
Stochastic Flows and Geometric Optimization on the Orthogonal Group

9. APPENDIX: Stochastic Flows and Geometric Optimization on the Orthogonal Group
9.1. Hyperparameters and Training for CNNs

9.1.1. SUPERVISED LEARNING

In the Plain-110 task on CIFAR10, we performed grid search across the following parameters and values in the orthogonal
setting:

Hyperparameter Values

learning rate (LR) {0.05, 0.1, 0.5}
use bias (whether layers use bias) {False, True}

batch size {128, 1024, 8196}
maximum epoch length {100, 300, 900}

scaling on LR for orthogonal integrator {0.1, 1.0, 10.0}

For the vanilla baselines, we used a momentum optimizer with the same settings found in (Xie et al., 2017; He et al., 2016)
(0.9 momentum, 0.1 learning rate, 128 batch size). The learning rate decay schedule occurs when the epoch number is {3/9,
6/9, 8/9} of the maximum epoch length.

We also used a similar hyperparameter sweep for the MLP task on MNIST.

9.1.2. EXTRA TRAINING DETAILS

For the CIFAR10 results from Figure 5, to understand the required computing resources to train PlainNet-110, we further
found that numerical issues using the exact integrator could occur when using a naive variant of the matrix exponential.
In particular, when the Taylor series truncation

∑T
k=0

1
k!X

k for approximating eX is too short (such as even T = 100),
PlainNet-110 could not reach ≥ 80% training accuracy, showing that achieving acceptable precision on the matrix
exponential can require a large amount of truncations. An acceptable truncation length was found at T = 200. Furthermore,
library functions (e.g. tensorflowf.linalg.expm (Higham, 2009)), albeit using optimized code, are still inherently
limited to techniques computing these truncations as well.

For the cluster-based stochastic integrators, we set the cluster size for each parameter matrix M ∈ Rd,k to be the rounding-up
of d

log d . We found that this was an optimal choice, as sizes such as O(log d), O(
√
d) did not train properly.

9.2. Orthogonal Optimization for RL - Additional Details

We conducted extensive ablation studies to see whether the assumption that one can take upper bound τ for τ∗ (see: Section
3) of the order O(s

dαβ)‖h(Ω)‖1 for small constants α−1, β−1 is valid. In other words, we want to see whether 1
τ∗ can be

lower-bounded by expressions of the order Ω(dαβs
1

‖h(Ω)‖1). We took Humanoid environment and the setting as in Section

6.1. Note that by the definition of τ∗ we trivially have: 1
τ∗ ≥ ρ

1
‖h(Ω)‖1 , where ρ = ‖h(Ω)‖1

γΩ(s,d,h) and γΩ(s, d, h) is the sum of
the d

s

(
s
2

)
entries of h(Ω) with largest absolute values.

In Fig. 6 we plot ρ as a function of the number of iterations of the training procedure. Dotted lines correspond to the values
d
s . The y-axis uses log-scale.

We tested different sizes s = 2, 4, 5, 10, 20, 25, 50 and took the size of the hidden layer to be 200 (thus d = 200). We
noticed that for a fixed s, values of ρ do not change much over time and can be accurately approximated by constants
(in Fig. 6 they look almost line the plots of constant functions y = const, even though we observed small perturbations).
Furthermore, they can be accurately approximated by renormalized values d

s , where renormalization factor c is such that c−1

is a small positive constant. That suggests two things:

• τ∗ can be in practice upper-bounded by expressions of the form O(s
dαβ)‖h(Ω)‖1 for small positive constant α−1, β−1

and:

• magnitudes of entries of skew-symmetric matrices in applications from Section 6.1 tend to be very similar.

Of course, as explained in the main body of the paper, those findings enable to further improve speed of our sampling
procedures.

Stochastic Flows and Geometric Optimization on the Orthogonal Group

(a)
Figure 6. Value of ρ = ‖h(Ω)‖1

γΩ(s,d,h)
as a function of the number of iterations of the optimization as in Section 6.1 for Humanoid and for

different sizes s = 2, 4, 5, 10, 20, 25, 50. Dotted lines correspond to values d
s

that approximate (up to the positive multiplicative constant
that is not too small) values of ρ. We see that for a fixed s, values of ρ almost do not change over the course of optimization and in fact
can be accurately approximated by plots of constant functions. We use the log-scale for y-axis.

9.3. Instability of Deterministic Methods for the Optimization on the Orthogonal Group

To demonstrate numerical problems of the deterministic optimizers/integrators on the orthogonal groupO(d), we considered
the following matrix differential equation on O(d):

Ẋ(t) = X(t)(NX(t)>QX−X>QX(t)N), (11)

where N = diag(n1, ., , , nd), Q = diag(q1, ..., qd) for some scalars n1, ..., nd, q1, ..., qd ∈ R, and furthermore ni 6= nj
and qi 6= qj for i 6= j. We also assume that X(0) ∈ O(d). Matrix Ω(t) = NX(t)>QX − X>QX(t)N is clearly
skew-symmetric thus the above differential equation encodes flow evolving on O(d) (see: Sec. 2).

