Appendix: On Coresets for Regularized Regression

August 10, 2020

Proof of Theorem 3.2

Proof. First we bound the sample size for a fixed query $\mathbf{q} \in Q$. Let s_{i} be the sensitivity of the $i^{\text {th }}$ point $\mathbf{x}_{\mathbf{i}}$ and S be the sum of the sensitivities. Let the sampling probability be $p_{i}=\frac{s_{i}}{S}$.
For all $\mathbf{q} \in Q$ and $\mathbf{x}_{\mathbf{i}} \in \mathbf{X}$ define a function $g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)=\frac{f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)}{S p_{i} \sum_{j=1}^{n} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{j}}\right)}$. So,

$$
\mathbb{E}\left[g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right]=\frac{1}{S}
$$

and

$$
\frac{1}{r} \sum_{\substack{i \in[n] s . t . \\ \tilde{x}_{\mathbf{i}} \in \mathbf{C}}} g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)=\frac{\sum_{\tilde{\mathbf{x}}_{\mathbf{i}} \in \mathbf{C}} f_{\mathbf{q}}\left(\tilde{\mathbf{x}}_{\mathbf{i}}\right)}{S \sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)}
$$

Let

$$
T=\sum_{\substack{i \in[n] . \operatorname{sit} \\ \mathbf{x}_{\mathbf{i}} \in \mathbf{C}}} g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)
$$

then

$$
\begin{aligned}
\mathbb{E}[T] & =\sum_{\substack{i \in[n] s . t . \\
\mathbf{x}_{i} \in \mathrm{C}}} \mathbb{E}\left[g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right]=r / S \\
\operatorname{var}\left(g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right) & \leq \mathbb{E}\left[\left(g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right)^{2}\right] \\
& =\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} \frac{\left(f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right)^{2}}{\left(\sum_{j=1}^{n} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{j}}\right)\right)^{2} S^{2} p_{i}} \\
& \leq \sum_{\mathbf{x}_{i} \in \mathbf{X}} \frac{\left(f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right)^{2} \sum_{j=1}^{n} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{j}}\right)}{\left(\sum_{j=1}^{n} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{j}}\right)\right)^{2} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right) S} \\
& =1 / S
\end{aligned}
$$

We get the third equation by replacing values of p_{i} and s_{i}.

Now $\operatorname{var}\left(g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right) \leq \mathbb{E}\left[\left(g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right)^{2}\right] \leq 1 / S$. So $\operatorname{var}(T) \leq r / S$.
Now applying Bernstein Inequality as given in [2] we get,

$$
\begin{aligned}
\operatorname{Pr}\left(|T-\mathbb{E}[T]| \geq r \epsilon^{\prime}\right) & \leq \exp \left(-\frac{r^{2} \epsilon^{\prime 2}}{r / S+r \epsilon^{\prime} / 3}\right) \\
\operatorname{Pr}\left(\left|\frac{\sum_{\tilde{\mathbf{x}}_{\mathbf{i}} \in \mathbf{C}} f_{\mathbf{q}}\left(\tilde{\mathbf{x}}_{\mathbf{i}}\right)}{S \sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)}-\frac{1}{S}\right| \geq \epsilon^{\prime}\right) & \leq \exp \left(-\frac{r \epsilon^{\prime 2}}{(1 / S)+\left(\epsilon^{\prime} / 3\right)}\right)
\end{aligned}
$$

Replacing ϵ^{\prime} with ϵ / S we get,

$$
\operatorname{Pr}\left(\left|\sum_{\tilde{x}_{\mathbf{i}} \in \mathbf{C}} f_{\mathbf{q}}\left(\tilde{\mathbf{x}}_{\mathbf{i}}\right)-\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right| \geq \epsilon \sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right) \leq 2 \exp \left(\frac{-2 r \epsilon^{2}}{S\left(1+\frac{\epsilon}{3}\right)}\right)
$$

