd: O(n1/(p+1)dp/2(1 + (p + 1)(log ‖A‖ −
d−dp/2e log ‖amin‖))p/(p+1))

We discuss the proof in detail in the appendix A.4.3. The
proof of the above lemma is similar to that of lemma 5.3. It
implies that the lemma 5.4 gives tighter sensitivity bounds
compared to lemma 5.1. Now with lemmas 5.4, 5.5 and 5.6
we prove that the guarantees in theorem 4.3 and theorem
4.4 is achieved by KernelFilter. The bound on space
O(dp) for even p and O(dp+1) for odd p is for maintaining
Ḿ and Ḿinv. Note that for even value p our coreset is
independent of n, where as for odd value p we have a small
factor of n. Unlike LineFilter this factor reduces with
increases in p. Note for p as O(log n) the factor of n is
O(1). Hence coreset C will be just Õ(dp/2kε−2).

6. Applications
Here we show how our methods can also be used for learning
latent variable models using tensor factorization. We use a
corollary, which summarizes the guarantees we get on latent
variables by learning them using tensor factorization on our
coreset. We discuss it in the appendix A.6. Note that one
can always use an even order tensor for estimating the latent
variables in a generative model. It will only increase a factor
of O(d) in the working space, but by doing so, it will return
a smaller coreset, which is independent of n.

Streaming Single Topic Model: We empirically show how
sampling using LineFilter+KernelFilter can pre-
serve tensor contraction as in equation (1). This can be used
in single topic modeling where documents are coming in a
streaming manner. We compare our method with two other
sampling schemes, namely – Uniform and online leverage
scores, which we call LineFilter(2).

Here we use a subset of 20Newsgroups dataset (pre-
processed). We took a subset of 10K documents and con-
sidered the 100 most frequent words. We normalized each
document vector, such that its `1 norm is 1 and created
a matrix A ∈ R10K×100. We feed its row one at a time
to LineFilter+KernelFilter with p = 3, which
returns a coreset C. We run tensor based single topic mod-
eling (Anandkumar et al., 2014) on A and C, to return 12
top topic distributions from both. We take the best matching
between empirical topics and estimated topics based on `1
distance and compute the average `1 difference between
them. Here smaller is better. We run this entire method 5
times and report the median of their `1 average differences.
Here the coreset sizes are over expectation.

Table 2. Streaming Single Topic Modeling

SAMPLE UNIFORM LINEFILTER(2) LINEFILTER
+KERNELFILTER

50 0.5725 0.6903 0.5299
100 0.5093 0.6385 0.4379
200 0.4687 0.5548 0.3231
500 0.3777 0.3992 0.2173

1000 0.2548 0.2318 0.1292

From the table, it can be seen that our algorithm
LineFilter+KernelFilter performs better compare
to both Uniform and LineFilter(2), thus supporting
our theoretical claims.

Conclusion: In this work, we presented both online and
streaming algorithms to create coresets for tensor and `p
subspace embedding, and showed their applications in latent
factor models. The algorithms either match or improve upon
a number of existing algorithms for `p subspace embedding
for all integer p ≥ 2. The core of our approach is using a
combination of a fast online subroutine LineFilter for
filtering out most rows and a more expensive subroutine
for better subspace approximation. Obvious open ques-
tions include extending the techniques to p = 1 as well as
improving the coreset size for KernelFilter, for odd-
p. It will also be interesting to explore the connection of
KernelFilter to Lewis weights (Cohen & Peng, 2015),
since both are different ways of mapping the `p problem
to `2. Further, it will also be interesting to explore both
theoretically and empirically that how the randomized CP
decomposition (Battaglino et al., 2018; Erichson et al., 2020)
performs in various latent variable models.
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