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Abstract

A classic problem in unsupervised learning and
data analysis is to find simpler and easy-to-
visualize representations of the data that preserve
its essential properties. A widely-used method to
preserve the underlying hierarchical structure of
the data while reducing its complexity is to find an
embedding of the data into a tree or an ultrametric,
but computing such an embedding on a data set
of n points in ()(log 1) dimensions incurs a quite
prohibitive running time of @ (1?).

In this paper, we provide a new algorithm which
takes as input a set of points P in R?, and for ev-

ery ¢ > 1, runs in time n1+c£2 (for some universal
constant 0 > 1) to output an ultrametric A such
that for any two points ©, v in P, we have A(u, v)
is within a multiplicative factor of 5c to the dis-
tance between u and v in the “best” ultrametric
representation of P. Here, the best ultrametric is
the ultrametric A that minimizes the maximum
distance distortion with respect to the £, distance,

namely that minimizes max A(1,0)/ |u—o|J,.
u,veP

We complement the above result by showing that
under popular complexity theoretic assumptions,
for every constant € > 0, no algorithm with run-
ning time 72 ~¢ can distinguish between inputs in
{-metric that admit isometric embedding and
those that incur a distortion of 3/2.

Finally, we present empirical evaluation on clas-
sic machine learning datasets and show that the
output of our algorithm is comparable to the out-
put of the linkage algorithms while achieving a
much faster running time.
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1. Introduction

The curse of dimensionality has ruthlessly been haunting
machine learning and data mining researchers. On the one
hand, high dimensional representation of data elements al-
lows fine-grained description of each datum and can lead to
more accurate models, prediction and understanding. On the
other hand, obtaining a significant signal in each dimension
often requires a huge amount of data and high-dimensional
data requires algorithms that can efficiently handle it. Hence,
computing a simple representation of a high-dimensional
dataset while preserving its most important properties has
been a central problem in a large number of communities
since the 1950s.

Of course, computing a simple representation of an arbitrary
high-dimensional set of data elements necessarily incurs
some information loss. Thus, the main question has been
to find dimensionality reduction techniques that would pre-
serve — or better, reveal — some structure of the data. An
example of such a successful approach has been the prin-
cipal component analysis which can be used to denoise a
dataset and obtain a low-dimensional representation where
‘similar’ data elements are mapped to close-by locations.
This approach has thus become a widely-used, powerful tool
to identify cluster structures in high-dimensional datasets.

Yet, in many cases more complex structures underlie the
datasets and it is crucial to identify this structure. For exam-
ple, given similarity relations between species, computing
a phylogenetic tree requires more than identifying a ‘flat’
clustering structure, it is critical to identify the whole hier-
archy of species. Thus, computing a simple representation
of an input containing a hierarchical structure has drawn a
lot of attention over the years, in particular from the compu-
tational biology community. The most popular approaches
are arguably the /inkage algorithms, average-linkage, single-
linkage, Ward’s method, and complete-linkage, which pro-
duce an embedding of the original metric into an ultra-
metric!, see for example the seminal work of (Carlsson &
Mémoli, 2010). Unfortunately, these approaches come with
a major drawback: all these methods, have quadratic run-
ning time” — even in the best case — when the input consists

'An ultrametric (X, A) is a metric space where for each
x,y,z € X, A(x,y) < max(A(x,z),A(z,y)).
2We would like to note here that the relevant work of (Abboud
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of points in @(logn) dimensions (where # is the number
of points) making them impractical for most applications
nowadays. Obtaining an efficient algorithm for computing
“good” hierarchical representation has thus been a major
problem (see Section 1.2 for more details).