To make the above probability less than δ, we choose $r \geq \frac{S}{2 \epsilon^{2}}\left(1+\frac{\epsilon}{3}\right) \log \frac{2}{\delta}$ which depends on S for a fixed query $\mathbf{q} \in Q$. Now to bound the number of samples required to give a uniform bound for all queries simultaneously $\forall \mathbf{q} \in Q$, we use the same ϵ-net argument as described in [1]. This part is essentially a repeat of their argument. However we present it here for completeness. Observe that function $g_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)$ lies in the interval $[0,1]$. Due to the bounded dimension d of Q, the queries in Q span a subspace of $[0,1]^{d}$. There may be an infinite number of queries in Q. However these may be covered up to L_{1} distance $\epsilon / 2$ by some set $Q^{*} \subset Q$ of $O\left(\epsilon^{-d}\right)$ points [3] as given in [1]. For the ϵ-net argument let \mathcal{E} be the bad event that the coreset property is not satisfied by some \mathbf{C}. Therefore

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{E}) & =\operatorname{Pr}\left[\exists \mathbf{q} \in Q:\left|\sum_{\tilde{x}_{\mathbf{i}} \in \mathbf{C}} f_{\mathbf{q}}\left(\tilde{\mathbf{x}}_{\mathbf{i}}\right)-\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right|>\epsilon \sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right] \\
& \leq \operatorname{Pr}\left[\exists \mathbf{q} \in Q^{*}:\left|\sum_{\tilde{\mathbf{x}_{\mathbf{i}} \in \mathbf{C}}} f_{\mathbf{q}}\left(\tilde{\mathbf{x}}_{\mathbf{i}}\right)-\sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right|>\frac{\epsilon}{2} \sum_{\mathbf{x}_{\mathbf{i}} \in \mathbf{X}} f_{\mathbf{q}}\left(\mathbf{x}_{\mathbf{i}}\right)\right] \\
& \leq 2\left|Q^{*}\right| \exp \left(\frac{-2 r \epsilon^{2}}{S\left(1+\frac{\epsilon}{3}\right)}\right)
\end{aligned}
$$

To make \mathbf{C} an ϵ-coreset with probability at least 1- δ, we choose $r=O\left(\frac{S}{\epsilon^{2}}\left(\log \left|Q^{*}\right|+\right.\right.$ $\left.\log \frac{2}{\delta}\right)$. Now as $\left|Q^{*}\right| \in O\left(\epsilon^{-d}\right)$ we have $r=O\left(\frac{S}{\epsilon^{2}}\left(d \log \frac{1}{\epsilon}+\log \frac{1}{\delta}\right)\right)$.

Generalizing the Proof of Corollary 4.1.1

The proof can be generalized to the setting when \mathbf{b} is in the column-space of \mathbf{A} in the following manner. Suppose $\mathbf{b}=\mathbf{A u}$. Also suppose $\mathbf{A}_{\mathbf{c}}$ and $\mathbf{b}_{\mathbf{c}}$ can be obtained as $\mathbf{A}_{\mathbf{c}}=\mathbf{S A}$ and $\mathbf{b}_{\mathbf{c}}=\mathbf{S b}$ where \mathbf{S} can be either a sampling and reweighing or a sketching matrix. Now we want to prove the following : If \mathbf{S} is a coreset creation matrix for (\mathbf{A}, \mathbf{b}) for regression i.e. $\forall \mathbf{x},\left\|\mathbf{A}_{\mathbf{c}} \mathbf{x}-\mathbf{b}_{\mathbf{c}}\right\|_{p}^{r} \in(1 \pm \epsilon)\|\mathbf{A x}-\mathbf{b}\|_{p}^{r}$, then it must be that $\forall \mathbf{x},\left\|\mathbf{A}_{\mathbf{c}} \mathbf{x}\right\|_{p}^{r} \in(1 \pm \epsilon)\|\mathbf{A} \mathbf{x}\|_{p}^{r}$. Proving this statement and using

Theorem 4.1 essentially proves the corollary for the more general setting of \mathbf{b} in column space of \mathbf{A}. To prove the statement we use contradiction. Let us suppose that the statement is false. Then $\exists \mathbf{v} \in \mathbb{R}^{d}$ s.t. $\left\|\mathbf{A}_{\mathbf{c}} \mathbf{v}\right\|_{p}^{r}>(1+\epsilon)\|\mathbf{A} \mathbf{v}\|_{p}^{r}$. We will create a \mathbf{y} s.t that $\left\|\mathbf{A}_{\mathbf{c}} \mathbf{y}-\mathbf{b}_{\mathbf{c}}\right\|_{p}^{r}>(1+\epsilon)\|\mathbf{A} \mathbf{y}-\mathbf{b}\|_{p}^{r}$. Consider the ratio

$$
\frac{\|\mathbf{S}(\mathbf{A y}-\mathbf{b})\|_{p}^{r}}{\|\mathbf{A y}-\mathbf{b}\|_{p}^{r}}=\frac{\|\mathbf{S} \mathbf{A}(\mathbf{y}-\mathbf{u})\|_{p}^{r}}{\|\mathbf{A}(\mathbf{y}-\mathbf{u})\|_{p}^{r}}
$$

