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A. Proofs
A.1. Proof of Proposition 1

Proof. Let η and η denote the conditional distribution P(Y | X) and P(Y | X) respectively, where ηk(x) = P(Y = k | x)
and ηk(x) = P(Y = k | x). Since ȳ only depends on y, we have η̄(x) = T>η(x). The unbiased risk estimator can be
derived as follows:

R(g; `) = E(x,y)∼D[`(y, g(x))] = EXEY∼η(X)[`(Y, g(X))]

= EX [η(X)>`(g(X))] = EX [η(X)>(T−1)`(g(X))]

= E(x,y)∼D[e>y (T−1)`(g(x))]

A.2. Proof of Proposition 2

Proof. Given the following two properties of `01:

K∑
i=1

`01(i, g(x)) = K − 1 and

`01(y, g(x)) + `01(y, g(x)) = 1

An unbiased risk estimator of classification error can be obtained by:

R(g; `01) = E(x,y)∼D

[
− (K − 1)`01(y, g(x)) +

K∑
j=1

`01(j, g(x))

]

= E(x,y)∼D

[
(K − 1)(1− `01(y, g(x)))K

]
= (K − 1)E(x,y)∼D

[
`01(y, g(x))

]
= (K − 1)R(g; `01)

A.3. Proof of Proposition 3

Proof. The proposition can be derived by using the linearity of the gradient operator:

Ey|y
[
∇θ`(y, g(x))

]
= ∇θEy|y

[
`(y, g(x))

]
= ∇θ

[
1

K − 1

∑
y′ 6=y

[
− (K − 1)`(y′, g(x)) +

K∑
j=1

`(j, g(x))
]]

= ∇θ
[
−
∑
y′ 6=y

`(y′, g(x)) +

K∑
j=1

`(j, g(x))

]
= ∇θ`(y, g(x))


