
How to Solve Fair k-Center in Massive Data Models: Appendix

1 Algorithms

The de�nition of clustering cost (De�nition 1) immediately implies the following observations.

Observation 1. LetA ⊇ A′ and B ⊆ B′ be sets of points in a metric space given by a distance function d . The
clustering cost of A for B is at most the clustering cost of A′ for B′.

Observation 2. Let A1,A2,B1,B2 be sets of points in a metric space given by a distance function d . Suppose
the clustering cost of each Ai for Bi is at most τ . Then the clustering cost of A1 ∪A2 for B1,∪B2 is at most τ .

The following lemma follows easily from the triangle inequality.

Lemma 1 (Lemma 1 from the paper, restated). Let A,B,C ⊆ X . The clustering cost of A forC is at most the
clustering cost of A for B plus the clustering cost of B for C .

Proof. Let d be the metric and let rAB and rBC denote the clustering costs of A for B and of B forC respec-
tively. For every a ∈ A, there exists b ∈ B such that d(a,b) ≤ rAB . But for this b, there exists c ∈ C such
that d(b, c) ≤ rBC . Thus, for every a ∈ A, there exists a c ∈ C such that d(a, c) ≤ rAB + rBC , by the triangle
inequality. This proves the claim. �

The pseudocodes of procedures getPivots(), getReps(), and HittingSet() are given by Algorithms 1, 2,
and 3 respectively.

Observation 3. The procedure getPivots performs a single pass over the input set T . The set P returned by
getPivots(T ,d, r ) contains points separated pairwise by distance more than r . The clustering cost of P for T
is at most r . Therefore, by Lemma 2 from the paper, if there is a set of k points whose clustering cost for T is
at most r/2, then |P | ≤ k pivots.

Observation 4. The procedure getRep executes a single pass over the input set T . The points in each set Ip
returned by getRep(T ,d,д, P , r ) belong to distinct groups and are all within distance r from p. For every point
q within distance r from p ∈ P , Ip contains a point in the same group as q (possibly q itself).

Algorithm 1 getPivots(T ,d, r )

Input: Set T with metric d , radius r .
P ← {p} where p is an arbitrary point in T .
for each q ∈ T (in an arbitrary order) do
if minp∈P d(p,q) > r then
P ← P ∪ {q}.

end if
end for
Return P .
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Algorithm 2 getReps(T ,d,д, P , r )

Input: Set T with metric d , group assignment function д, subset P ⊆ T , radius r .
for each p ∈ P do
Ip ← {p}.

end for
for each q ∈ T (in an arbitrary order) do
for each p ∈ P do

if d(p,q) ≤ r and Ip doesn’t contain a point from q’s group then
Ip ← Ip ∪ {q}.

end if
end for

end for
Return {Ip : p ∈ P}.

Algorithm 3 HittingSet(N ,д,k)

Input: Collection N = (N1, . . . ,NK ) of pairwise disjoint sets of points, group assignment function д,
vector k = (k1, . . . ,km) of capacities.
Construct bipartite graph G = (N ,V ,E) as follows.
V ←

⊎m
j=1Vi , where Vj is a set of kj vertices.

for each Ni and each group j do
if ∃ p ∈ Ni such that д(p) = j then

Connect Ni to all vertices in Vj .
end if

end for
Find the maximum cardinality matching H of G.
C ← ∅.
for each edge (Ni ,v) of H do

Let p be a point in Ni from group j, where v ∈ Vj .
C ← C ∪ {p}.

end for
Return C .

The procedure HittingSet constructs the following bipartite graph. The left side vertex set contains K
vertices: one for each Ni . The right side vertex set is V =

⊎m
j=1Vj , where Vj contains kj vertices for each

group j. If Ni contains a point from group j, then its vertex is connected to the all ofVj . Each matchingH in
this bipartite graph encodes a feasible subsetC of

⊎K
i=1 Ni as follows. For each edge e = (Ni ,v) ∈ H where

v ∈ Vj , add toC the point from Ni belonging to group j. Observe that since |Vj | = kj andH is a matching,C
contains at most kj points from group j. Moreover, |C | = |H |, and hence, a maximum cardinality matching
in the bipartite graph encodes a set C intersecting as many of the Ni ’s as possible.

In our implementation, we enhance the e�cienty of HittingSet as follows. For each group, we intro-
duce only one vertex in the right side vertex set and construct the bipartite graph like HittingSet, directing
edges from left to right. We further connect a source to the left side vertices with unit capacity edges, and
the right side vertices to a sink with edges of capacities kj . We �nd the maximum (integral) source-to-sink
�ow using the Ford-Fulkerson algorithm. For each i and j, if the edge (Ni , j) exists and carries nonzero
�ow, then we include in C the point in Ni that belongs to group j. Our runtime is bounded as follows.

