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Abstract
Feature maps contain rich information about im-
age intensity and spatial correlation. However,
previous online knowledge distillation methods
only utilize the class probabilities. Thus in this
paper, we propose an online knowledge distilla-
tion method that transfers not only the knowledge
of the class probabilities but also that of the fea-
ture map using the adversarial training framework.
We train multiple networks simultaneously by em-
ploying discriminators to distinguish the feature
map distributions of different networks. Each net-
work has its corresponding discriminator which
discriminates the feature map from its own as fake
while classifying that of the other network as real.
By training a network to fool the corresponding
discriminator, it can learn the other network’s fea-
ture map distribution. We show that our method
performs better than the conventional direct align-
ment method such as L1 and is more suitable
for online distillation. Also, we propose a novel
cyclic learning scheme for training more than two
networks together. We have applied our method to
various network architectures on the classification
task and discovered a significant improvement of
performance especially in the case of training a
pair of a small network and a large one.

1. Introduction
With the advent of Alexnet (Krizhevsky et al., 2012), deep
convolution neural networks have achieved remarkable suc-
cess in a variety of tasks. However, high-performance of
deep neural network is often gained by increasing the depth
or the width of a network. Deep and wide networks cost
a large number of computation as well as memory storage
which is not suitable for a resource-limited environment
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such as mobile or embedded systems. To overcome this
issue, many researches have been conducted to develop
smaller but more accurate neural networks. Some of the
well-known methods in this line of research are parameter
quantization or binarization (Rastegari et al., 2016), prun-
ing (Li et al., 2016) and knowledge distillation (KD) (Hinton
et al., 2015).

KD has been an active area of research as a solution to
improve the performance of a light-weight network by trans-
ferring the knowledge of a large pre-trained network (or
an ensemble of small networks) as a teacher network. KD
sets the teacher network’s class probabilities as a target
which a small student network tries to mimic. By aligning
the student’s predictions to those of the teacher, the student
can improve its performance. Recently, some studies have
shown that rather than using a pre-trained teacher, simulta-
neously training networks to learn from each other in a peer-
teaching manner is also possible. This approach is called
online distillation. Deep mutual learning (DML) (Zhang
et al., 2018) and on-the-fly native ensemble (ONE) (Lan
et al., 2018) are the representative online distillation meth-
ods that show appealing results in the image classification
tasks. Conventional distillation method requires pre-training
a powerful teacher network and performs an one-way trans-
fer to a relatively small and untrained student network. On
the other hand, in online mutual distillation, there is no
specific teacher-student role. All the networks learn simul-
taneously by teaching each other from the start of training.
It trains with the conventional cross-entropy loss from the
ground truth label along with the mimicry loss to learn from
its peers. Networks trained in such an online distillation way
achieve results superior not only to the networks trained
with the cross-entropy loss alone but also to those trained in
a conventional offline distillation manner from a pre-trained
teacher network.

However, aforementioned online distillation methods make
use of only the logit information. While the logit con-
tains the probabilistic information over classes, the fea-
ture map, the output of convolution layer, has more mean-
ingful and abundant feature information on image inten-
sity and spatial correlation. In offline distillation which
utilizes a pre-trained model as a teacher network, many
methods such as FitNet (Romero et al., 2014), attention
transfer (AT) (Zagoruyko & Komodakis, 2016a) and factor
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Figure 1. The concept of online Adversarial Feature map Distillation (AFD) Each point represents a feature map for the corresponding
input denoted by different colors. The thin line arrow indicates the progress of feature map data points as iteration goes on and the broader
arrow indicates the way each method compares the feature maps from different networks. (a) In direct feature map alignment, networks
are trained such that the distance between each pair of points with the same color is minimized. (b) In AFD, the discriminators contain
information on feature map distributions and thus the networks are trained such that the distributions match. The oval shape illustrates the
overall feature map distribution of each network and AFD tries to mimic the distribution of the peer network by the adversarial loss. (best
viewed in color)

transfer (FT) (Kim et al., 2018) make use of this intermedi-
ate feature representation as a target to learn for the student
network. On the other hand, in online distillation, to the
best of our knowledge, no feature map-based knowledge
distillation method has been proposed.