In this paper we are interested in constructing embeddings
that (approximately) preserve the hierarchical structure un-
derlying the input. For example, given three points a, b, c,
we would like that if 2 is more similar to b than to ¢ (and so
a is originally closer to b than to ¢ in the high-dimensional
representation), then the distance of a to b in the ultrametric
is lower than its distance to c. More formally, given a set
of points X in Euclidean space, a good ultrametric repre-
sentation A is such that for every two points a,b in X, we
have
la—=Dbll2 < Aa,b) < a-lla—bl:,

for the smallest possible « (see formal definition in Sec-
tion 2). Interestingly, and perhaps surprisingly, this problem
can be solved in O(nd + n?logn) using an algorithm by
(Farach et al., 1995). Unfortunately, this algorithm also
suffers from a quite prohibitive quadratic running time. We
thus ask:

Is there an easy-to-implement,
efficient algorithm for finding
good ultrametric representation
of high-dimensional inputs?

1.1. Our Results

We focus on the problem mentioned above, which we re-
fer to as the BEST ULTRAMETRIC FIT problem (ULT)
and which is formally defined in Section 2. We provide
a simple algorithm, with running time O (nd) + nl+0(1/7%)
that returns a 5y-approximation for the ULT problem, or
a near-linear time algorithm that returns an O(4/logn)-
approximation.

Theorem 1.1 (Upper Bound). For any v > 1, there is
an algorithm that produces a 5y-approximation in time
nd + n1+0(1/7%) for Euclidean instances of ULT of dimen-
sion d.

Moreover, there is an algorithm that produces an
O(+/log n)-approximation in time O(nd + nlog®n) for
Euclidean instances of ULT of dimension d.

From a theoretical point of view, note that we can indeed get
rid of the nd dependency in the above theorem and replace it
with an optimal bound depending on the number of non-zero
coordinates by applying a sparse Johnson-Lindenstrauss
transform in the beginning. Nonetheless, we stuck to the
nd dependency as it keeps the presentation of our algorithm

et al., 2019) only mimics the behavior of average-linkage or ward’s
method and does not necessarily output an ultrametric.

simple and clear, and also since this is what we use in the
experimental section.

Importantly, and perhaps surprisingly, we show that finding
a faster than n2~¢ algorithm for this problem is beyond
current techniques.

Theorem 1.2 (Lower Bound; Informal version of Theo-
rem 5.1). Assuming SETH, for every ¢ > 0, no algorithm
running in time n>~¢ can determine if an instance of ULT
of points in Le-metric admits an isometric embedding or
every embedding has distortion at least 3/2.

We also provide inapproximability results for the Euclidean
metric by ruling out (1 4 0(1))-approximation algorithms
for ULT running in time n'*+°(1) albeit under a more non-
standard hypothesis that we motivate and introduce in this
paper (see Theorem 5.7 for details).

Empirical results We implemented our algorithm and
performed experiments on three classic datasets (DIA-
BETES, MICE, PENDIGITS). We compared the results
with classic linkage algorithms (average, complete, single)
and Ward’s method from the Scikit-learn library (Pedregosa
et al., 2011). For a parameter 7y fixed to ~ 2.5, our re-
sults are as follows. First, as complexity analysis predicts,
the execution of our algorithm is much faster whenever the
dataset becomes large enough: up to ~ 36 (resp. 32, 7
and 35) times faster than average linkage (resp. complete
linkage, single linkage and Ward’s method) for moderate
size dataset containing roughly 10000 points, and has com-
parable running time for smaller inputs. Second, while
achieving a much faster running time, the quality of the ul-
trametric stays competitive to the distortion produced by the
other linkage algorithms. Indeed, the maximum distortion is,
on these three datasets, always better than Ward’s method,
while staying not so far from the others: in the worst case up
to a factor ~ 5.2 (resp. 4.3, 10.5) against average linkage
(resp. complete and single linkages). This shows that our
new algorithm is a reliable and efficient alternative to the
linkage algorithms when dealing with massive datasets.