Lemma 2. The runtime of HittingSet() is O(K2 ·maxi |Ni |).
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Proof. The number of edges in the constructed bipartite graph isO(K ·maxi |Ni |)whereas the value of the
max-�ow is no more than K . The runtime of the Ford-Fulkerson algorithm is of the order of the size of the
number of edges times the value of max-�ow. Therefore, the runtime of HittingSet(), which is dominated
by the runtime of the Ford-Fulkerson algorithm, turns out to be O(K2 ·maxi |Ni |). �

2 Distributed k-Center Lower Bound

In this section, we present the formal details of the lower bound discussed in Section 4 of the main paper.
For a natural number n, [n] denotes the set {1, 2, . . . ,n}.

The metric spaceM(n′). The point set of this metric space on n = 9n′ + 7 points is given by

S := {a∗,b∗1,b
∗
2, c
∗,a,b, c} ∪ S1 ∪ S2 ∪ S3,

where |S1 | = |S2 | = |S3 | = 3n′. Note that S1, S2, S3 are pairwise disjoint and are also disjoint from
{a∗,b∗1,b

∗
2, c
∗,a,b, c}. We will call the points {a∗,b∗1,b

∗
2, c
∗,a,b, c} critical. The metric d : S × S −→ R

is the shortest-path-length metric induced by the graph shown in Figure 1 (where x is not a point in S but
is only used to de�ne the pairwise distances). The pairwise distances are given in Table 1. Note that if the
table entry i, j is indexed by sets, then the entry corresponds to the distance between distinct points in the
sets. The following observation can be veri�ed by a case-by-case analysis.

Observation 5. The sets {a∗,b∗1, c
∗} and {a∗,b∗2, c

∗} are the only optimum solutions of the 3-center problem
onM(n′) and they have unit clustering cost. The clustering cost of any subset of S1 is 4 due to point c . Similarly,
the clustering cost of any subset of S3 is 4 due to point a.

S2
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S3
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x
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b⇤1

<latexit sha1_base64="DVB8Mdis8cGfcpSGJANLq24eIP0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBPJRECnosevFYwbSFNpbNdtMu3WzC7kQopb/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1MpDLrut1NYW9/Y3Cpul3Z29/YPyodHTZNkmnGfJTLR7ZAaLoXiPgqUvJ1qTuNQ8lY4up35rSeujUjUA45THsR0oEQkGEUr+WHPe7zolStu1Z2DrBIvJxXI0eiVv7r9hGUxV8gkNabjuSkGE6pRMMmnpW5meErZiA54x1JFY26CyfzYKTmzSp9EibalkMzV3xMTGhszjkPbGVMcmmVvJv7ndTKMroOJUGmGXLHFoiiTBBMy+5z0heYM5dgSyrSwtxI2pJoytPmUbAje8surpHlZ9WrV2n2tUr/J4yjCCZzCOXhwBXW4gwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AQa1ji0=</latexit>

b⇤2

<latexit sha1_base64="wzHfuZ3flmyvoh+hyR2ZO5DHipY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBZBPJSkFPRY9OKxgq2FNpbNdtMu3WzC7kQoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHbROnmvEWi2WsOwE1XArFWyhQ8k6iOY0CyR+C8c3Mf3ji2ohY3eMk4X5Eh0qEglG0Uivo1x4v+uWKW3XnIKvEy0kFcjT75a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn82PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieOVnQiUpcsUWi8JUEozJ7HMyEJozlBNLKNPC3krYiGrK0OZTsiF4yy+vknat6tWr9bt6pXGdx1GEEziFc/DgEhpwC01oAQMBz/AKb45yXpx352PRWnDymWP4A+fzBwg7ji4=</latexit>

c⇤

<latexit sha1_base64="MA2PlIQEyYUq50T6qyDVBRaadbU=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSKIh5JIQY9FLx4r2g9oY9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dlZW19Y3Ngtbxe2d3b390sFhU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWjm6nfekKleSwfzDhBP6IDyUPOqLHSPXs875XKbsWdgSwTLydlyFHvlb66/ZilEUrDBNW647mJ8TOqDGcCJ8VuqjGhbEQH2LFU0gi1n81OnZBTq/RJGCtb0pCZ+nsio5HW4yiwnRE1Q73oTcX/vE5qwis/4zJJDUo2XxSmgpiYTP8mfa6QGTG2hDLF7a2EDamizNh0ijYEb/HlZdK8qHjVSvWuWq5d53EU4BhO4Aw8uIQa3EIdGsBgAM/wCm+OcF6cd+dj3rri5DNH8AfO5w/hyI2K</latexit>