It can be proven that for all matrices X ∈ O(d), but a set of measure zero the following holds:

X(t)
t→ P, (12)

where P is a permutation matrix corresponding to the permutation (r1, ..., rd) of (q1, ..., qd) that maximizes the expression:

x1n1 + ...+ xdnd (13)

over all permutations (x1, ..., xd) of (q1, ..., qd). Since Expression 13 is maximized for the permutation (x1, ..., xd) s.t.
xi < xj iff ni < nj , we conclude that the flow which is a solution to Eq. 11 can be applied to sort numbers (e.g. one can
take (n1, ..., nd) = (1, ..., d) to sort in the increasing order). Furthermore, we can use our techniques to conduct integration.

In our experiments we compared our algorithm (using non-intersecting families with s = 2) with the deterministic integrator
based on exact exponential mapping. We chose X(0) to be a random orthogonal matrix that we obtained by constructing
Gaussian matrix and then conducting Gram-Schmidt orthogonalization and row-renormalization.

η = 0.00001 η = 0.00005 η = 0.0001 η = 0.00015 η = 0.001 η = 0.0015 η = 0.01 η = 0.015 η = 0.1 η = 0.15

ε: stoch e-13 2.0e-12 1.5e-12 1.8e-12 1.65e-12 1.2e-12 1.78e-12 1.3e-12 1.45e-12 1.3e-12
inv: stoch 1.0 1.0 1.0 1.0 1.0 0.8 0.67 0.6 0.59 0.58
ε: exact e-14 2.0e-14 1.5e-13 1.8e-13 nan nan nan nan nan nan

inv: exact 0.8 0.75 0.72 0.52 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Comparison of the stochastic integrator with the exact one on the problem of sorting numbers with flows evolving
on O(d). First two rows correspond to the stochastic integrator and last two to the exact one. The error ε is defined as:
ε = ‖XfinalX

>
final − Id‖F . Value of inv is the fraction of inverse pairs. For large enough step size exact integrator starts to

produce numerical errors that accumulate over time and break integration.

We focused on quantifying numerical instabilities of both methods by conducting ablation studies over different values of
step size η > 0. For each method we run n = 10 experiments, each with different random sequence (q1, ..., qd). We chose:
N = diag(d, d− 1, ..., 1) thus the goal was to sort in the decreasing order. To conduct sorting, we run 50.0

η iterations of
both algorithms. Denote by Xfinal the matrix obtained by conducting integration. We computed ‖XfinalX

>
final − Id‖F to

measure the deviation from the orthogonal group O(d). Matrix Xfinal was projected back to the permutation group that

Stochastic Flows and Geometric Optimization on the Orthogonal Group

was then used to obtain permuted version (p1, ..., pd) of the original sequence (q1, ..., qd) The quality of the final result was
measured in the number of inverses, i.e. pairs (pi, pj) such that i < j but pi > pj . For perfect sorting all the pairs (pi, pj)
such that i < j are inverses. As we see in Table 2, if step size is too large exact method produces matrices with infinite field
values and the algorithm fails.

9.4. The Geometry of the Orthogonal Group & Riemannian Optimization

In this section we provide additional technical terminology that we use in the main body of the paper.

9.4.1. SMOOTH CURVES ON MANIFOLDS

Definition 9.1 (smooth curves onM). A function γ : I →M, where I ⊆ R is an open interval is a smooth curve onM
passing through p ∈M if there exists φ : Ωp → Up for open subsets Ωp ⊆ Rd, Up ⊆M and ε > 0 such that the function
φ−1 ◦ γ : (t− ε, t+ ε)→ Rd is smooth.

Vectors tangent to smooth curves γ onM passing through fixed point p ∈M give rise to the linear subspace tangent toM
at p, the tangent space Tp(M) that we define in the main body.

9.4.2. INNER PRODUCTS

Standard inner products used for ST (d, k) are: the Euclidean inner product defined as: 〈Z1,Z2〉e = tr(Z>1 Z2) and the
canonical inner product given as: 〈Z1,Z2〉c = tr(Z>1 (I − 1

2XX>))Z2 for a tangent space in X ∈ ST (d, k).

9.4.3. REPRESENTATION THEOREMS FOR ON-MANIFOLD OPTIMIZATION

We need the following standard representation theorem:

Theorem 9.2 (representation theorem). If 〈·〉 is an inner product defined on the vector space R, then for any linear
functional L : R → R there exists R ∈ R s.t. 〈R,Q〉 = L(Q) for any Q ∈ R.

To apply the above result for on-manifold optimization, we identify:

• L with the directional derivative operator related to the function F being optimized,

• R with the tangent space,

• R with the Riemannian gradient.

9.5. Theoretical Results for Sampling Algorithms

Below we prove all the theoretical results from Section 3.