1.2. Related Work

Strengthening the foundations for hierarchical representa-
tion of complex data has received a lot of attention over the
years. The thorough study of (Carlsson & Mémoli, 2010)
has deepened our understanding of the linkage algorithms
and the inputs for which they produce good representations,
we refer the reader to this work for a more complete introduc-
tion to the linkage algorithms. Hierarchical representation
of data and hierarchical clusterings are similar problems.
A recent seminal paper by (Dasgupta, 2015) phrasing the
problem of computing a good hierarchical clustering as
an optimization problem has sparked a significant amount
of work mixing theoretical and practical results. (Cohen-
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Addad et al., 2018; Moseley & Wang, 2017) showed that
average-linkage achieves a constant factor approximation
to (the dual of) Dasgupta’s function and introduced new
algorithms with worst-case and beyond-worst-case guaran-
tees, see also (Roy & Pokutta, 2016; Charikar & Chatzi-
afratis, 2017; Cohen-Addad et al., 2017; Charikar et al.,
2019; 2018). Single-linkage is also known to be helfpul to
identify ‘flat’ clusterings in some specific settings (Balcan
et al., 2008). We would like to point out that this previous
work did not consider the question of producing an ultramet-
ric that is representative of the underlying (dis)similarities
of the data and in fact most of the algorithms designed by
previous work do not output ultrametrics at all. This paper
takes a different perspective on the problem of computing
a hierarchical clustering: we are interested in how well the
underlying metric is preserved by the hierarchical cluster-
ing. Also it is worth mentioning that in (Agarwala et al.,
1999; Ailon & Charikar, 2011) the authors study various
tree embedding with a focus on average distortion in (Ailon
& Charikar, 2011), and tree metrics (and not ultrametrics)
in (Agarwala et al., 1999).

Finally, a related but orthogonal approach to ours was taken
in recent papers by (Cochez & Mou, 2015) and (Abboud
et al., 2019). There, the authors design implementation of
average-linkage and Ward’s method that have subquadratic
running time by approximating the greedy steps done by
the algorithms. However, their results do not provide any
approximation guarantees in terms of any objective function
but rather on the quality of the approximation of the greedy
step and is not guaranteed to produce an ultrametric.

1.3. Organization of Paper

This paper is organized as follows. In Section 2 we intro-
duce the Farach et al. algorithm. In Section 3 we introduce
our near linear time approximation algorithm for general
metrics, and in Section 4 discuss its realization specifically
in the Euclidean metric. In Section 5 we prove our con-
ditional lower bounds on fast approximation algorithms.
Finally, in Section 6 we detail the empirical performance of
our proposed approximation algorithm.

2. Preliminaries

Formally, an ultrametric (X, A) is a metric space where for
eachx,y,z € X,

A(x,y) < max(A(x,z),A(z,y)).

For all finite point-sets X, it can be (always) realized in
the following way as well. Let T = (V,E) be a finite,
rooted tree, and let L denote the leaves of T. Suppose
w: V\ L — R" is a function that assigns positive weights
to the internal vertices of T such that the vertex weights are
non-increasing along root-leaf paths. Then one can define a

distance on L by
dw(£,0") = w(LCA(L, 1),

where LCA is the least common ancestor. This is an ultra-
metric on L.

We consider the BEST ULTRAMETRIC FIT problem (ULT),

namely:

 Input: a set V of n elements vy, ..
functionw : V X V = R.

., vy and a weight

* Output: an ultrametric (V, A) such that Vov;,v; € V,
w(v;,vj) < A(v;,v;) < a-w(v;,v;), for the minimal
value «.

Note that we will abuse notation slightly and, for an edge
e = (v;,0;), write w(e) to denote w(v;,v;). We write
AOPT to denote an optimal ultrametric, and let &, de-
note the minimum & for which Vov;, v; € V, w(v;, vj) <

AOPT (v;,07) < & - w(v;, ;).

We say that an ultrametric A is a ‘y-approximation to
ULT if Yo;,0; € V, w(v;,v;) < Av;,v7) < 7+ @gpr -
w(v;,v)).