Now if we choose $\mathbf{y}=\mathbf{u}+\mathbf{v}$ then we have $\frac{\|\mathbf{S} \mathbf{A} \mathbf{v}\|_{p}^{r}}{\|\mathbf{A v}\|_{p}^{r}}>(1+\epsilon)$. This a contradiction to the fact that $(\mathbf{S A}, \mathbf{S b})$ is coreset for $\|\mathbf{A y}-\mathbf{b}\|_{p}^{r}$. Hence our assumption is false. So $\forall \mathbf{x},\left\|\mathbf{A}_{\mathbf{c}} \mathbf{x}\right\|_{p}^{r} \leq(1+\epsilon)\|\mathbf{A} \mathbf{x}\|_{p}^{r}$. The other direction for coreset definition is proved in similar manner. This combined with the Theorem 4.1 gives our corollary

Proof of Corollary 6.1.1

Proof. For $\hat{\mathbf{A}}=\left[\begin{array}{ll}\mathbf{A} & -\mathbf{B}\end{array}\right]$ and $\hat{\mathbf{X}}=\left[\begin{array}{l}\mathbf{X} \\ \mathbf{I}_{\mathbf{k}}\end{array}\right]$ where $\mathbf{I}_{\mathbf{k}}$ is k-dimensional identity matrix, the sensitivity of Multiresponse RLAD problem is given as

$$
s_{i}=\sup _{\hat{\mathbf{x}}} \frac{\left\|\hat{\mathbf{a}}_{i}^{T} \hat{\mathbf{X}}\right\|_{1}+\frac{\lambda\|\hat{\mathbf{X}}\|_{1}}{n}}{\sum_{j}\left\|\hat{\mathbf{a}}_{j}^{T} \hat{\mathbf{X}}\right\|_{1}+\lambda\|\hat{\mathbf{X}}\|_{1}}
$$

Let $\hat{\mathbf{A}}=\mathbf{U Y}$ where \mathbf{U} is an $(\alpha, \beta, 1)$ well conditioned basis for $\hat{\mathbf{A}}$. So $\hat{\mathbf{a}}_{j}^{T} \hat{\mathbf{X}}=$ $\mathbf{u}_{\mathbf{j}}{ }^{T} \mathbf{Y} \hat{\mathbf{X}}$. Let $\mathbf{Y} \hat{\mathbf{X}}=\mathbf{Z}$. So the sensitivity equation becomes

$$
\begin{aligned}
s_{i} \quad & =\sup _{\mathbf{Z}} \frac{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}+\frac{\lambda\left\|\mathbf{Y}^{-1} \mathbf{Z}\right\|_{1}}{n}}{\sum_{j}\left\|\mathbf{u}_{j}^{T} \mathbf{Z}\right\|_{1}+\lambda\left\|\mathbf{Y}^{-1} \mathbf{Z}\right\|_{1}} \\
\leq & \sup _{\mathbf{Z}} \frac{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}}{\sum_{j}\left\|\mathbf{u}_{j}^{T} \mathbf{Z}\right\|_{1}+\lambda\left\|\mathbf{Y}^{-1} \mathbf{Z}\right\|_{1}}+\frac{1}{n}
\end{aligned}
$$

Instead of supremum of the first quantity on the right hand side, we take the infimum of its reciprocal. Lets call it m.

$$
\begin{array}{rc}
m & =\inf _{\mathbf{Z}} \frac{\sum_{j}\left\|\mathbf{u}_{j}^{T} \mathbf{Z}\right\|_{1}+\lambda\left\|\mathbf{Y}^{-1} \mathbf{Z}\right\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}} \\
\geq \inf _{\mathbf{Z}} \frac{\sum_{j}\left\|\mathbf{u}_{j}^{T} \mathbf{Z}\right\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}}+\inf _{\mathbf{Z}} \frac{\lambda\left\|\mathbf{Y}^{-1} \mathbf{Z}\right\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}}
\end{array}
$$

