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8. Appendix
8.1. Background Cntd.

8.1.1. DIRECTED GRAPHICAL MODELS CNTD.

Variable Elimination Algorithm (VE): The complete VE
algorithm is given by Algorithm 3. The basic idea of the
variable elimination algorithm is that we "eliminate" one
variable at a time following a predefined order ≺ over the
nodes of the graph. Let Φ denote a set of probability factors
which is initialized as the set of all CPDs of the DGM and
Z denote the variable to be eliminated. For the elimination
step, firstly all the probability factors involving the variable
to be eliminated, Z are removed from Φ and multiplied
together to generate a new product factor. Next, the variable
Z is summed out from this combined factor generating a
new factor that is entered into Φ. Thus the VE algorithm
essentially involves repeated computation of a sum-product
task of the form

φ =
∑
Z

∏
φ∈Φ

φ (16)

The complexity of the VE algorithm is defined by the size
of the largest factor. Here we state two lemmas regarding
the intermediate factors φ which will be used in Section 8.3.

Lemma 8.1. Every intermediate factor (φ in (16)) gener-
ated as a result of executing the VE algorithm on a DGMN
correspond to a valid conditional probability of some DGM
(not necessarily the same DGM, N ). (Koller & Friedman,
2009)

Lemma 8.2. The size of the largest intermediary factor
generated as a result of running of the VE algorithm on a
DGM is at least equal to the treewidth of the graph (Koller
& Friedman, 2009).

Corollary. The complexity of the VE algorithm with the
optimal order of elimination depends on the treewidth of the
graph.

8.2. Data-Dependent Differentially Private Parameter
Learning for DGMs Cntd.

8.2.1. CONSISTENCY BETWEEN NOISY MARGINAL
TABLES

The objective of this step is to input the set of noisy marginal
tables M̃i and compute perturbed versions of these tables

Algorithm 2 Sum Product Variable Elimination Algorithm

Notations : Φ - Set of factors
X - Set of variables to be eliminated
≺ - Ordering on X
X - Variable to be eliminated
Attr(φ) - Attribute set of factor φ

Procedure Sum-Product-VE(Φ,X,≺)
1: Let X1, · · · , Xk be an ordering of X such that
Xi ≺ Xj iff i < j

2: for i = 1, · · · , k
3: Φ← Sum-Product-Eliminate-Var(Φ, Zi)
4: φ∗ ←∏

φ∈Φ φ
5: return φ∗

Procedure Sum-Product-Eliminate-Var(Φ, X)
6: Φ′ ← {φ ∈ Φ : Z ∈ Attr(φ)}
7: Φ′′ ← Φ− Φ′

8: ψ ←∏
φ∈Φ′ φ

9: φ←∑
Z ψ

10: return Φ′′ ∪ {φ}

that are mutually consistent (Defn. 2.3. The following
procedure has been reproduced from (Hay et al., 2010a;
Qardaji et al., 2014) with a few adjustments.

Mutual Consistency on a Set of Attributes:

Assume a set of tables {M̃i, · · · , M̃j} and let A =

Attr(M̃i) ∩ · · · ∩ Attr(M̃j). Mutual consistency, i.e.,
M̃i[A] ≡ · · · ≡ M̃j [A] is achieved as follows:

(1) First compute the best approximation for the marginal
table M̃A for the attribute set A as follows

M̃A[A′] =
1∑j
t=1 εt

j∑
t=i

εt · M̃t[A
′], A′ ∈ A (17)

(2) Update all M̃ts to be consistent with M̃A. Any counting
query c is now answered as

M̃t(c) = M̃t(c) +
|dom(A)|

|dom(Attr
(
M̃)|

(M̃A(a)− M̃t(a)
)

(18)

where a is the query c restricted to attributes in A and M̃t(c)
is the response of c on M̃t .

Overall Consistency:
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(1) Take all sets of attributes that are the result of the inter-
section of some subset of

⋃d
i=k+1{Xi ∪Xpai}; these sets

form a partial order under the subset relation.

(2) Obtain a topological sort of these sets, starting from the
empty set.

(3) For each set A, one finds all tables that include A, and
ensures that these tables are consistent on A.

8.2.2. PRIVACY ANALYSIS

Theorem 3.1. The proposed algorithm (Algorithm 1) for
learning the parameters of a fully observed directed graphi-
cal model is εB-differentially private.