2.1. Farach-Kannan-Warnow’s Algorithm

Farach et al. (Farach et al., 1995) provide an O(n?) algo-
rithm to solve a “more general” problem (i.e., that is such
that an optimal algorithm for this problem can be used to
solve ULT), the so-called “sandwich problem”. In the sand-
wich problem, the input consists of set V of n elements
v1,...,0; and two weight functions w, and wy,, and the
goal is to output an ultrametric (V, A) such that Vo;, v; € V,
wy(v;,v;) < A(v;,0) < a - wy(v;, ;) for the minimal a.
Observe that an algorithm that solves the sandwich problem
can be used to solve BEST ULTRAMETRIC FIT by setting
Wy = wy = w.

We now review the algorithm of (Farach et al., 1995). Given
atree T over the elements of V and an edge e € T, removing
e from T creates two connected components, we call L(e)
and R(e) the set of elements in these connected components
respectively. Given L(e) and R(e), we define P(e) to be the
set of pairs of elements v; € L(e) and v; € R(e) such that
the maximum weight of an edge of the path from v; to v; in
T is wy(e).

A cartesian tree of a weighted tree T is a rooted tree T
defined as follows: the root of T~ corresponds to the edge
of maximal weight and the two children of T are defined
recursively as the cartesian trees of L(e) and R(e), respec-
tively. The leaves of T~ correspond to the nodes of T. Each
node has an associated height. The height of any leaf is set
to 0. For a non-leaf node u € T, we know that u corre-
sponds, by construction, to an edge e, in T, which is the



On Efficient Low Distortion Ultrametric Embedding

first edge (taken in decreasing order w.r.t. their weights) that
separates v; from v in T. Set the height of u to be equal to
the weight of e, in T. A cartesian tree T~ naturally induces
an ultrametric A on its leaves: the distance between two
points v; and v; (i.e., two leaves of T¢) is defined as the
height of their least common ancestor in Tc.

Finally, we define the cut weight of edge e to be

CW(e) = max

wp(0;,0;).
(S 71

The algorithm of (Farach et al., 1995) is as follow:

1. Compute a minimum spanning tree (MST) T over the
complete graph Gy, defined on V and with edge weights
W3

2. Compute the cut weights with respect to the tree T

3. Construct the cartesian tree Tc of the tree T’ whose
structure is identical to T and the distance from an
internal node of T to the leaves of its subtree is given
by the cut weight of the corresponding edge in T

4. Output the ultrametric induced by the tree metric of
Tc.

The following theorem is proved in (Farach et al., 1995):

Theorem 2.1. Given two weight functions wy and wy, the
above algorithm outputs an ultrametric A such that for all
v;,0j € |4

wy(vi,vj) < A(v;,vj) < agpr - Wy (i, 0))

Sfor the minimal & .

3. APPROXULT: An Approximation
Algorithm for ULT

In this section, we describe a new approximation algorithm
for ULT and prove its correctness. We then show in the next
section how it can be implemented efficiently for inputs in
the Euclidean metric.

Given a spanning tree T over a graph G, any edge ¢ =
(vi,vj) € G\ T induces a unique cycle C; which consists
of the union of e and the unique path from x to y in T. We
say that a tree T is a y-approximate Kruskal tree (or shortly
a v-KT) if

Ve e G\ T,w(e) > 1 max w(e).
Y elect

Moreover, given a tree T and and an edge e of T, we say
that B € R is a y-estimate of CW(e) if CW(e) < B <
v - CW(e). By extension, we say that a function

ACW:V xV =R

is a y-estimate of the cut weights CW if, for any edge e,
ACW (e) is a y-estimate of CW (e).

The rest of this section is dedicated to proving that the
following algorithm achieves a 7yd-approximation to ULT,
for some parameters v > 1,6 > 1 of the algorithm.