Lemma 9.3. We state two useful combinatorial facts and one of their consequences:

• |Ts| =
d!

(s!)d/s(ds)!

• Each edge appears in W =
(d− 2)!

(d−ss)!(s!)
d−s
s (s− 2)!

tournaments of |Ts|

• Therefore, for p ∼ U(Ts),
1

pT
MTs =

d− 1

s− 1
Jd

Proof. • To compute |Ts|, we can use the way we sample them: we choose a random permutation and take the s first vertices
to be the first connected component, the s next vertices to be the second etc... This way, multiple random permutations

will lead to the same tournament. More precisely, exactly
d

s
!(s!)

d
s permutations lead to the same tournament.

Therefore |Ts| =
d!

(s!)d/s(ds)!
.

Stochastic Flows and Geometric Optimization on the Orthogonal Group

• By symmetry, we know that each edge appears in the same number of tournaments of Ts. Let W be this number. Let NT

be the number of edges in the tournament T . We have that NT =
d

s

(
s
2

)
. Therefore

∑
T∈Ts NT = |Ts|

d

s

(
s
2

)
. We also have

that
∑
T∈Ts NT = W

(
d
2

)
. Therefore |Ts|

d

s

(
s
2

)
= W

(
d
2

)
That gives:

W =
d!
d

s

(
s
2

)
(
d
2

)
(
d

s
)!(s!)d/s

=
(d− 2)!s(s− 1)

(
d

s
− 1)!(s!)d/s

=
(d− 2)!

(
d− s
s

)!(s!)

d− s
s (s− 2)!

W =
(d− 2)!

(d−ss)!(s!)
d−s
s (s− 2)!

• For p ∼ U(Ts), pT =
1

|Ts|
. Therefore,

1

pT
MTs =

|Ts|
W

Jd =
d− 1

s− 1
Jd

9.5.1. PROOF OF LEMMA 3.2

Below we prove Lemma 3.2 from the main body of the paper.

Proof. Let Ω ∈ Sk(d) be a skew-symmetric matrix . Fix a family T of subtournaments of T (Ω). We aim to show that the
distribution P over T minimizing the variance Var(Ω̂) = E[‖Ω̂− Ω‖2F] among unbiased distributions of the form given by
equations 5 and 6, satisfies: pT ∼

√∑
e∈E(GT) w

2
e , where we is the weight of edge e.

The constraint on the scalars {pT }T∈T is simply that the family {pT }T∈T forms a valid probability distribution. The
unbiasedness is guaranteed by the equations 5 and 6.

The variance rewrites:
Var(Ω̂) = E[‖Ω̂− Ω‖2F] = E[‖Ω̂‖2F]− ‖Ω‖2F

Then we consider the following functional,

f(P) = EP [‖Ω̂‖2F]

=
∑
T∈T

pT ·
∥∥∥∥ 1

pT
MT � Ω[T]

∥∥∥∥2

F

=
∑
T∈T

2

pT

∑
(i,j)∈E(GT)

MT [i, j]2 · Ω[i, j]2 the order i, j does not matter

We minimize the functional f on the convex open domain {P = {pT }T∈T ∈ (R>0)T ,
∑
T∈T pT = 1} on which f is

convex. The Lagrangian has the form:

L(P, λ) =
∑
T∈T

2

pT

∑
(i,j)∈E(GT)

MT [i, j]2 · Ω[i, j]2 + 2λ

(∑
T∈T

pT − 1

)

Stochastic Flows and Geometric Optimization on the Orthogonal Group

and the global optimum can be found from equations:

∂

∂pT
L(P, λ) = − 2

p2
T

∑
(i,j)∈E(GT)

MT [i, j]2 · Ω[i, j]2 + 2λ = 0

We finally obtain the optimal P:

pT =

√∑
(i,j)∈E(GT) (MT � Ω) [i, j]2

Z
(14)

where Z =
∑
T∈T pT .

We find that the smallest variance is then given by:

Var∗
(

Ω̂
)

= 2 ·

∑
T∈T

√ ∑
(i,j)∈E(GT)

(MT � Ω) [i, j]2

2

− ‖Ω‖2F

In case of homogeneous families, MT has identical coefficients and the constant MT vanishes into the normalization
constant Z.

9.5.2. PROOF OF LEMMA 3.4

Below we prove Lemma 3.4 from the main body of the paper.

Proof. Let Ak be the random variable which is 1 if the kth sample is accepted and 0 otherwise and Tk be the kth sampled

tournament. Ak are iid Bernoulli variables of parameter
λ

|Ts|
.

P [A1 = 1] =
∑
T∈Ts

P [A1 = 1|T1 = T]P [T1 = T]

=
1

|Ts|
∑
T∈Ts

P [A1 = 1|T1 = T]

=
1

|Ts|
∑
T∈Ts

qhT =
λ

|Ts|
∑
T∈Ts

phT

=
λ

|Ts|

The number of trials before a sample is accepted is min{k|Ak = 1}. This random variable follows a Poisson distribution of

parameter
|Ts|
λ

. Therefore, the expected number of trials before a sample is accepted is
|Ts|
λ

9.5.3. PROOF OF LEMMA 3.5

Below we prove Lemma 3.5 from the main body of the paper.