Proof. The sensitivity of counting queries is 1. Hence, the
computation of the noisy tables T̃i (Proc. 1, Line 2-3) is a
straightforward application of Laplace mechanism (Sec. 2).
This together with Lemma 2.3 makes the computation of
T̃i, εI -DP. Now the subsequent computation of the optimal
privacy budget allocation E∗ is a post-processing opera-
tion on T̃i and hence by Thm. 2.2 is still εI -DP. The final
parameter computation is clearly (εB-εI )-DP. Thus by the
theorem of sequential composition (Thm. 2.1), Algorithm 1
is εB-DP.

8.3. Error Bound Analysis Cntd.

In this section, we present the proofs of Thm. 4.1 and Thm.
4.2.

Preliminaries and Notations:
For the proofs, we use the following notations. Let
X be the attribute that is being eliminated and let
A =

⋃
φi
Attr(φi)\X where Attr(φ) denotes the set of

attributes in φ. For some a ∈ dom(A), from the variable
elimination algorithm (Sec. 8.1.1) for a sum-product term
(Eq. (16)) we have

φA [a] =
∑
x

t∏
i=1

φi[x, a] (19)

Let us assume that factor φ[a, x] denotes that
V alue(Attr(φ)) ∈ {a} and X = x. Recall that af-
ter computing a sum-product task (given by Eq. (20)),
for the variable elimination algorithm (Appx. Algo-
rithm 2), we will be left with a factor term over the
attribute set A . For example, if the elimination order
for the variable elimination algorithm on our example
DGM (Figure 1) is given by ≺= {A,B,C,D,E, F}
and the attributes are binary valued, then the first
sum-product task will be of the following form
A = {B,C}, dom(A) = {(0, 0), (0, 1), (1, 0), (1, 1)} and
the RHS φis in this case happen to be the true parameters

of the DGM,

φB,C [0, 0] = Θ[A = 0] ·Θ[C = 0|A = 0, B = 0] +

Θ[A = 1] ·Θ[C = 0|A = 1, B = 0]

φB,C [0, 1] = Θ[A = 0] ·Θ[C = 1|A = 0, B = 0] +

Θ[A = 1] ·Θ[C = 1|A = 1, B = 0]

φB,C [1, 0] = Θ[A = 0] ·Θ[C = 1|A = 0, B = 0] +

Θ[A = 1] ·Θ[C = 1|A = 1, B = 0]

φB,C [1, 1] = Θ[A = 0] ·Θ[C = 1|A = 0, B = 1] +

Θ[A = 1] ·Θ[C = 1|A = 1, B = 1]

φB,C = [φB,C [0, 0],φB,C [0, 1],φB,C [1, 0],φB,C [1, 1]]

8.3.1. LOWER BOUND

Theorem 4.1. For a DGM N , for any sum-product term
of the form φA =

∑
x

∏t
i=1 φi, t ∈ {2, · · · , η} in the VE algo-

rithm,

δφA ≥
√
η − 1 · δminφi[a,x](φ

min
i [a, x])η−2 (20)

where X is the attribute being eliminated, δφ de-
notes the error in factor φ, Attr(φ) is the set of at-
tributes in φ, A =

⋃
φi
{Attr(φi)}/X, x ∈ dom(X), a ∈

dom(A), φ[a, x] denotes that V alue(Attr(φ)) ∈ {a}∧X = x,
δminφi[a,x] = mini,a,x{δφi[a,x]}, φmini [a, x] = mini,a,x{φi[a, x]}
and η = maxXi{in-degree(Xi)+ out-degree(Xi)}+ 1.

Proof. Proof Structure:

The proof is structured as follows. First, we compute
the error for a single term φA [a], a ∈ dom(A) (Eq.
(21),(22),(23)). Next we compute the total error δφA

by
summing over ∀a ∈ dom(A). This is done by divid-
ing the summands into two types of terms (a) Υφ1[a,x]

(b) δ∏t
i=1 φi[a,x]

∏t
i=1 φi[a, x] (Eq. (25),(26)). We prove

that the summation of first type of terms (Υφ1[x]) can be
lower bounded by 0 non-trivially. Then we compute a lower
bound on the terms of the form δ∏t

i=2 φi[a,x]

∏t
i=2 φi[a, x]

(Eq. (31)) which gives our final answer (Eq. (32)).