This is due to some challenges. Unlike the offline methods
that have a clear target to mimic, there is no static target
to follow in an online method. At every training iteration,
the feature maps of the co-trained network change, thus in
online feature map-level distillation, the problem turns into
mimicking the moving target properly. While each node
of the logit is confined to represent its assigned class prob-
ability which does not change drastically over iterations,
at the feature map-level, much more flexibility comes into
play, which makes the problem more challenging. Therefore,
the direct aligning method such as using L1 or L2 distance
is not suitable for online mutual feature map distillation
because it updates the network parameters to generate a
feature map trying to mimic the current output feature map
of the other network. In other words, the direct alignment
method only tries to minimize the distance between the two
feature map points (one for each network), hence it ignores
the distributional difference between the two feature maps
(Fig. 1(a)).

To alleviate this problem, in this paper, we propose a novel
online distillation method that transfers the knowledge of
feature maps in an adversarial way as well as a cyclic learn-
ing framework for training more than two networks simulta-
neously. Unlike the direct aligning method, our adversarial
distillation method enables a network to learn the overall fea-
ture map distribution of the co-trained network (Fig. 1(b)).
Since the discriminator is trained to distinguish the dif-
ference between the networks’ feature map distributions
(containing the history of feature maps for different input
images) at every training iteration, by fooling the discrimi-

nator, the network learns the co-trained network’s changing
feature map distribution. Exchanging the knowledge of fea-
ture map distribution facilitates the networks to converge
to a better feature map manifold that generalizes better and
yields more accurate results. Moreover, since it does not
care about from which image a specific feature map origi-
nated, it is fitted to a secure federated learning environment
(Li et al., 2019).

The contributions of this paper can be summarized as fol-
lows: 1) we propose an online knowledge distillation method
that utilizes not only the logit but also the feature map from
the convolution layer. 2) Our method transfers the knowl-
edge of feature maps not by directly aligning them using
the distance loss but by learning their distributions using
the adversarial training via discriminators. 3) We propose
a novel cyclic learning scheme for training more than two
networks simultaneously.

2. Related Work
The idea of model compression by transferring the knowl-
edge of a high performing model to a smaller model was
originally proposed by Buciluǎ et al. (2006). Then in recent
years, this research area got invigorated due to the work of
knowledge distillation (KD) by Hinton et al. (2015). The
main contribution of KD is to use the softened logit of pre-
trained teacher network that has higher entropy as an extra
supervision to train a student network. KD trains a compact
student network to learn not only by the conventional cross-
entropy (CE) loss subjected to the labeled data but also by
the final outputs of the teacher network. While KD only uti-
lizes the logit, method such as FitNet (Romero et al., 2014),
AT (Zagoruyko & Komodakis, 2016a), FT (Kim et al., 2018)
and KTAN (Liu et al., 2018) and MEAL (Shen et al., 2019)
use the intermediate feature representation to transfer the
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knowledge of a teacher network.

Online Knowledge Distillation: Conventional offline
methods require training a teacher model in advance while
online methods do not require any pre-trained model. In-
stead, the networks teach each other mutually by sharing
their knowledge throughout the training process. Some ex-
amples of recent online methods are DML (Zhang et al.,
2018) and ONE (Lan et al., 2018) which demonstrate
promising results. DML simply applies KD losses mutu-
ally, treating each other as teachers, and it achieves results
that is even better than the offline KD method. The draw-
back of DML is that it lacks an appropriate teacher role,
hence provides only limited information to each network.
ONE points out this defect of DML, rather than mutually
distilling between the networks, ONE generates a gated en-
semble logit of the training networks and uses it as a target
to align for each network. ONE tries to create a powerful
teacher logit that can provide more generalized information.
The flaw of ONE is that it can not train different network
architectures at the same time due to its architecture of shar-
ing the low-level layers for the gating module. The common
limitation of existing online methods is that they are de-
pendent only on the logit and do not make any use of the
feature map information. Considering that KD loss term is
only applicable to the classification task, transferring knowl-
edge at feature map-level can enlarge the applicability to
other tasks. Therefore, our method proposes a distillation
method that utilizes not only the logit but also the feature
map via adversarial training, moreover, our method can be
applied in case where the co-trained networks have different
architectures.