Proof. By definition, phT ∼ h(GT). Let call α the proportionality factor. Then

α−1 =
∑
T∈Ts

h(GT) =
∑
T∈Ts

∑
e∈E(GT)

h(we)

Stochastic Flows and Geometric Optimization on the Orthogonal Group

=
∑
T∈Ts

∑
i<j

h(w(i,j))1 ((i, j) ∈ E(GT))

=
∑
i<j

h(w(i,j))
∑
T∈Ts

1 ((i, j) ∈ E(GT))

= W
∑
i<j

h(w(i,j)) = W
1

2

∑
i,j

h(w(i,j))

= W
1

2

∑
i,j

h(Ω(i,j)) =
W‖h(Ω)‖1

2

As W =
∑
i<j h(w(i,j))1 ((i, j) ∈ E(GT)). The computation of W is done in the proof of Lemma 9.3.

9.5.4. PROOF OF THEOREM 3.6

Below we prove Theorem 3.6 from the main body of the paper.

Proof. The time complexity results is a direct consequence of Lemma 3.4. We just need to prove that Algorithm 1 returns
a sample of Ph(Ts). We use the random variables Ak and Tk defined in the proof of Lemma 3.4. Let A be the output of
Algorithm 1.

Let T ∈ Ts. We have to check that P [A = T] = phT . For this, we notice that {A = T} = ∪+∞
k=1{Ak = 1 ∩ Tk =

T ∩k−1
i=1 Ai = 0}. These events being disjoints, we have:

P [A = T] =

+∞∑
k=1

P
[
Ak = 1 ∩ Tk = T ∩k−1

i=1 Ai = 0
]

=

+∞∑
k=1

P
[
Ak = 1 ∩ Tk = T | ∩k−1

i=1 Ai = 0
]
P
[
∩k−1
i=1 Ai = 0

]
=

+∞∑
k=1

P
[
Ak = 1 ∩ Tk = T | ∩k−1

i=1 Ai = 0
](

1− λ

|Ts|

)k−1

=

+∞∑
k=1

P
[
Ak = 1|Tk = T ∩k−1

i=1 Ai = 0
] 1

|Ts|

(
1− λ

|Ts|

)k−1

=

+∞∑
k=1

qhT
1

|Ts|

(
1− λ

|Ts|

)k−1

= phT
λ

|Ts|

+∞∑
k=0

(
1− λ

|Ts|

)k
P [A = T] = phT

Therefore Algorithm 1 samples from Ph(Ts).

9.5.5. ESTIMATING ‖h(Ω)‖1

Denote n =
(
d
2

)
. Consider matrix h(Ω) ∈ Rd×d. We will approximate ‖h(Ω)‖1 as:

X =
∑
i,j

Xi,j , (15)

for 1 ≤ i < j ≤ d and where Xi,j = n
r h(Ωi,j) with probability r

n and Xi,j = 0 otherwise. Note that E[X] = ‖h(Ω)‖1
and furthermore the expected number R of nonzero entries Xi,j is clearly r. Now it suffices to notice that R is strongly

Stochastic Flows and Geometric Optimization on the Orthogonal Group

concentrated around its mean using standard concentration inequalities (such as Azuma’s inequality). Furthermore, for any
a > 0, by Azuma’s inequality, we have:

P[X − E[X] > a] ≤ exp(− a2

2(nr)2
∑
i,j h

2(Ωi,j)
). (16)

The upper bound is clearly smaller than exp(−(εαβr3d)2) for a = ε‖h(Ω)‖1 and (αβ, h)-balanced Ω. That directly leads to
the results regarding approximating ‖h(Ω)‖1 by sub-sampling Ω from the main body of the paper.

9.6. Variance Results

Below we present variance results of the estimators of skew-symmetric matrices Ω studied in the main body of the paper.

Lemma 9.4 (Variance of h-regular estimators). The variance of an estimator Ω̂ following an h-regular distribution over Ts
is

Var(Ω̂) =
‖h(Ω)‖1

2W

∑
T∈Ts

‖Ω[T]‖2F
h(GT)

− ‖Ω‖2F

Proof.