Step 1: Computing error in a single term φA [a], δφA [a]

The error in φA [a], due to noise injection is given by ,

δφA [a] =

∣∣∣∣∣∑
x

t∏
i=1

φi[x, a]−
∑
x

t∏
i=1

φ̃i[a, x]

∣∣∣∣∣
=

∣∣∣∣∣∑
x

(
φ1[x, a]

t∏
i=2

φi[x, a]− φ̃1[x, a]

t∏
i=2

φ̃i[x, a]
)∣∣∣∣∣

=

∣∣∣∣∣∑x

(
φ1[x, a]

∏t
i=2 φi[x, a]− φ̃1[x, a]

∏t
i=2(φi[x, a]± δφi[x,a])

)∣∣∣∣∣
(21)
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Using the rule of standard error propagation, we have

δ∏t
i=2 φi[x,a] =

t∏
i=2

φ̃i[x, a]

√√√√ t∑
i=2

( δφi[x,a]

φi[x, a]

)2

(22)

Thus from the above equation (Eq. (22)) we can rewrite Eq.
(21) as follows,

=

∣∣∣∣∣∑x

(
φ1[x, a]

∏t
i=2 φi[x, a]− ˜φ1[x, a]

∏t
i=2 φi[x, a](1± δ∏t

i=2 φi[x,a])
)∣∣∣∣∣

=

∣∣∣∣∣∑x

(
(φ1[a, x]− ˜φ1[a, x])

∏t
i=2 φi[a, x]± δ∏t

i=1 φi[a,x]

∏t
i=1 φi[a, x]

)∣∣∣∣∣
(23)

Step 2: Compute total error δφA

Now, total error in φA is

δφA =
∑
a

δφA [a] (24)

Collecting all the product terms from the above equation
(24) with φ1[a, x]− φ̃1[a, x] as a multiplicand, we get

Υφ1[a,x] = (φ1[a, x]− φ̃1[a, x])
∑
a

t∏
i=2

φi[a, x] (25)

Thus δφA
can be rewritten as

δφA
=
∑
a,x

Υφ1[a,x] ±
∑
a,x

t∏
i=1

φi[a, x]δ∏t
i=2 φi[a,x] (26)

First we show that for a specific DGM we have∑
a,x Υφ1[a,x] = 0 as follows. Let us assume that the DGM

has Attr(φ1) = X . Thus φ1[a, x] reduces to just φ1[x].

Υφ1[x] = (φ1[x]− φ̃1[x])
∑
a

t∏
i=2

φi[x]

= (φ1[x]− φ̃1[x])
(∑
ak

· · ·
∑
a1

t∏
i=2

φi[a1, · · · , ak, x]
)

[A = 〈A1, · · ·Ak〉, aj ∈ dom(Aj), j ∈ [k]]

= (φ1[x]− φ̃1[x])
(∑

ak
· · ·∑a2

∏t
i=3 φi[a2, · · · , ak, x]

∑
a1
φ2[a1, · · · , ak, x]

)
[Assuming that φ2 is the only factor with attribute A1]

Now each factor φi is either a true parameter (CPD) of
the DGM N or a CPD over some other DGM (lemma
8.1). Thus, let us assume that φ2 represents a condi-
tional of the form P [A1|A, X],A = A/A1. Thus we
have

∑
a1
φ2[a1, · · · , ak, x] =

∑
a1
P [A1 = a1|A2 =

a2, · · · ,Ak = ak, X = x] = 1. Now repeating the above
process over all i ∈ {3, · · · , t}φis , we get

Υφ1[x] = φ1[x]− φ̃1[x] (27)

For the ease of understanding, we illustrate the above result
on our example DGM (Figure 1). Let us assume that the
order of elimination is given by ≺= 〈A,B,C,D,E, F 〉.
For simplicity, again we assume binary attributes. Let φC
be the factor that is obtained after eliminating A and B.
Thus the sum-product task for eliminating C is given by

φD,E [0, 0] = φC [C = 0] ·Θ[D = 0|C = 0]Θ[E = 0|C = 0]

+φC [C = 1] ·Θ[D = 0|C = 1]Θ[E = 0|C = 1]

φD,E [0, 1] = φC [C = 0] ·Θ[D = 0|C = 0]Θ[E = 1|C = 0]

+φC [C = 1] ·Θ[D = 0|C = 1]Θ[E = 1|C = 1]

φD,E [1, 0] = φC [C = 0] ·Θ[D = 1|C = 0]Θ[E = 0|C = 0]