Generative Adversarial Network (GAN): GAN (Good-
fellow et al., 2014) is a generative model framework that is
proposed with an adversarial training scheme, using a gen-
erator network G and a discriminator network D. G learns
to generate the real data distribution while D is trained to
distinguish the real samples of the dataset from the fake
results generated by G. The goal of G is to trick D to make
a mistake of determining the fake results as the real samples.
Though it was initially proposed for generative models, its
adversarial training scheme is not limited to data generation.
Adversarial training has been adapted to various tasks such
as image translation (Isola et al., 2017; Zhu et al., 2017),
captioning (Dai et al., 2017), semi-supervised learning (Miy-
ato et al., 2016; Springenberg, 2015), reinforcement learn-
ing (Pfau & Vinyals, 2016), and many others. In this paper,
we utilize GAN’s adversarial training strategy to transfer the
knowledge at feature map-level in an online manner. The
networks learn the other networks’ feature map distributions
by trying to deceive the discriminators while the discrimina-
tors are trained to distinguish the different distributions of
each network.

3. Proposed Method
In this section, we describe the overall process of our pro-
posed Online Adversarial Feature map Distillation (AFD).
Our method consists of two major losses: 1) logit-based loss
and 2) feature map-based loss. Logit-based loss is defined
by two different loss terms which are conventional cross-
entropy (CE) loss and the mutual distillation loss using the
Kullback-Leibler divergence (KLD). Our newly proposed
feature map-based loss is to distill the feature map indirectly
via discriminators. We use the feature map from the last
convolution layer since deeper convolution layer generates
more meaningful features with a high-level abstraction (Kim
et al., 2018). The adversarial training scheme of generative
adversarial networks (GAN) (Goodfellow et al., 2014) is
utilized to transfer the knowledge at feature map-level.

As can be seen in Figure 2, when training two different
networks, �1 and �2, in an online manner, we employ
two discriminators, D1 and D2. We train D1 such that the
feature map of �2 is regarded as a real and that of �1 is clas-
sified as a fake and do vice versa for discriminatorD2. Then,
each network �1 and �2 are trained to fool its correspond-
ing discriminator so that it can generate a feature map that
mimics the other network’s feature map. Throughout this
adversarial training, each network learns the feature map
distribution of the other network. By exploiting both logit-
based distillation loss and feature map-based adversarial
loss together, we could observe a significant improvement
of performance in various pairs of network architectures
especially when training small and large networks together.
Also we introduce a cyclic learning scheme for training more
than two networks simultaneously. It reduces the number
of required discriminators from 2 �K C2(when employ-
ing discriminators bidirectionally between every network
pairs.) to K where K is the number of networks participat-
ing. This cyclic learning framework not only requires less
computation than the bidirectional way but also achieves
better results compared to other online training schemes
for multiple networks. First, we explain the conventional
mutual knowledge distillation method conducted among the
networks at the logit-level. Then we introduce our novel
online feature map distillation method using the adversarial
training scheme in addition to the cyclic learning framework
for training more than two networks at the same time.

3.1. Logit-based Mutual Knowledge Distillation

We use two loss terms for logit-based learning, one is
the conventional cross-entropy (CE) loss and the other is
mutual distillation loss between networks based on Kull-
back Leibler (KL) divergence. We formulate our proposed
method assuming training two networks. Training scheme
for more than two networks will be explained in Sec 3.3.
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Figure 2. Overall schematic of online adversarial feature map distillation (AFD). At feature map-level, each network is trained to deceive
the corresponding discriminator so that it can mimic the other network’s feature map distribution. While at logit-level, KL loss to learn the
peer network’s logit is applied as well as the conventional CE loss.

Below is the overall logit-based loss for two networks:

L1
logit = Lce(y, σ(z1)) + T 2 � Lkl(σ(z2/T ), σ(z1/T ))

L2
logit = Lce(y, σ(z2)) + T 2 � Lkl(σ(z1/T ), σ(z2/T ))

Here, σ(�) refers to softmax function and z 2 RC is the
logit produced from a network for C-class classification
problem. The temperature term T is used to control the level
of smoothness in probabilities. As the temperature term T
goes up, it creates a more softened probability distribution.
We use T = 3 for every experiment. Lce is the CE loss
between the ground truth label y and the softmax output
σ(z) that is commonly used in image classification. Lkl

is the KL loss between the softened logit of each network.
We multiply the KL loss term with T 2 because the gradi-
ents produced by the soft targets are scaled by 1/T 2. While
the CE loss is between the correct labels and the outputs
of the model, the KL loss is the KL distance between the
outputs of two training networks. The KL loss provides an
extra information from the peer network so that the network
can improve its generalization performance. Detailed for-
mulation of Lce and Lkl are described in supplementary
material section A. The difference with DML is that while
DML updates asynchronously which means that it updates
one network first and then the other network, our AFD up-
dates the networks synchronously, not alternately. The CE
loss trains the networks to predict the correct truth label
while the mutual distillation loss tries to match the outputs
of the peer-networks, enabling the networks to share the
knowledge at logit-level.