c

<latexit sha1_base64="YET3kkOS2zY8mMv2K4bjQDXERhw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyKuM7g==</latexit>
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<latexit sha1_base64="IhKIKn8tQDy0haQlV9a86/QQmT0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGNn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9WrXWrFXqt3kcRTiDc7gED66hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxyeM7Q==</latexit>

a

<latexit sha1_base64="zKqIodd/81gJLnKL2KDE9ukdNyQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AxaOM7A==</latexit>
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<latexit sha1_base64="7BD6hPzTostSCDegr3qSDb2EOKg=">AAAB+nicbVDLTgIxFO3gC/E16NJNIzFxYcgUSXRJdOMSgzwSGCad0oGGTmfSdjQE+RQ3LjTGrV/izr+xDLNQ8CT35uSce9Pb48ecKe0431ZubX1jcyu/XdjZ3ds/sIuHLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW3745u5336gUrFI3OtJTN0QDwULGMHaSJ5dbHioj84bXiXtF33k2SWn7KSAqwRlpAQy1D37qzeISBJSoQnHSnWRE2t3iqVmhNNZoZcoGmMyxkPaNVTgkCp3mp4+g6dGGcAgkqaEhqn6e2OKQ6UmoW8mQ6xHatmbi/953UQHV+6UiTjRVJDFQ0HCoY7gPAc4YJISzSeGYCKZuRWSEZaYaJNWwYSAlr+8SlqVMqqWq3fVUu06iyMPjsEJOAMIXIIauAV10AQEPIJn8ArerCfrxXq3PhajOSvbOQJ/YH3+ADznkg0=</latexit>
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1 , S2
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<latexit sha1_base64="/aVKYY4uqwi6tJk1dQnnxJdhWXQ=">AAAB+nicbVC7TsMwFHXKq5RXCiOLRYXEgKokVIKxgoWxqPQhtWnkuE5r1XEi2wFVoZ/CwgBCrHwJG3+Dm2aAliPdq6Nz7pWvjx8zKpVlfRuFtfWNza3idmlnd2//wCwftmWUCExaOGKR6PpIEkY5aSmqGOnGgqDQZ6TjT27mfueBCEkjfq+mMXFDNOI0oBgpLXlmuenZA+e86TlZvxg4nlmxqlYGuErsnFRAjoZnfvWHEU5CwhVmSMqebcXKTZFQFDMyK/UTSWKEJ2hEeppyFBLpptnpM3iqlSEMIqGLK5ipvzdSFEo5DX09GSI1lsveXPzP6yUquHJTyuNEEY4XDwUJgyqC8xzgkAqCFZtqgrCg+laIx0ggrHRaJR2CvfzlVdJ2qnatWrurVerXeRxFcAxOwBmwwSWog1vQAC2AwSN4Bq/gzXgyXox342MxWjDynSPwB8bnD0GFkhA=</latexit>

S3
1 , S3
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<latexit sha1_base64="C3XkQ2fKrO9Te41rvVsfQ+D1F8o=">AAAB+nicbVDLTsJAFL31ifgqunTTSExcGNICiS6JblxikEcCpZkOA0yYTpuZqYZUPsWNC41x65e4828cShcKnuTenJxzb+bO8SNGpbLtb2NtfWNzazu3k9/d2z84NAtHLRnGApMmDlkoOj6ShFFOmooqRjqRICjwGWn7k5u5334gQtKQ36tpRNwAjTgdUoyUljyz0PCcfuWi4ZXTXulXPLNol+wU1ipxMlKEDHXP/OoNQhwHhCvMkJRdx46UmyChKGZklu/FkkQIT9CIdDXlKCDSTdLTZ9aZVgbWMBS6uLJS9fdGggIpp4GvJwOkxnLZm4v/ed1YDa/chPIoVoTjxUPDmFkqtOY5WAMqCFZsqgnCgupbLTxGAmGl08rrEJzlL6+SVrnkVEvVu2qxdp3FkYMTOIVzcOASanALdWgChkd4hld4M56MF+Pd+FiMrhnZzjH8gfH5A0YjkhM=</latexit>