1. Compute a y-KT T over the complete graph Gy, defined
on V and with edge weights wy;

2. Compute a d-estimate ACW of the cut weights of all
the edge of the tree T;

3. Construct the cartesian tree Tc of the tree T’ whose
structure is identical to T and the distance from an
internal node of T to the leaves of its subtree is given
by the ACW of the corresponding edge in T.

4. Output the ultrametric A over the leaves of Tc.

We want to prove the following:

Theorem 3.1. Forany v > 1,6 > 1, the above algorithm
outputs an ultrametric A which is a yd-approximation to
ULT, meaning that for all v;,v; € V

wy(vi,v) < A(v;,v)) <8 opr - wy(v;, 7))

Proof.

First step: we prove that the -KT T computed at the
first step of the algorithm can be seen an exact MST for a
complete weighted graph G’ defined on V and with a weight
function w’ satisfying

Vo;,vj € V,w (v;, v;) < v - wy(v;, v)).

We construct @’ in the following way. For each pair of
points (v;, ;):

s If (v;,v;) € T, then set w'(v;, v;) = wy,(v;, ;)

* If (v;,v;) ¢ T, then set w'(v;, v;) = Ywy(v;, v)).

By construction, it is clear that w’ < - - wy,. To see that T
is an (exact) MST of G’, consider any MST F of G’. If e =
(vi,v;) € F\ T, then consider the first edge ¢’ in the unique
path from v; to v; in T that reconnects F \ e. By definition
of w', we have w'(¢/) = wy(¢’) and w'(e) = qwy(e).
Since T is a 7-KT, we also have that wy(e) > S wjy(e’).
Therefore w'(¢') < w'(e) and {FU¢'} \ e is a spanning
tree of G’ of weight smaller than or equal to the weight of
F. This proves that {F U e’} \ e is also a MST. Doing this
process for all edges not in T gives eventually T and proves
that T is also a MST of G/, as desired.
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Second step. Observe that the weight function wy, is not
involved in steps 2, 3, and 4 of the algorithm. Therefore, if
steps 2, 3, and 4 of the algorithm were made without approx-
imation (meaning that we compute the exact cut weights
CW associated to the y-KT tree T and we output the ultra-
metric to the corresponding cartesian tree), then the output
would be an ultrametric A such that for all v;, v; € V

wy(v;,07) < Avg,v5) < al,-w'(v;,07) (1)

for the minimal such tngT. This follows directly from Theo-
rem 2.1 and the fact that T is an exact MST for the graph G’
deﬁngd gbove. Note that a - < agp; w.here Kopr denotf.:s
the minimal constant such that there exists an ultrametric
between w; and &1 - Wy,

Now, consider the ultrametric ATc associated to T and a
é-estimate ACW of the cut weights. We claim that for all
v;,Vj € |4

A(v;,vj) < ATe(v;, vj) < 8- A(v;,vj). (2)

To see this, take any v;,v; € V. By definition,
ATc(v;, vj) = ACW(e) for the first edge e (taken in de-
creasing order w.r.t. to ACW) that separates v; from v;
in T. Let €v;,v; be the first edge that separates v; from
v;j w.r.t. to the actual cut weights CW. Again, we have
by definition that A(v;,v;) = CW(e). We have that
ACW(e) > ACW(ey,q,) since e is the first edge w.rt.
ACW. Moreover ACW (ev,0;) = CW(ey,,0;) because
ACW is a é-estimate of the cut weights: this gives us the
first desired inequality

ATC (Ui/ Z)]) 2 A(UZ‘, Z)])

The upper bound is similar. We know that ACW(e) <
0 - CW(e) since ACW is a d-estimate. We also have that
CW(e) <C W(evz.,vj) since €v,,0; is the first separating edge
w.r.t. CW. This gives:

ATC (ZJZ', ?J]) S - A(Z)i, ?J]>

All together, Equations 1 and 2 imply

wy(v;,07) < A€ (v;,0) <y -al - W' (07,))
S ,Y ! (s : ang : wh(vll v])
S0 gpr wh(vizvj)

as desired. O

4. A Fast Implementation of APPROXULT in
Euclidean Space — Proof of Theorem 1.1

In this section, we consider inputs of ULT that consists of a
set of points V in RY, and so for which w(v1,v;) = o1 —

v ||2. We now explain how to implement APPROXULT
efficiently for v > 1 and § = 5.