Var(Ω̂) =
∑
T∈Ts

phT ‖ΩT ‖2F − ‖Ω‖2F

=
∑
T∈Ts

1

W 2phT
‖Ω[T]‖2F − ‖Ω‖2F

=
∑
T∈Ts

‖h(Ω)‖1
2Wh(GT)

‖Ω[T]‖2F − ‖Ω‖2F

=
‖h(Ω)‖1

2W

∑
T∈Ts

‖Ω[T]‖2F
h(GT)

− ‖Ω‖2F

Lemma 9.5. Let Ω̂ be the h-regular estimator over Ts where h is the squared function. Then Var(Ω̂) =
d− s
s− 1

‖Ω‖2F

Proof. Using lemma 9.4 with h being the squared function gives:

=
‖Ω‖2F
W

∑
T∈Ts

1− ‖Ω‖2F as 2h(GT) = ‖Ω[T]‖2F

= ‖Ω‖2F
(
|Ts|
W
− 1

)
= ‖Ω‖2F

(
d− 1

s− 1
− 1

)
as seen in the proof of Lemma 9.3

Therefore:

Var(Ω̂) =
d− s
s− 1

‖Ω‖2F

Lemma 9.6. Let Ω̂ be uniformly distributed over Ts. Then Var(Ω̂) =
d− s
s− 1

‖Ω‖2F

Stochastic Flows and Geometric Optimization on the Orthogonal Group

Proof. Let Ω̂ be uniformly distributed over Ts. We have:

Var(Ω̂) =
∑
T∈Ts

1

|Ts|
‖ΩT ‖2F − ‖Ω‖2F

=
1

|Ts|
∑
T∈Ts

(d− 1)2

(s− 1)2
‖Ω[T]‖2F − ‖Ω‖2F

=
1

|Ts|
(d− 1)2

(s− 1)2

∑
T∈Ts

∑
(i,j)∈T

2Ω2
i,j − ‖Ω‖2F

=
1

|Ts|
(d− 1)2

(s− 1)2

∑
T∈Ts

∑
i<j

2Ω2
i,j1 ((i, j) ∈ E(GT))− ‖Ω‖2F

=
1

|Ts|
(d− 1)2

(s− 1)2

∑
i<j

2Ω2
i,j

∑
T∈Ts

1 ((i, j) ∈ E(GT))− ‖Ω‖2F

=
W

|Ts|
(d− 1)2

(s− 1)2

∑
i,j

Ω2
i,j − ‖Ω‖2F

=
d− s
s− 1

‖Ω‖2F as
W

Ts
=
s− 1

d− 1
as seen in the proof of Lemma 9.3

So Var(Ω̂) =
d− s
s− 1

‖Ω‖2F

9.7. The Combinatorics of Domain-Optimization for Sampling Subtournaments

In this section we provide additional theoretical results regarding variance of certain classes of the proposed estimators of
skew-symmetric matrices Ω and establish deep connection with challenging problems in graph theory and combinatorics.
We will be interested in particular in shaping the family of tournaments T on-the-fly to obtain low-variance estimators. Even
though we did not need these extensions to obtain the results presented in the main body of the paper, we discuss them in
more detail here due to the interesting connections with combinatorial optimization. We will focus here on non-intersecting
families T and s = 2. Thus the corresponding undirected graphs are just matchings and they altogether cover all the edges
of the base complete undirected weighted graph GT (Ω).

9.7.1. MORE ON THE VARIANCE

We will denote the family of all these matchings asM. and start with function h : R → R given as: h(x) = |x|. The
following is true:

Lemma 9.7 (variance of matching-based estimators for non-intersecting families and h(x) = |x|). Given a skew-symmetric
matrix Ω and the corresponding complete weighted graph GT (Ω) with the set of edge-weights {we}e∈E(GT (Ω)), the

variance/mean squared error of the unbiased estimator Ω̂ applying function h(x) = |x| and family of matchingsM satisfies:

MSE(Ω̂) = Var(Ω̂)

= E[‖Ω̂− Ω‖2F] = K
∑

e∈E(GT (Ω))

w2
e

K(e)
− ‖Ω‖2F ,

(17)

where K(e) stands for the sum of absolute values of weights of the edges of the matching m ∈M containing e and K for
the sum of all the absolute values of all the weights.

Proof. We have the following for Vm defined as: Vm =
∑
e∈m

|ai,j |
Km

Ksgn(ai,j)Hi,j ,where m stands for the matching,

Stochastic Flows and Geometric Optimization on the Orthogonal Group

and Km is the sum of weights of matching m:

E[‖Ω̂− Ω‖2F] = E[‖Ω̂‖2F]− ‖Ω‖2F

=
∑
m∈M

pm‖Vm‖2F − ‖Ω‖2F =
∑
m∈M

pm
∑
e∈m

w2
e

K2
m

K2 − ‖Ω‖2F =

K2
∑
m∈M

Km

K

∑
e∈m

w2
e

K2
m

− ‖Ω‖2F =

K
∑
m∈M

1

Km

∑
e∈m

w2
e − ‖Ω‖2F = K

∑
e∈E(GT (Ω))

w2
e

K(e)
− ‖Ω‖2F ,

(18)

where pm is the probability of choosing matching m ∈M, i.e. p(m) =
∑

e∈m |we|
K =Km

K .

Thus the variance minimization problem reduces to finding a family of matchingsM which minimizes
∑
e∈E(GT (Ω))

w2
e

K(e) .