3.2. Adversarial Training For Feature-map-based KD

Our AFD uses adversarial training to transfer knowledge
at feature map-level. We formulate our adversarial feature

map distillation for two networks which will be extended for
more networks later. We divide a network into two parts, one
is the feature extractor part that generates a feature map and
the other is the classifier part which is the FC layer that trans-
forms the feature map into a logit. Each network also has a
corresponding discriminator which distinguishes different
feature map distributions. The architecture of the discrimi-
nator is simply a series of Conv2d-BatchNorm-LeakyReLU-
Conv2d-Sigmoid. It takes a feature map of the last layer and
it reduces the spatial size and the number of channel of the
feature map as it goes through the convolution operation so
that it can produce a single scalar value at the end. Then
we apply the Sigmoid function of the value to normalize it
between 0 and 1.

We utilize the feature extractor part to enable feature map-
level distillation. For the convenience of mathematical no-
tation, we name the feature extractor part as Gk and its
discriminator as Dk, k indicates the network number. As de-
picted in Figure 2, each network has to fool its discriminator
to mimic the peer network’s feature map and the discrim-
inator has to discriminate from which network the feature
map is originated. Following LSGAN (Mao et al., 2017),
our overall adversarial loss for discriminator and the feature
extractor can be written as below:

LD1
= [1�D1(G2(x))]2 + [D1(G1(x))]2

LG1
= [1�D1(G1(x))]2

The feature extractors G1 and G2 take input x and generate
feature maps. The discriminator D1 takes a feature map and
yields a scalar between 0 (fake) and 1 (real). It is trained
to output 1 if the feature map came from the co-trained
network (in this case, G2) or 0 if the feature map is pro-
duced from the network it belongs to (G1 in this case). The
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goal ofD1 is to minimize the discriminator loss termL D 1

by correctly distinguishing the two different feature map
distributions whileG1 's goal is to minimize the loss term
L G1 by fooling D1 to make mistake of determiningG1 's
feature map as real and yield 1. Each training network's ob-
ject is to minimizeL G k to mimic the peer network's feature
map distribution. This adversarial scheme works exactly
the same by changing the role of two networks. In case
where the two networks' feature map outputs have different
channel sizes, for example a pair like (WRN-16-2, WRN-
16-4) (Zagoruyko & Komodakis, 2016b), we use a transfer
layer that is composed of a Conv2d, a BatchNorm and a
ReLU which converts the number of channels to that of peer
network. The above loss terms change as

L D 1 = [1 � D1(T2(G2(x)))] 2 + [ D1(T1(G1(x)))] 2

L G1 = [1 � D1(T1(G1(x)))] 2

when using the transfer layerTk .

Optimization: Combining both logit-based loss and the
adversarial feature map-based loss, the overall loss for each
network� 1 and� 2 are as follows:

L � 1 = L 1
logit + L G1 ; L � 2 = L 2

logit + L G2

However, the logit-based loss termL k
logit and the feature

map-based loss termL G k are not optimized by the same
optimizer. In fact, they are optimized successively in a same
mini-batch. At every mini-batch iteration, we infer an image
into a model and it computes a logit and a feature map. Then
we calculate the two loss terms (logit-based and feature-map-
based) and optimize the networks based on the two losses
separately, meaning that we update the network's parameters
by the logit-based loss once and then update again by the
feature map-based loss. The reason we optimize separately
for each loss term is because they use different learning rates.
The adversarial loss requires much slower learning rate thus
if we use the same optimizer with the same learning rate,
the networks would not be optimized. Note that we do not
infer for each loss term, inference is conducted only once,
only the optimization is conducted twice, one for each loss
term.