+φC [C = 1] ·Θ[D = 1|C = 1]Θ[E = 0|C = 1]

φD,E [1, 1] = φC [C = 0] ·Θ[D = 1|C = 0]Θ[E = 1|C = 0]

+φC [C = 1] ·Θ[D = 1|C = 1]Θ[E = 1|C = 1]

Hence considering noisy φ̃D,E we have,

ΥφC [0] = (φC [C = 0]− φ̃C [C = 0]) · (Θ[D = 0|C = 0]Θ[E = 0|C = 0]

+Θ[D = 0|C = 0]Θ[E = 1|C = 0] + Θ[D = 1|C = 0]Θ[E = 0|C = 0]

+Θ[D = 1|C = 0]Θ[E = 1|C = 0])

= (φC [C = 0]− φ̃C [C = 0]) ·
(

Θ[D = 0|C = 0]
(
Θ[E = 0|C = 0] + Θ[E = 1|C = 0]

)
+
(

Θ[D = 1|C = 0]
(
Θ[E = 0|C = 0] + Θ[E = 1|C = 0]

))
= (φC [C = 0]− φ̃C [C = 0]) ·

(
Θ[D = 0|C = 0] + Θ[D = 1|C = 0]

)[
∵ Θ[E = 0|C = 0] + Θ[E = 1|C = 0] = 1

]
= φC [C = 0]− φ̃C [C = 0] (28)[

∵ Θ[D = 0|C = 0] + Θ[D = 1|C = 0] = 1
]

Similarly

ΥφC [1] = φC [C = 1]− φ̃C [C = 1] (29)

Now using Eq. (27) and summing over ∀x ∈ dom(X)∑
x

Υφ1[x] =
∑
x

(φ1[x]− φ̃1[x])

= 0
[
∵
∑
x

φ1[x] =
∑
x

φ̃1[x] = 1
]

(30)

Referring back to our example above, since φC [1]+φC [0] =
φ̃C [C = 0] + φ̃C [C = 1], quite trivially

φC [C = 0] + φC [C = 1] = φ̃C [C = 0] + φ̃C [C = 1]

⇒ (φC [C = 0]− φ̃C [C = 0]) + (φC [C = 1]− φ̃C [C = 1]) = 0
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Thus, from Eq. (26)

δφA =
∑
x

Υφ1[x] ±
∑
a,x

δ∏t
i=2 φi[a,x]

t∏
i=1

φi[a, x]

=
∑
a,x

δ∏t
i=2 φi[a,x]

t∏
i=1

φi[a, x][
From Eq. (30) and dropping ± as we are dealing with errors

]
≥ δmin∏t

i=2 φi[a,x]

∑
a,x

t∏
i=1

φi[a, x][
δmin∏t

i=2 φi[a,x] = min
a,x

{
δ∏t

i=2 φi[a,x]

}]
≥ δmin∏t

i=2 φi[a,x][
∵ By Lemma 8.1 φA is a CPD, thus

∑
a,x

t∏
i=1

φi[a, x] ≥ 1
]

= mina,x

{
t∏
i=2

φi[x, a]

√√√√ t∑
i=2

( δφi[a,x]

φi[a, x]

)2
}

≥ mina,x
{

t∏
i=2

φi[x, a]

√
(t− 1)

( δminφi[a,x]

φi[x, a]

)2
}

[δminφi[x,a] = mini,a,x

{
δφi[a,x]

}
]

≥ mina,x
{√

(t− 1)
δminφi[a,x]

φmaxi

t∏
i=2

φi[a, x]

}
[
φmaxi = max

i
{φi[a, x]}

]
≥ δminφi[a,x]

√
t− 1(φmini [a, x])t−2 (31)[

Assuming φmini [a, x] = mini,a,x{φi[a, x]}
]

Now, recall from the variable elimination algorithm that
during each elimination step, if Z is the variable being elim-
inated then we the product term contains all the factors that
include Z. For a DGM with graph G, the maximum number
of such factors is clearly η = maxXi{out-degree(Xi) +
in-degree(Xi)} + 1 of G, i.e., t ≤ η. Additionally we
have φmin[a, x] ≤ 1

dmin
≤ 1

2 where dmin is the mini-
mum size of dom(Attr(φ)) and clearly dmin ≥ 2. Since
2t ≥

√
t, t ≥ 2, under the constraint that t is an integer and

φmin[a, x] ≤ 1
2 , we have

δφA ≥
√
η − 1δminφi[a,x](φ

min[a, x])η−2 (32)