Let us list a couple of observations. First, if every matching is a single edge (that would correspond to conducting exactly
one multiplication by Givens rotation per iteration of the optimization procedure using an estimator) the variance is the
largest. Intuitively speaking, we would like to have inM lots of heavy-weight matchings. ideally ifM consists of just one
matching covering all nonzero-weight edges (the zero-weight edges can be neglected) the variance is the smallest and in
fact equals to 0 since then we take entire matrix Ω. There are lots of heuristics that can be used such as taking maximum
weight matching (see: (Micali & Vazirani, 1980)) in GT (Ω) as the first matching, delete it from graph, take the second
largest maximum weight matching and continue to construct entireM. Since finding maximum weight matching requires
nontrivial computational time such an approach would work best if we reconstructM periodically, as opposed to doing it in
every single step of the optimization procedure. Interestingly, it can be shown that this algorithm, even though working very
well in practice accuracy-wise, does not minimize the variance (one can find counterexamples with graphs as small as of six
vertices). The following is true:

Lemma 9.8 (Variance minimization vs. NP-hardness). Given a weighted and undirected graph G, the problem of finding a
partition of the edges into matchingsM which minimizes

∑
e∈E(G)

w2
e

K(e) is NP-hard.

Proof. There is a one-to-one correspondence between partitions of the edges into matchingsM and edge-colorings. Thus,
we will reduce to the problem of computing the chromatic index of an arbitrary graph G, which is known to be NP-complete
(see (Holyer, 1981)).

Take an arbitrary G and set all its weights we equal to 1. Then we claim the optimal objective value of the optimization
problem is the chromatic index of G. Indeed,

∑
e∈E(G)

w2
e

K(e)
=

∑
e∈E(G)

1

K(e)
=

∑
e∈E(G)

1

#{e′ ∈ m : e ∈ m}
= #M

(where #A denotes the cardinality of A). Thus the expression which minimizes the sum on the LHS is the smallest possible
cardinality of the setM, which is the chromatic index of G, and thus we have completed the reduction.

The above result shows an intriguing connection between stochastic optimization on the orthogonal group and graph theory.
Notice that we know (see: Lemma 3.2) that under assumptions regarding estimator from Lemma 3.2, the optimal variance is
achieved if pm is proportional to the square root of the sum of squares of the weights of all its edges. Thus one can instead
use such a distribution {pm}m∈M instead the one generated by function h. It is an interesting question whether optimizing
family of matchingsM (thus we still focus on the case s = 2) in such a setting can be done in the polynomial time. We
leave it to future work.

Stochastic Flows and Geometric Optimization on the Orthogonal Group

9.7.2. DISTRIBUTED COMPUTATIONS FOR ON-MANIFOLD OPTIMIZATION

The connection with maximum graph matching problem suggests that one can apply distributed computations to construct
on-the-fly families M used to conduct sampling. Maximum weight matching is one of the most-studied algorithmic
problems in graph theory and the literature on fast distributed optimization algorithms constructing approximations of
the maximum weight matching is voluminous (see for instance: (Czumaj et al., 2018),(Lattanzi et al., 2011),(Assadi
et al., 2019)). Such an approach might be particularly convenient if we want to updateM at every single iteration of the
optimization procedure and dimensionality d is very large.

9.7.3. ON-MANIFOLD OPTIMIZATION VS. GRAPH SPARSIFICATION PROBLEM

Finally, we want to talk about the connection with graph sparsification techniques. Instead of partitioning into matchings the
original graph GT , one can instead sparsify GT first and then conduct partitioning into matchings of the sparsified graph.
This strategy can bypass potentially expensive computations of the heavy-weight matchings in the original dense graph by
those in its sparser compact representation. That leads to the theory of graph sparsification and graph sketches (Chu et al.,
2018) that we leave to future work.

9.8. Theorem 5.1 Proof

Proof. Consider the i-th step of the update rule. Denote g(η) = F (exp(ηΩ̂i)Xi). Then by a chain rule we get

g′(η) = 〈∇F (exp(ηΩ̂i)Xi), exp(ηΩ̂i)Ω̂iXi〉e

Next we deduce

|g′(η)− g′(0)| = |〈∇F (exp(ηΩ̂i)Xi), exp(ηΩ̂i)Ω̂iXi〉e − 〈∇F (Xi), Ω̂iXi〉e|

= |〈∇F (exp(ηΩ̂i)Xi), exp(ηΩ̂i)Ω̂iXi〉e − 〈∇F (Xi), exp(ηΩ̂i)Ω̂iXi〉e + 〈∇F (Xi), exp(ηΩ̂i)Ω̂iXi〉e
− 〈∇F (Xi), Ω̂iXi〉e|

≤ |〈∇F (exp(ηΩ̂i)Xi)−∇F (Xi), exp(ηΩ̂i)Ω̂iXi〉e|+ |〈∇F (Xi), exp(ηΩ̂i)Ω̂iXi − Ω̂iXi〉e|