3.3. Cyclic Learning Framework

In case when we want to train more than two networks
simultaneously, our method proposes a novel cyclic peer-
learning scheme . Our cyclic peer-learning scheme transfers
each network's knowledge to its next peer network in an
one-way cyclic manner. If we trainK number of networks
together, each network distills its knowledge to its next net-
work except the last network transfers its knowledge to the
�rst network, creating a cyclic knowledge transfer �ow as
1 ! 2; 2 ! 3; � � � ; (K � 1) ! K; K ! 1. Refer to sup-
plementary material section B for detailed explanation and

�gure. The main contribution of using this cyclic learning
framework is to avoid employing too many discriminators.
If we apply our adversarial loss for every pair of networks, it
would demand two times the amount of every possible pair
of K networks which would cost enormous computation.
In Sec 4.5, we empirically show that our cyclic training
scheme is better than other online methods for training mul-
tiple networks.

4. Experiment

In this section, to show the adequacy of our method, we �rst
present comparison experiment with distance method and
ablation study to analyze our method. Then we compare our
approach with existing online knowledge distillation meth-
ods under different settings. We demonstrate the comparison
experiment results of using the same network architectures
in Sec 4.3 and then apply our method on networks with dif-
ferent architectures in Sec 4.4. In Sec 4.5, we also show the
results of training more than two networks to demonstrate
that our method generalizes well even when the number of
networks increases.

In most of experiments, we use the CIFAR-100 (Krizhevsky
et al.) dataset. It consists of 50K training images and 10K
test images over 100 classes, accordingly it has 600 im-
ages per each class. All the reported results on CIFAR-100
are average of 5 experiments. Since our method uses two
loss terms, logit-based loss and feature map-based loss, we
use different learning details for each loss term. For over-
all learning schedule, we follow the learning schedule of
ONE (Lan et al., 2018) which is 300 epochs of training to
conduct fair comparison . In terms of logit-based loss, the
learning rate starts at 0.1 and is multiplied by 0.1 at 150, 225
epoch. We optimize the logit-based loss using SGD with
mini-batch size of 128, momentum 0.9 and weight-decay
of 1e-4. This learning details for logit-based loss is equally
applied to other compared online distillation methods. For
feature map-based loss, the learning rate starts at 2e-5 for
both discriminators and feature extractors and is decayed
by 0.1 at 75, 150 epoch. The feature map-based loss is op-
timized by ADAM (Kingma & Ba, 2014) with the same
mini-batch size of 128 and weight-decay of 1e-1. In tables,
`2 Net Avg' and `Ens' represents the average accuracy of
the two networks and the ensemble accuracy respectively.
The average ensemble is used for AFD, DML and KD while
ONE uses gated ensemble of the networks according to its
methodology.

4.1. Comparison With Direct Feature-map Alignment

Since our goal is to distill feature map information that suits
for online distillation, we brie�y compare our method with
conventional direct alignment method in Table 1. We train
two networks together using the same and different types of
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Table 1.Top-1 accuracy(%) comparison with direct alignment methods using CIFAR-100 dataset.

Model Type Vanilla L1 L1+ KD L1+ KD (of�ine) AFD (Ours)
Same Arch. Net 2 Net Avg Ens 2 Net Avg Ens Student Teacher Ens 2 Net Avg Ens
ResNet-32 69.38 66.82 70.69 70.16 72.44 71.91 69.79 72.07 74.03 75.64
WRN-16-2 71.07 69.88 72.57 68.95 69.09 73.11 71.52 74.75 75.33 76.34

Different Arch. Net1 Net2 Net1 Net2 Ens Net1 Net2 Ens Student Teacher Ens Net1 Net2 Ens
WRN-(16-2,28-2) 71.07 73.50 69.84 73.41 74.6372.35 74.82 75.10 73.94 73.62 76.5675.88 77.08 77.82

network architecture. ForL 1, each network is trained not
only to follow the ground-truth label by CE loss, but also to
mimic the other network's feature map using theL 1 distance
loss. ForL 1+ KD, KD (Hinton et al., 2015) loss is applied
at the logit level along with theL 1 loss between the feature
maps. We also compare our results with of�ine method,L 1+
KD (of�ine), it employs a pre-trained network as a teacher
network and distills its knowledge to an untrained student
network byL 1 loss at the feature map-level and KD loss
at the logit level. We employ ResNet-32 (He et al., 2016),
WRN-16-2 (Zagoruyko & Komodakis, 2016b) and WRN-
28-2 that shows 69.79%, 71.52%, and 73.62% accuracy as
the teacher networks.