8.3.2. UPPER BOUND

Theorem 4.2. For a DGM N , for any sum-product term
of the form φA =

∑
x

∏t
i=1 φi, t ∈ {2, · · · , n} in the VE algo-

rithm with the optimal elimination order,

δφA ≤ 2 · η · dκδmaxφi[a,x] (33)

where X is the attribute being eliminated, δφ de-
notes the error in factor φ, κ is the treewidth of
G, d is the maximum attribute domain size, Attr(φ)

is the set of attributes in φ, A =
⋃t
i{Attr(φi)}/X,

a ∈ dom(A), x ∈ dom(X), φ[a, x] denotes that
V alue(Attr(φ)) ∈ {a} ∧X = x, δmaxφi[a,x] = maxi,a,x{δφi[a,x]}
and η = max

Xi
{in-degree(Xi) + out-degree(Xi)}+ 1.

Proof. Proof Structure:

The proof is structured as follows. First we compute
an upper bound for a product of t > 0 noisy factors
φ̃i[a, x], i ∈ [t] (Lemma 8.3). Next we use this lemma,
to bound the error, δφA [a], for the factor, φA [a], a ∈ dom(A)
(Eq. (34)). Finally we use this result to bound the total error,
δφA , by summing over ∀a ∈ dom(A) (Eq. (35)).

Step 1: Computing the upper bound of the error of a
single term φ̃A [a], δφA [a]

Lemma 8.3. For a ∈ dom(A), x ∈ dom(X)

t∏
i=1

φ̃i[a, x] ≤
t∏
i=1

φi[a, x] +
∑
i

δφi[a,x]

Proof. First we consider the base case when t = 2.

Base Case:

φ̃1[a, x]φ̃2[a, x] = (φ1[a, x]± δφ1[a,x])(φ2[a, x]± δφ2[a,x])

≤ (φ1[a, x] + δφ1[a,x])(φ2[a, x] + δφ2[a,x])

= (φ1[a, x] · φ2[a, x] + δφ1[a,x](φ2[a, x] + δφ2[a,x]) + δφ2[a,x] · φ1[a, x])

≤ (φ1[a, x] · φ2[a, x] + δφ1[a,x] + δφ2[a,x]φ1[a, x])[
∵ (φ2[a, x] + δφ2[a,x]) ≤ 1 as φ̃i[a, x] is still

a valid probability distribution
]

≤ φ1[a, x] · φ2[a, x] + δφ1[a,x] + δφ2[a,x][
∵ φ1[a, x] < 1

]
Inductive Case:

Let us assume that the lemma holds for t = k. Thus we
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have
k+1∏
i=1

φ̃i[a, x] =

k∏
i=1

φ̃i[a, x] · φ̃k+1[a, x]

≤ (

k∏
i=1

φi[a, x] +
∑
i

δφi[a,x]) · (φk+1[a, x] + δφk+1
[a, x])

≤
k+1∏
i=1

φi[a, x] +
∑
i

δφi[a,x] · (φk+1[a, x] + δφk+1
[a, x])

+δφk+1
[a, x]

k∏
i=1

φi[a, x]

≤
k+1∏
i=1

φi[a, x] +

k+1∑
i=1

δφi[a,x] + δφk+1
[a, x]

k∏
i=1

φi[a, x]

[∵ (φk+1[a, x] + δφk+1[a,x]) ≤ 1 as φ̃k+1[a, x] is still

a valid probability distribution]

≤
k+1∏
i=1

φi[a, x] +

k+1∑
i=1

δφi[a,x][∵ ∀i, φi[a, x] ≤ 1]

Hence, we have
t∏
i=1

φ̃i[a, x] ≤
t∏
i=1

φi[a, x] +
∑
i

δφi[a,x]

Next, we compute the error for the factor, φA [a], a ∈
dom(A) as follows

δφA[a] =
∣∣∣∑
x

t∏
i=1

φi[a, x]−
∑
x

t∏
i=1

φ̃i[a, x]
∣∣∣

=
∣∣∣∑
x

t∏
i=1

φi[a, x]− φ1[a, x]

t∏
i=2

˜φi[a, x]
∣∣∣

=
∣∣∣∑
x

t∏
i=1

φi[a, x]− φ̃1[a, x]

t∏
i=2

(φi[a, x]± δφi[a,x])
∣∣∣

≤
∣∣∣∑
x

( t∏
i=1

φi[a, x]− φ̃1[a, x](

t∏
i=2

φi[a, x] +

t∑
i=2

δφi[a,x])
)∣∣∣[

Using Lemma 8.3
]

