Supplementary Material for Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels

A. Proofs

A.1. Proof of Proposition 1

Proof. Let η and $\overline{\eta}$ denote the conditional distribution $\mathbb{P}(Y \mid X)$ and $\mathbb{P}(\overline{Y} \mid X)$ respectively, where $\eta_k(x) = \mathbb{P}(Y = k \mid x)$ and $\overline{\eta}_k(x) = \mathbb{P}(\overline{Y} = k \mid x)$. Since \overline{y} only depends on y, we have $\overline{\eta}(x) = T^{\top} \eta(x)$. The unbiased risk estimator can be derived as follows:

$$R(\boldsymbol{g}; \ell) = \mathbb{E}_{(x,y)\sim D}[\ell(y,\boldsymbol{g}(x))] = \mathbb{E}_X \mathbb{E}_{Y\sim\boldsymbol{\eta}(X)}[\ell(Y,\boldsymbol{g}(X))]$$
$$= \mathbb{E}_X[\boldsymbol{\eta}(X)^\top \ell(\boldsymbol{g}(X))] = \mathbb{E}_X[\overline{\boldsymbol{\eta}}(X)^\top (T^{-1})\ell(\boldsymbol{g}(X))]$$
$$= \mathbb{E}_{(x,\overline{y})\sim \overline{D}}[e_{\overline{y}}^\top (T^{-1})\ell(\boldsymbol{g}(x))]$$

A.2. Proof of Proposition 2

Proof. Given the following two properties of ℓ_{01} :

$$\begin{split} \sum_{i=1}^K \ell_{01}(i, \boldsymbol{g}(x)) &= K - 1 \quad \text{and} \\ \ell_{01}(\overline{y}, \boldsymbol{g}(x)) &+ \overline{\ell}_{01}(\overline{y}, \boldsymbol{g}(x)) &= 1 \end{split}$$

An unbiased risk estimator of classification error can be obtained by:

$$R(\boldsymbol{g}; \ell_{01}) = \mathbb{E}_{(x,\overline{y})\sim\overline{D}} \left[-(K-1)\ell_{01}(\overline{y}, \boldsymbol{g}(x)) + \sum_{j=1}^{K} \ell_{01}(j, \boldsymbol{g}(x)) \right]$$

$$= \mathbb{E}_{(x,\overline{y})\sim\overline{D}} \left[(K-1)(1-\ell_{01}(\overline{y}, \boldsymbol{g}(x))) \right]$$

$$= (K-1)\mathbb{E}_{(x,\overline{y})\sim\overline{D}} \left[\overline{\ell}_{01}(\overline{y}, \boldsymbol{g}(x)) \right] = (K-1)\overline{R}(\boldsymbol{g}; \overline{\ell}_{01})$$

A.3. Proof of Proposition 3

Proof. The proposition can be derived by using the linearity of the gradient operator:

$$\begin{split} \mathbb{E}_{\overline{y}|y} \big[\nabla_{\theta} \overline{\ell}(\overline{y}, \boldsymbol{g}(x)) \big] &= \nabla_{\theta} \mathbb{E}_{\overline{y}|y} \big[\overline{\ell}(\overline{y}, \boldsymbol{g}(x)) \big] \\ &= \nabla_{\theta} \bigg[\frac{1}{K-1} \sum_{y' \neq y} \big[-(K-1)\ell(y', \boldsymbol{g}(x)) + \sum_{j=1}^{K} \ell(j, \boldsymbol{g}(x)) \big] \bigg] \\ &= \nabla_{\theta} \bigg[- \sum_{y' \neq y} \ell(y', \boldsymbol{g}(x)) + \sum_{j=1}^{K} \ell(j, \boldsymbol{g}(x)) \bigg] = \nabla_{\theta} \ell(y, \boldsymbol{g}(x)) \end{split}$$