The results clearly show that learning the distributions of
feature maps by adversarial loss performs better than direct
alignment method in both online and of�ine distillation. We
could observe that usingL 1 distance loss actually disturbs
the networks to learn good features in online environment.
The accuracy of ResNet-32 has dropped more than 2% com-
pared to its vanilla version accuracy (69.38%) and the ac-
curacy of WRN-16-2 is also lower than its vanilla network
(71.07%). Even when combined with KD loss (L 1 + KD),
direct alignment method shows poor performance compared
to ours in both online and of�ine manner. Though distance
loss is used in many conventional of�ine methods, it dis-
turbs proper learning in online environment. Also in case of
different architecture types, we observe a severe degradation
of performance when using the direct alignment method.
It indicates that when it comes to online feature map dis-
tillation, transferring feature map information with direct
alignment method such asL 1 distance extremely worsen
the performance while our method advances it.

4.2. Ablation Study

Table 2 shows the ablation study of our proposed method.
We conduct experiments using the same and different net-
work architectures. The experiments are conducted under
three different training settings for each model case. The
three settings are full model, without mutual knowledge
distillation at logit-level and without adversarial feature
map distillation. When trained without the adversarial fea-
ture map distillation, the accuracy decreases in all three

Table 2.Ablation study of AFD. Top-1 accuracy(%) on CIFAR-
100 dataset.

Model Type w/o KD (Adv only) w/o Adv (KD only) Full model (AFD)
Same Arch. 2 Net Avg Ens 2 Net Avg Ens 2 Net Avg Ens
ResNet-32 70.09 74.77 73.38 75.21 74.03 75.64
WRN-16-2 71.94 75.92 74.81 76.20 75.33 76.34

Different Arch. Net1 Net2 Ens Net1 Net2 Ens Net1 Net2 Ens
WRN-(16-2,28-2)72.05 73.80 76.8274.99 76.64 77.2875.88 77.08 77.82

model cases. The accuracy of both ResNet-32 and WRN-
16-2 dropped by 0.65% and 0.52% respectively, and those
of (WRN-16-2, WRN-28-2) pair declined by 0.89% and
0.44% compared to the full model. Ensemble results are
also lower than those of the full models. When only the ad-
versarial feature map distillation is applied, the accuracy has
increased by 0.71% and 0.87% compared to the vanilla ver-
sions of ResNet-32 and WRN-16-2 respectively. Especially
in case of different sub-network architecture, the accuracy
of WRN-16-2 has increased by almost 1%. Based on these
experiments, we could con�rm that adversarial feature map
distillation has some ef�cacy of improving the performance
in online environment.

4.3. Same Architecture

We compare our method with DML and ONE for train-
ing two networks with the same architecture. The vanilla
network refers to the original network trained without any
distillation method. As shown in Table 3, in both ResNet
and WRN serises, DML, ONE and AFD all improves the
networks' accuracy compared to the vanilla networks. How-
ever, AFD shows the highest improvement of performance
in both 2 Net average and ensemble accuracy among the
compared distillation methods. Especially in case of ResNet-
20, ResNet-32 and WRN-16-2, our method signi�cantly
improves the accuracy by more than 4% compared to the
vanilla version while other distillation methods improve
around 3% on average except the ResNet-32 of DML.

4.4. Different Architecture

In this section, we compare our method with DML and KD
using different network architectures. We set Net2 as the
higher capacity network. For KD, we use the ensemble of
the two networks as a teacher to mimic at every iteration.
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Table 3.Top-1 accuracy(%) comparison with other online distillation methods for training two same architecture networks as a pair on the
CIFAR-100 dataset. The numbers in parentheses refer to the amount of increase in accuracy compared to the vanilla network.

Model Type Vanila DML ONE AFD (Ours)
Same Arch. Net 2 Net Avg Ens 2 Net Avg Ens 2 Net Avg Ens
ResNet-20 67.48 70.90(+3.42%) 72.0870.56(+3.08%) 72.2671.72(+4.24%) 72.98
ResNet-32 69.38 73.40(+4.02%) 74.8972.61(+3.23%) 74.0774.03(+4.65%) 75.64
ResNet-56 73.84 75.48(+1.64%) 76.7376.45(+2.61%) 77.1677.25(+3.41%) 78.35
WRN-16-2 71.07 74.68(+3.61%) 75.8173.85(+2.78%) 74.8475.33(+4.26%) 76.34
WRN-16-4 75.38 78.17(+2.79%) 79.0677.32(+1.94%) 77.7978.55(+3.17%) 79.28
WRN-28-2 73.50 77.02(+3.52%) 78.6476.67(+3.17%) 77.4077.22(+3.72%) 78.72
WRN-28-4 76.60 79.16(+2.56%) 80.5679.25(+2.65%) 79.7379.46(+2.86%) 80.65

Table 4.Top-1 accuracy(%) comparison with other online distillation methods for training two different architectures as a pair on
CIFAR-100 dataset.