≤ ‖∇F (exp(ηΩ̂i)Xi)−∇F (Xi)‖F‖ exp(ηΩ̂i)Ω̂iXi‖F + ‖∇F (Xi)‖F‖ exp(ηΩ̂i)Ω̂iXi − Ω̂iXi‖F (19)

= ‖∇F (exp(ηΩ̂i)Xi)−∇F (Xi)‖F‖Ω̂i‖F + ‖∇F (Xi)‖F‖ exp(ηΩ̂i)Ω̂i − Ω̂i‖F (20)

≤ L‖ exp(ηΩ̂i)Xi −Xi‖F‖Ω̂i‖F + ‖∇F (Xi)‖F‖ exp(ηΩ̂i)Ω̂i − Ω̂i‖F (21)

= L‖ exp(ηΩ̂i)− Id‖F‖Ω̂i‖F + ‖∇F (Xi)‖F‖ exp(ηΩ̂i)Ω̂i − Ω̂i‖F (22)

≤ L‖ exp(ηΩ̂i)− Id‖F‖Ω̂i‖F + ‖∇F (Xi)‖F‖ exp(ηΩ̂i)− Id‖F‖Ω̂i‖F (23)

where a) in transition 19 we use Cauchy-Schwarz inequality, b) in 20, 22 we use invariance of the Frobenius norm under
orthogonal mappings, c) in 21 we use 10 and d) in 23 we use sub-multiplicativity of Frobenius norm. We further derive that

‖∇F (Xi)‖F ≤ ‖∇F (Xi)−∇F (Id)‖F + ‖∇F (Id)‖F ≤ L‖Xi − Id‖F + ‖∇F (Id)‖F
≤ L(‖Xi‖F + ‖Id‖F) + ‖∇F (Id)‖F = 2L

√
d+ ‖∇F (I)‖F

where we use that ‖Xi‖F = ‖Id‖F =
√
d due to orthogonality. Now we have

|g′(η)− g′(0)| ≤
(

(2
√
d+ 1)L+ ‖∇F (Id)‖F

)
‖Ω̂i‖F · ‖ exp(ηΩ̂i)− Id‖F (24)

Next, we employ Theorem 12.9 from (Gallier, 2011) which states that, due to its skew-symmetry, Ω̂i can be decomposed as
Ω̂i = PEP> where P ∈ O(d) and E is a block-diagonal matrix of form:

E =

E1

. . .
Ep

Stochastic Flows and Geometric Optimization on the Orthogonal Group

such that each block Ej is either
[
0
]

or a two-dimensional matrix of form

Ej =

[
0 −µj
µj 0

]
for some µj ∈ R. From this we deduce that

exp(ηΩ̂i)− Id = PJP>

where J is block-diagonal matrix of type

J =

J1

. . .
Jp

where for each j Jj = exp(ηEj) − I where I is either I1 or I2. Hence, for each j Jj is either

[
0
]

or a two-dimensional
matrix of the form

Jj =

[
cos(ηµj)− 1 − sin(ηµj)

sin(ηµj) cos(ηµj)− 1

]
Denote by J the set of indices j from {1, . . . p} which correspond to two-dimensional blocks of E and J. Then

‖ exp(ηΩ̂i)− Id‖2F = ‖PJP>‖2F = ‖J‖2F = 2
∑
j∈J

(
sin2(ηµj) + (cos(ηµj)− 1)2

)
= 4

∑
j∈J

(
1− cos(ηµj)

)
≤ 2

∑
j∈J

(ηµj)
2 = η2‖E‖2F = η2‖Ω̂i‖2F

where we use the inequality 1− cosx ≤ x2

2 . Therefore we can rewrite Equation 24 as

|g′(η)− g′(0)| ≤
(

(2
√
d+ 1)L+ ‖∇F (Id)‖F

)
‖Ω̂i‖2F · |η| ≤ Lg · |η|

where Lg =

(
(2
√
d+ 1)L+ ‖∇F (Id)‖F

)
‖Ω̂i‖2F . We further deduce:

g(η)− g(0)− ηg′(0) =

∫ η

0

(
g′(τ)− g′(0)

)
dτ ≥ −

∫ η

0

∣∣∣∣g′(τ)− g′(0)

∣∣∣∣dτ ≥ −∫ η

0

Lg|τ |dτ = −η
2

2
Lg (25)

We unfold g’s definition, put η = ηi and rewrite 25 as follows:

ηi〈∇F (Xi), Ω̂iXi〉e ≤ F (Xi+1)− F (Xi) +
η2
i

2
Lg (26)

Recall that from Ω̂i’s definition we have that EΩ̂i = Ωi = ∇OF (Xi)X
>
i . By taking expectation w.r.t. random Ω̂i sampling

at i’s step from both sides of Equation 26 we obtain that

ηi〈∇F (Xi),∇FO(Xi)〉e ≤ EF (Xi+1)− F (Xi) +
η2
i

2
ELg

Since the Riemannian gradient can be expressed as∇FO(Xi) = (∇F (Xi)X
>
i −Xi∇F (Xi)