≤
∣∣∣∑
x

(
(φ1[a, x]− φ̃1[a, x])

t∏
i=2

φi[a, x]

+φ̃1[a, x]

t∑
i=2

δφi[a,x]

)∣∣∣
≤
∣∣∣∑
x

(
(φ1[a, x]− φ̃1[a, x])

t∏
i=2

φi[a, x]

+ηφ̃1[a, x]δ∗φi[a,x]

)∣∣∣

[
∵ t ≤ η and assuming δ∗φi[a,x] = max

i,x
{δφi[a,x]}

]
=
∣∣∣∑
x

(φ1[a, x]− φ̃1[a, x])

t∏
i=2

φi[a, x]

+ηδ∗φi[a,x]

∑
x

φ̃1[a, x]
∣∣∣

≤
∑
x

∣∣∣φ1[a, x]− φ̃1[a, x]
∣∣∣+ ηδ∗φi[a,x]

∑
x

φ̃1[a, x] (34)[
∵ φi[a, x] ≤ 1

]
Step 2: Computing the upper bound of the total error
δφA

Now summing over ∀a ∈ dom(A),

δφA
=
∑
a

δφA [a]

≤
∑
a

(∑
x

|φ1[a, x]− φ̃1[a, x]|+ ηδ∗φi[a,x]

∑
x

φ̃1[a, x]
)

[From Eq. (34)]

= δφ1 + ηδmaxφi[a,x]

∑
a

∑
x

φ̃1[a, x]
[
δmaxφi[a,x] = max

a
{δ∗φi[a,x]}

]
Now by Lemma 8.2, maximum size of A ∪X is given by
the treewidth of the DGM, κ. Thus from the fact that φ1

is a CPD (Lemma 8.1), we observe that
∑
a

∑
x φ̃1[a, x]

is maximized when φ1[a, x] is of the form P [A′|A], A′ ∈
A ∪X, |A′| = 1,A = (A ∪X)/A′ and is upper bounded
by dκ where d is the maximum domain size of an attribute.

δφA
≤ δφ1

+ ηdκδmaxφi[a,x]

[By lemma 8.2 and that φ1 is CPD from lemma 8.1]

where κ is the treewidth of G an
d is the maximum domain size of an attribute

≤ 2 · η · dκδmaxφi[a,x]

[
∵ δφ1 ≤ η · dκδmaxφi[a,x]

]
(35)

9. Related Work
In this section, we review related literature. There has been
a steadily growing amount work in differentially private
machine learning models for the last couple of years. We
list some of the most recent work in this line (not exhaustive
list). (Abadi et al., 2016; Wu et al., 2017; Agarwal et al.,
2018) address the problem of differentially private SGD.
The authors of (Park et al., 2016a) present an algorithm
for differentially private expectation maximization. In (Lei,
2011) the problem of differentially private M-estimators is
addressed. Algorithms for performing expected risk min-
imization under differential privacy has been proposed in
(Wang et al., 2017; Chaudhuri et al., 2011). In (Wang et al.,
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2015a) two differentially private subspace clustering algo-
rithms are proposed.