Figure 1: The underlying metric for n′ = 2

Input Distribution D on the Processors’ Inputs. For i ∈ [3], let S1i , S
2
i , S

3
i be an arbitrary equi-

partition of Si (and therefore, |S ji | = n
′ for all i, j). De�ne the sets Y j

1 = {b
∗
1,b
∗
2,a} ∪ S

j
1, Y j

2 = {a
∗, c∗,b} ∪ S j2

and Y j
3 = {b

∗
1,b
∗
2, c}∪S

j
3, for j ∈ [3]. Observe that each Y j

i contains exactly n′+3 points separated pairwise
by distance 2, and moreover, three of the n′ + 3 points are critical. We assign the sets Y j

i randomly to the
nine processors after a random relabeling. Formally, we pick a uniformly random bijection π : S −→ [n]
as the relabeling and another uniformly random bijection Γ : [3] × [3] −→ [9], independent of π , as the
assignment. We assign the set π (Y j

i ) to processor Γ(i, j) for every i, j. When a processor or the coordinator
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a∗ b∗1 b∗2 c∗ a b c S1 S2 S3

a∗ 0 1 1 2 1 2 3 1 2 3

b∗1 1 0 2 1 2 1 2 2 1 2

b∗2 1 2 0 1 2 1 2 2 1 2

c∗ 2 1 1 0 3 2 1 3 2 1

a 1 2 2 3 0 3 4 2 3 4

b 2 1 1 2 3 0 3 3 2 3

c 3 2 2 1 4 3 0 4 3 2

S1 1 2 2 3 2 3 4 2 2 2

S2 2 1 1 2 3 2 3 2 2 2

S3 3 2 2 1 4 3 2 2 2 2

Table 1: Pairwise Distances

queries the distance between p and q where p,q ∈ [n], it gets d(π−1(p),π−1(q)) as an answer. Note that
neither the processors nor the coordinator knows π or Γ. Let the random variable P = (P1, . . . ,P9) denote
the partition of the set of labels into a sequence of nine subsets induced by π and Γ, where Pr is the set of
labels of points assigned to processor r , that is, PΓ(i, j) = π (Y

j
i ).

Lemma 3. Consider any deterministic distributed algorithm for the 9 processor 3-center problem onM(n′)
and input distributionD, in which each processor communicates an `-sized subset of its input points, and the
coordinator outputs 3 of the received points. If ` ≤ (n′+ 3)/54, then with probability at least 1/84, the output
is no better than a 4-approximation.

Here, although the probability with which the coordinator fails to outputs a better-than-4-approximation
is only 1/84, it can be ampli�ed to 1−ε , for any ε > 0. We discuss the ampli�cation result before presenting
the proof of the above lemma.

Lemma 4. Let ε > 0 and 0 < c < 1/486 be arbitrary constants, and let

α =

⌈
84 ln(1/ε)

1 − 486c

⌉
.

Then there exists an instance of the (3α)-center problem such that, in the distributed setting with 9 processors,
each communicating at most a c fraction of its input points to the coordinator, the coordinator fails to output
a better than 4-approximation with probability at least 1 − ε .

Proof. The underlying metric space consists of α disjoint copies ofM(n′) separated by an arbitrarily large
distance from one another. The point set of each copy is distributed to the nine processors as described
earlier, and these distribtions are independent. Thus, each processor receives α · (n′ + 3) points. Observa-
tion 5 implies that in this instance, the optimum set of 3α centers (the union of optimum sets of 3 centers in
each copy) has unit cost. Also, in order to get a better than 4-approximation, the coordinator must output
a better than 4-approximate solution from every copy. We prove that this is unlikely.

By our assumption, each processor sends at most cα ·(n′+3) points to the coordinator, where c < 1/486.
Therefore, for each processor, there exist at most 54cα copies from which it sends more than (n′ + 3)/54
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points to the coordinator. Since we have 9 processors, there exist at most 9 × 54cα = 486cα copies from
which more than (n′ + 3)/54 points are sent by some processor. From each of the remaining (1 − 486c)α
copies, no processor sends more than (n′+3)/54 points. By Lemma 3, the coordinator succeeds on each of
these copies independently with probability at most 1− 1/84, in producing a better than 4 approximation.
Therefore, the probability that the coordinator succeeds in all the (1 − 486c)α copies is bounded as(

1 −
1

84

) (1−486c)α
≤ exp

(
−
1 − 486c

84
· α

)
≤ ε ,

where the last inequality follows by substituting the value of α . Thus, the coordinator fails to produce a
better than 4-approximation with probability at least 1 − ε . �

Proof of Lemma 3. Consider any one of the nine processors. It gets the set π (Y j
i ) for a uniformly random