Fast Euclidean y-KT. For computing efficiently a y-KT
of a set of points in a Euclidean space of dimension d, we
appeal to the result of (Har-Peled et al., 2013) (if interested
in doubling metrics, one can instead use the bound of (Filtser
& Neiman, 2018)). The approach relies on spanners; A c-
spanner of a set S of 7 points in R? is a graph G = (S, E)
and a weight function w : E — IR such that for any u,v €
S, the shortest path distance in G under the edge weights
induced by w, A® (u,v) satisfies ||u — v, < A%(u,v) <
¢ |lu—ol2.

The result of (Har-Peled et al., 2013) states that there is an
algorithm that for any set S of 1 points in R? produces an
O(y)-spanner for S with O(n”l/cz log? 1) edges in time
O(nd + nl+1/e log2 n). The algorithm uses the locality
sensitive hash family of (Andoni & Indyk, 2006), or alterna-
tively for v = |/log n the Lipschitz partitions of (Charikar
et al., 1998).

An immediate application of Kruskal classic algorithm for
computing a minimum spanning tree on the spanner yields
an algorithm with running time O(nd + pltl/e log® n).
Moreover, we claim that a minimum spanning tree on a
c-spanner G is indeed a c-KT for the original point set.
Assume towards contradiction that this is not the case. Then
there exists an edge e = (u,v) € T such that ||u — v||z <
max, el [lx — y||2/c. By correctness of the c-spanner

we have that A® (u,0) < c|ju — ||, < max(, ecT I|x —
yl2 < max, \ccr AC(x,y). A contradiction to the fact
that T is an MST of the c-spanner.

Fast Estimation of the Cut Weights. We explain how to
compute in time O(nd + nlogn) a 5-estimate of the cut
weights. To do this, we maintain a disjoint-set data structure
on X with the additional property that each equivalence
class C (we call such an equivalence class cluster) has a
special vertex rc and we store mc the maximal distance
between r¢ and a point in the cluster. We now consider the
edges of the MST T in increasing order (w.r.t. their weights).
When at edge e = (x, ), we look at the two clusters C and
D coming from the equivalence classes that respectively
contain x and y. We claim that

E=5- max(d(rc, T’D),ch —d(?‘c, T’D), mp — d(?’c, T’D))

is a 5-approximation of the cut weight for e. To see this,
observe that if x',y are the farthest points respectively in
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C, D, then:

(x',rc) +d(rc,rp) +d(rp,y)

(x',rc) —d(rc,rp) +3d(rc,rp)
+d(rp,y") —d(rc,rp)

< 5.max(d(rc,rp), mc —d(rc,rp),

mp —d(rc,7p))
<E

On the other hand

) <d(
me —d(re,rp) < d(x',rp) <d(x',y')
) <d(y,rc) <d(x,y)

and therefore E < 5-d(x’,y’). Finally, if we consider the
path from x’ to y’ in T, it is clear that the pair (x, ') is in
P(e), and the bound on CW((e) follows.

Merging C and D can simply be done via a classic disjoint-
set data structure. Thus, the challenge is to update mc_p.
To do so, we consider the smallest cluster, say D, query
d(x,rc) for each point x € D and update accordingly rcp
if a bigger value is found. Therefore the running time to
update mcyp is O(|D| x d) (we compute | D| distances in a
space of dimension d). The overall running time to compute
the approximate cut weights is O(nd + nlogn): sorting
the edges requires O(nlog ) and constructing bottom-up
the cut-weights with the disjoint-set data structure takes
O(nd + na(n)), where a(n) denotes the inverse of the
Ackermann function (this part comes from the disjoint-set
structure). To conclude, note that na(n) is much smaller
than n log n.