Model Types KD DML AFD (Ours)
Net1 Net2 Net1 Net2 Ens Net1 Net2 Ens Net1 Net2 Ens

ResNet-32 ResNet-5672.92 76.27 76.7173.48 76.35 76.7474.13 76.69 77.11
ResNet-32 WRN-16-472.67 77.26 76.9473.48 77.43 77.0174.43 77.82 77.67
ResNet-56 WRN-28-475.48 78.91 79.2376.03 79.32 79.38 77.95 79.21 80.01
ResNet-20 WRN-28-1070.08 78.17 76.12 71.03 77.70 75.7872.62 77.83 76.70
WRN-16-2 WRN-16-4 74.87 77.42 77.3074.87 77.17 76.9675.81 78.00 77.84
WRN-16-2 WRN-28-2 74.86 76.45 77.2975.11 76.91 77.2475.88 77.08 77.82
WRN-16-2 WRN-28-4 74.51 78.18 77.6074.95 78.23 77.6776.23 78.26 78.28

Average 73.63 77.52 77.3174.14 77.59 77.2575.29 77.84 77.92

The difference with original KD (Hinton et al., 2015) is
that it is an online learning method, not of�ine. We did
not include ONE because ONE can not be applied in case
where the two networks have different model types due to
its architecture of sharing the low-level layers. In table 4,
we could observe that our method shows better performance
improvement than other methods in both Net1 and Net2 ex-
cept for a couple of cases. The interesting result is that when
AFD is applied, the performance of Net1 (smaller network)
is improved signi�cantly compared to other online distilla-
tion methods. This is because AFD can transfer the higher
capacity network's meaningful knowledge (feature map dis-
tribution) to the lower capacity one better than other online
methods.When compared with KD and DML, AFD's Net1
accuracy is higher by 1.66% and 1.15% and the ensemble
accuracy is better by 0.61% and 0.67% on average respec-
tively. In case of (WRN-16-2, WRN-28-4) pair, the Net1's
parameter size (0.70M) is more than 8 times smaller than
Net2 (5.87M). Despite the large size difference, our method
improves both networks' accuracy, particularly our Net1 per-
formance is better than KD and DML by 1.72% and 1.28%
respectively. The performance of KD and DML seems to
decline as the difference between the two model sizes gets
larger. Throughout this experiment, we have shown that our
method also works properly for different architectures of
networks even when two networks have large difference
in their model sizes. Using our method, smaller network
considerably bene�ts from the larger network.

Table 5.Top-1 accuracy(%) comparison with other online distilla-
tion methods using 3 networks on CIFAR-100 dataset. '3 Net Avg'
represents the average accuracy of the 3 networks.

Model Type Vanilla DML ONE AFD (Ours)
Same arch. Net 3 Net Avg Ens 3 Net Avg Ens 3 Net Avg Ens
ResNet-32 69.38 73.43 76.11 73.25 74.94 74.14 76.64
ResNet-56 73.84 76.11 77.83 76.49 77.38 77.37 79.18
WRN-16-2 71.07 75.15 76.93 73.87 75.26 75.65 77.54
WRN-28-2 73.50 77.12 79.41 76.66 77.53 77.20 79.78

Table 6.Top-1 accuracy(%) comparison with DML on ImageNet
dataset.

Model Types Vanilla DML AFD (Ours)
Net1 Net2 Net1 Net2 Net1 Net2 Ens Net1 Net2 Ens

ResNet-18 ResNet-3469.76 73.3170.19 73.57 73.3370.43 74.00 74.53

4.5. Expansion to 3 Networks

To show our method's expandability for training more than
two networks, we conduct experiment of training 3 networks
in this section. As proposed in Sec 3.3, our method uses a
cyclic learning framework rather than employing adversar-
ial loss between every network pairs in order to reduce the
amount of computation and memory. DML calculates the
mutual knowledge distillation loss between every network
pairs and uses the average of the losses. ONE generates a
gated ensemble of the sub-networks and transfers the knowl-
edge of the ensemble logit to each network. As it can be seen
in Table 5, AFD outperforms the compared online distilla-