(i, j) ∈ [3] × [3]. Since π is a uniformly random labeling and points in Y j
i are pairwise equidistant, the

processor is not able to identify the three critical points in its input. This happens even if we condition
on the values of Γ. Formally, conditioned on Γ and P, all subsets of Pr of size 3 are equally likely to
be the set of labels of the three critical points in processor r ’s input, i.e., Y j

i where (i, j) = Γ−1(r ). As a
consequence, the probability that at least one of the three critical points appears in the set of at most `
points the processor communicates is at most 3`/|Y j

i | = 3`/(n′ + 3), even when we condition on Γ. For a
given processor r ∈ [9], let Or be the set of labels it sends to the coordinator, and de�ne Br to be the event
that Or contains the label of a critical point. Then Pr[Br | Γ,P] ≤ 3`/(n′ + 3). Next, de�ne G to be the
event that no processor sends the label of any critical point to the coordinator, that is, G = ∩9r=1B

c
r , where

Bcr is the complement of Br . Then by the union bound and the fact that ` ≤ (n′ + 3)/54, we have for every
partition P of the label set and every bijection γ : [3] × [3] −→ [9],

Pr[G | Γ = γ ,P = P] ≥ 1 − 9 ·
3`

n′ + 3
≥

1

2
. (1)

Suppose the coordinator outputsO , a set of three labels, on receivingO1, . . . ,O9. ThenO ⊆ Or1∪Or2∪

Or3 for some r1, r2, r3 ∈ [9]. Observe that O1, . . . ,O9, O , and {r1, r2, r3} are all completely determined1 by
P. In contrast, due to the random labeling π , the mapping Γ is independent of P. Therefore,

Observation 6. Conditioned on P, the bijection Γ is equally likely to be any of the 9! bijections from [3]×[3]
to [9].

Next, de�neG ′ to be the event that {r1, r2, r3} is either Γ({(1, 1), (1, 2), (1, 3)}) or Γ({(3, 1), (3, 2), (3, 3)}).
In words, G ′ is the event that the coordinator outputs labels of three points, all of which are contained in
Y 1
1 ∪ Y 2

1 ∪ Y 3
1 or in Y 1

3 ∪ Y 2
3 ∪ Y 3

3 . Note that the event G ′ ∩ G implies that the coordinator’s output is
contained in S11 ∪ S

2
1 ∪ S

3
1 = S1 or in S13 ∪ S

2
3 ∪ S

3
3 = S3. Therefore, by Observation 5, event G ′ ∩G implies

that the coordinator fails to output a better than 4-approximation. We are now left to bound Pr[G ′ ∩G]
from below.

Since the set {r1, r2, r3} is completely determined by P, the event G ′ is completely determined by P
and Γ: for any P, there exist exactly 2 · 3! · 6! values of Γ which cause G ′ to happen. Formally,

Observation 7. For every partition P of the label set, there exist exactly 2 ·3! ·6! bijectionsγ : [3]×[3] −→ [9]
such that Pr[G ′ | P = P , Γ = γ ] = 1, whereas Pr[G ′ | P = P , Γ = γ ′] = 0 for all the other bijections
γ ′ : [3] × [3] −→ [9].

1If O intersects less than three of the Or ’s, then we de�ne {r1, r2, r3} to be the lexicographically smallest set such that O ⊆
Or1 ∪Or2 ∪Or3 .
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Therefore, we have,

Pr[G ∩G ′] =
∑
P,γ

Pr[G ∩G ′ | P = P , Γ = γ ] · Pr[P = P , Γ = γ ]

=
∑

(P,γ ):Pr[G′ |P=P,Γ=γ ]=1

Pr[G | P = P , Γ = γ ] · Pr[Γ = γ | P = P] · Pr[P = P]

≥
∑
P

∑
γ :Pr[G′ |P=P,Γ=γ ]=1

1

2
·
1

9!
· Pr[P = P]

=
1

2
·
1

9!
·
∑
P

|{γ : Pr[G ′ | P = P , Γ = γ ] = 1}| · Pr[P = P]

=
2 · 3! · 6!

2 · 9!
·
∑
P

Pr[P = P]

=
1

84
.

Here, we used Observation 7 for the second and fourth equality, and Equation (1) and Observation 6
for the inequality. Thus, the coordinator fails to output a better than 4-approximation with probability at
least 1/84, as required. �

Using Lemma 4 along with Yao’s lemma, we get our main lower-bound theorem.

Theorem 1. There exists c > 0 such that for any ε > 0, with k = Θ(log(1/ε)), any randomized distributed
algorithm for k-center where each processor communicates at most cn points to the coordinator, who outputs
a subset of those points as the solution, is no better than 4-approximation with probability at least 1 − ε .
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