Let us consider the first part. \mathbf{U} is an $(\alpha, \beta, 1)$ - well conditioned basis for $\hat{\mathbf{A}}$. Hence by definition $\|\mathbf{U}\|_{1} \leq \alpha$ and $\forall \mathbf{z} \in \mathbb{R}^{d+k},\|\mathbf{z}\|_{\infty} \leq \beta\|\mathbf{U z}\|_{1}$. So the first
term in the infimum

$$
\begin{aligned}
& \inf _{\mathbf{Z}} \frac{\sum_{j}\left\|\mathbf{u}_{j}^{T} \mathbf{Z}\right\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}} \\
& =\inf _{\mathbf{Z}} \frac{\sum_{l=1}^{k}\left\|\mathbf{U} \mathbf{z}^{l}\right\|_{1}}{\sum_{l=1}^{k}\left|\mathbf{u}_{\mathbf{i}}^{T} \mathbf{z}^{l}\right|} \\
& \geq \frac{\frac{1}{\beta} \sum_{l=1}^{k}\left\|\mathbf{z}^{l}\right\|_{\infty}}{\left\|\mathbf{u}_{\mathbf{i}}\right\|_{1} \sum_{l=1}^{k}\left\|\mathbf{z}^{l}\right\|_{\infty}} \\
& =\frac{1}{\beta\left\|\mathbf{u}_{\mathbf{i}}\right\|_{1}}
\end{aligned}
$$

Now for the second term in the infimum let us consider instead

$$
\begin{aligned}
& \inf _{\mathbf{Z}} \frac{\left\|\mathbf{A} \mathbf{Y}^{-\mathbf{1}} \mathbf{Z}\right\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}} \\
& =\inf _{\mathbf{Z}} \frac{\|\mathbf{U} \mathbf{Z}\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}} \\
& \geq \frac{1}{\beta\left\|\mathbf{u}_{\mathbf{i}}\right\|_{1}}
\end{aligned}
$$

Now $\left\|\mathbf{A} \mathbf{Y}^{-\mathbf{1}} \mathbf{Z}\right\|_{1} \leq\|\mathbf{A}\|_{(1)}\left\|\mathbf{Y}^{-\mathbf{1}} \mathbf{Z}\right\|_{1}$. Therefore

$$
\begin{aligned}
& \inf _{\mathbf{Z}} \frac{\left\|\mathbf{Y}^{-\mathbf{1}} \mathbf{Z}\right\|_{1}}{\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}} \\
& \geq \inf _{\mathbf{Z}} \frac{\left\|\mathbf{A} \mathbf{Y}^{-\mathbf{1}} \mathbf{Z}\right\|_{1}}{\|\mathbf{A}\|_{(1)}\left\|\mathbf{u}_{i}^{T} \mathbf{Z}\right\|_{1}} \\
& \geq \frac{1}{\beta\|\mathbf{A}\|_{(1)}\left\|\mathbf{u}_{\mathbf{i}}\right\|_{1}}
\end{aligned}
$$

Combining both these

$$
m \geq \frac{1}{\beta\left\|\mathbf{u}_{\mathbf{i}}\right\|_{1}}\left(1+\frac{\lambda}{\|\mathbf{A}\|_{(1)}}\right)
$$

Now sensitivity of $i^{t h}$ point is bounded as $s_{i} \leq \frac{1}{m}+\frac{1}{n}$. Therefore $s_{i} \leq \frac{\beta\left\|\mathbf{u}_{i}\right\|_{1}}{1+\frac{\mathbf{A} \|_{(1)}}{}}+\frac{1}{n}$. So the sum of sensitivities is bounded by $S \leq \frac{\alpha \beta}{1+\frac{\lambda}{\|\mathbf{A}\|_{(1)}}}+1$. This fact combined with fact that dimension of \mathbf{X} is $d k$ and applying theorem 3.2 proves the corollary

References

[1] Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for machine learning. arXiv preprint arXiv:1703.06476, 2017.
[2] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomized algorithms. Cambridge University Press, 2009.
[3] David Haussler. Sphere packing numbers for subsets of the boolean n-cube with bounded vapnik-chervonenkis dimension. J. Comb. Theory, Ser. A, 69(2):217-232, 1995.