>)Xi, we have that

‖∇FO(Xi)‖2F = ‖∇F (Xi)X
>
i −Xi∇F (Xi)

>‖2F = tr

(
(∇F (Xi)X

>
i −Xi∇F (Xi)

>)>∇F (Xi)X
>
i

)
+ tr

(
(Xi∇F (Xi)

> −∇F (Xi)X
>
i)>Xi∇F (Xi)

>
)

= tr

(
X>i (∇F (Xi)X

>
i −Xi∇F (Xi)

>)>∇F (Xi)

)
+ tr

(
∇F (Xi)

>(∇F (Xi)X
>
i −Xi∇F (Xi)

>)Xi

)

Stochastic Flows and Geometric Optimization on the Orthogonal Group

= 2〈(∇F (Xi)X
>
i −Xi∇F (Xi)

>)Xi,∇F (Xi)〉e = 2〈∇FO(Xi),∇F (Xi)〉e

where we use that tr(A>B) = tr(B>A) and tr(AB) = tr(BA). Hence

ηi‖∇FO(Xi)‖2F ≤ 2

(
EF (Xi+1)− F (Xi)

)
+ η2

i ELg (27)

≤ 2

(
EF (Xi+1)− F (Xi)

)
+ η2

i

(
(2
√
d+ 1)L+ ‖∇F (Id)‖F

)
σ2 (28)

By taking expectation of Equation 28 w.r.t. Ω̂i random sampling at steps i = 0..T and summing over all these steps one
arrives at

T∑
i=0

ηiE‖∇FO(Xi)‖2F ≤ 2E
(
F (Xi+1)− F (X0)

)
+ σ2

(
(2
√
d+ 1)L+ ‖∇F (Id)‖F

) T∑
i=0

η2
i

≤ 2

(
F ∗ − F (X0)

)
+ σ2

(
(2
√
d+ 1)L+ ‖∇F (Id)‖F

) T∑
i=0

η2
i

Finally we use that [T∑
i=0

ηi

]
· min
i=0..T

E‖∇FO(Xi)‖2F ≤
T∑
i=0

ηiE‖∇FO(Xi)‖2F

and divide by
∑T
i=0 ηi to conclude the proof.

9.9. Stochastic Optimization on the Orthogonal Group vs Recent Results on Givens Rotations for ML

There is an interesting relation between algorithms for stochastic optimization on the orthogonal group O(d) proposed by us
and some results results about applying Givens rotations in machine learning.

Givens Neural Networks: In (Choromanski et al., 2019) the authors propose neural network architectures, where matrices
of connections are encoded as trained products of Givens rotations. They demonstrate that such architectures can be
effectively used for neural network based policies in reinforcement learning and furthermore provide the compactification of
the parameters that need to be learned. Notice that such matrices of connections correspond to consecutive steps of the
matching-based optimizers/integrators proposed by us. This points also to an idea of neural ODEs that are constrained to
evolve on compact manifolds (such as an orthogonal group).

Approximating Haar measure: Approximating Haar measure on the orthogonal group O(d) was recently shown to have
various important applications in machine learning, in particular for kernel methods (Choromanski et al., 2018) and in
general in the theory of Quasi Monte Carlo sequences (Rowland et al., 2018). Some of the most effective methods conduct
approximations through products of random Givens matrices (Choromanski et al., 2018). It turns out that we can think about
this problem through the lens of matrix differential equations encoding flows evolving on O(d). Consider the following DE
on the orthogonal group:

Ẋ(t) = X(t)Ωrand(t) (29)

with an initial condition: X(0) ∈ O(d). It turns out that when Ωrand(t) is ”random enough” (one can take for instance
Gaussian skew-symmetric matrices with large enough standard deviations of each entry or random walk skew-symmetric
matrices, where each entry of the upper triangular part is an independent long enough random walk on a discrete 1d-lattice
{0, 1,−1, 2,−2, ...}), the above differential equation describes a flow on O(d) such that for T → ∞ the distribution of
X(t) converges to Haar measure. Equation 29 is also connected to heat kernels on O(d).

Interestingly, if we use our stochastic matching-based methods for integrating such a flow, we observe that the solution is a
product of random Givens rotations. Furthermore, these products tend to have the property that vertices/edges corresponding
to different Givens rotations do not appear for consecutive elements that often as for the standard method (for instance, every
block of Givens rotations corresponding to one step of the integration uses different edges since they correspond to a valid
matching). We do believe that such property helps to obtain even stronger mixing properties in comparison to standard

Stochastic Flows and Geometric Optimization on the Orthogonal Group

mechanism. Finally, these products of Givens rotations can be seen right now as a special instantiation of a much more
general mechanism, since nothing prevents us from using our methods with s > 2 rather than s = 2 to conduct integration.
That provides a convenient way to trade-off accuracy of the estimator versus its speed. We leave detailed analysis of the
applications of our methods in that context to future work.