There has been a fair amount of work in differentially pri-
vate Bayesian inferencing and related notions (Dimitrakakis
et al., 2014; Wang et al., 2015b; Foulds et al., 2016; Zhang
et al., 2016b; Geumlek et al., 2017; Bernstein & Sheldon,
2018; Heikkilä et al., 2017; Zhang & Li, 2019; Schein et al.,
2018; Park et al., 2016b; Jälkö et al., 2016; Barthe et al.,
2016; Bernstein et al., 2017; Dziugaite & Roy, 2018; Zhang
et al., 2017; 2020). In (Heikkilä et al., 2017) the authors
present a solution for DP Bayesian learning in a distributed
setting, where each party only holds a subset of the data a
single sample or a few samples of the data. In (Dziugaite
& Roy, 2018) the authors show that a data-dependent prior
learnt under ε-DP yields a valid PAC-Bayes bound. The
authors in (Williams & Mcsherry, 2010) show that proba-
bilistic inference over differentially private measurements
to derive posterior distributions over the data sets and model
parameters can potentially improve accuracy. An algorithm
to learn an unknown probability distribution over a discrete
population from random samples under ε-DP is presented in
(Diakonikolas et al., 2015). In (Bernstein & Sheldon, 2018)
the authors present a method for private Bayesian inference
in exponential families that learns from sufficient statistics.
The authors of (Wang et al., 2015b) and (Dimitrakakis et al.,
2014) show that posterior sampling gives differential pri-
vacy "for free" under certain assumptions. In (Foulds et al.,
2016) the authors show that Laplace mechanism based al-
ternative for "One Posterior Sample" is as asymptotically
efficient as non-private posterior inference, under general as-
sumptions. A Rényi differentially private posterior sampling
algorithm is presented in (Geumlek et al., 2017). (Zhang &
Li, 2019) proposes a differential private Naive Bayes clas-
sification algorithm for data streams. (Zhang et al., 2016b)
presents algorithms for private Bayesian inference on proba-
bilistic graphical models. In (Park et al., 2016b), the authors
introduce a general privacy-preserving framework for Vari-
ational Bayes. An expressive framework for writing and
verifying differentially private Bayesian machine learning
algorithms is presented in (Barthe et al., 2016). The problem
of learning discrete, undirected graphical models in a dif-
ferentially private way is studied in (Bernstein et al., 2017).
(Schein et al., 2018) presents a general method for privacy-
preserving Bayesian inference in Poisson factorization. In
(Zhang et al., 2020), the authors consider the problem of
learning Markov Random Fields under differential privacy.
In (Zhang et al., 2016b) the authors propose algorithms for
private Bayesian inference on graphical models. However,
their proposed solution does not add data-dependent noise.
In fact their proposed algorithms (Algorithm 1 and Algo-
rithm 2 as in (Zhang et al., 2016b)) are essentially the same
in spirit as our baseline solution D-Ind. Moreover, some
proposals from (Zhang et al., 2016b) can be combined with

D-Ind; for example to ensure mutual consistency, (Zhang
et al., 2016b) adds Laplace noise in the Fourier domain
while D-Ind uses techniques of (Hay et al., 2010a). D-Ind is
also identical (D-Ind has an additional consistency step) to
an algorithm used in (Zhang et al., 2017) which uses DGMs
to generate high-dimensional data.

A number of data-dependent differentially private algo-
rithms have been proposed in the past few years. (Acs et al.,
2012; Xu et al., 2012; Zhang et al.; Xiao et al., 2012) outline
data-dependent mechanisms for publishing histograms. In
(Cormode et al., 2012b) the authors construct an estimate
of the dataset by building differentially private kd-trees.
MWEM (Hardt et al., 2012) derives estimate of the dataset
iteratively via multiplicative weight updates. In (Li et al.,
2014) differential privacy is achieved by adding data and
workload dependent noise. (Kotsogiannis et al., 2017a)
presents a data-dependent differentially private algorithm
selection technique. (Gupta et al., 2012; Dwork et al., 2010)
present two general data-dependent differentially private
mechanisms. Certain data-independent mechanisms attempt
to find a better set of measurements in support of a given
workload. One of the most prominent technique is the ma-
trix mechanism framework (Yuan et al., 2012; Li et al.,
2010) which formalizes the measurement selection problem
as a rank-constrained SDP. Another popular approach is to
employ a hierarchical strategy (Hay et al., 2010b; Cormode
et al., 2012a; Xiao et al., 2011). (Yaroslavtsev et al., 2013;
Barak et al., 2007; Ding et al., 2011b; Gupta et al., 2011;
Thaler et al., 2012; Hay et al., 2010a) propose techniques
for marginal table release.

9.1. Evaluation Cntd.

9.1.1. DATA SETS

As mentioned in Section 5, we evaluate our algorithm on
the following four DGMs.

(1) Asia: Number of nodes – 8; Number of arcs – 8; Number
of parameters – 18

(2) Sachs: Number of nodes – 11; Number of arcs – 17;
Number of parameters – 178

(3) Child: Number of nodes – 20; Number of arcs – 25;
Number of parameters – 230

(4) Alarm: Number of nodes – 37; Number of arcs – 46;
Number of parameters – 509

The error analysis for the data sets Asia and Alarm are
presented in Fig. 4.
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(e) Alarm: Parameters δL1
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Figure 4: Parameter and Inference (Marginal and Conditional) Error Analysis Cntd.