S. Hardness of ULT for High-Dimensional
Inputs

We complement Theorem 1.1 with a hardness of approx-
imation result in this section. Our lower bound is based
on the well-studied Strong Exponential Time Hypothesis
(SETH) (Impagliazzo & Paturi, 2001; Impagliazzo et al.,
2001; Calabro et al., 2006) which roughly states that SAT
on 1 variables cannot be solved in time less than 2"(1—0(1)).
SETH is a popular assumption to prove lower bounds for
problems in P (see the following surveys (Williams, 2015;
2016; 2018; Rubinstein & Williams, 2019) for a discussion).

Theorem 5.1. Assuming SETH, for every ¢ > 0, no algo-
rithm running in time n%~¢ can, given as input an instance
of ULT consisting n points of dimension d := O¢(logn) in
Loo-metric, distinguish between the following two cases.

Completeness: There is an isometric ultrametric embed-
ding.

Soundness: The distortion of the best ultrametric embed-
ding is at least 3/2.

Note that the above theorem morally> rules out approxi-
mation algorithms running in subquadratic time which can
approximate the best ultrametric to 3/2 — o(1) factor.

Finally, we remark that all the results in this section can be
based on a weaker assumption called the Orthogonal Vectors
Hypothesis (Williams, 2005) instead of SETH. Before we
proceed to the proof of the above theorem, we prove below
a key technical lemma.

Definition 5.2 (Point-set S*). For every 7,7 > 0 and
every p € R U {oo}, we define the discrete point-set
S* (7,7, p) :={a,a’, b} in the Ly-metric as follows:

la=bll, <1, la—=a'l, <1+, and [la" = bl|, > 1+7.

Lemma 5.3 (Distortion in Ultrametric Embedding). Fix
v,7 > 0and p € R>1 U {oo}. Then we have that any
embedding of S*(vy,7',p) := {a,a’,b} into ultrametric

14y
149"

incurs a distortion of at least

Proof. Let the distortion of S* to the ultrametric be at most
0. Let T be the embedding into ultrametric with distortion p
and let A denote distance in the ultrametric. Let & € R™ be
the scaling factor of the embedding from the £,-metric to
the ultrametric.

(1+7)-a < A(t(d),7(b))
< max{A(7(a), 7(b)), A((a), 7(a")) }

<p-(1+7)-a
Thus we have that p > 11%77, O

We combine the above lemma with David et al.’s condi-
tional lower bound (stated below) on approximating the
Bichromatic Closest Pair problem in the {o-metric to ob-
tain Theorem 5.1.

Theorem 5.4 ((David et al., 2019)). Assuming SETH, for
any € > 0, no algorithm running in time n>—¢, given A, B C
R as input, where |A| = |B| = nand d = O¢(logn),
distinguish between the following two cases:

Completeness: There exists (a,b) € A x B such that ||a —
blleo = 1.

Soundness: For every (a,b) € A X B we have ||a —
b”oo = 3.

3We say “morally” because our hardness results are for the
decision version, but doesn’t immediately rule out algorithms that
find approximately optimal embedding, as computing the distortion
of an embedding (naively) requires 1< time. So the search variant
cannot be naively reduced to the decision variant.
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Moreover this hardness holds even with the following addi-
tional properties:

 Every distinct pair of points in A (resp. B) are at dis-
tance 2 from each other in the {-metric.

e All pairs of points in A X B are at distance either I or
3 from each other in the {«-metric.

Proof of Theorem 5.1. Let (A, B) be the input to the hard
instances of the Bichromatic Closest Pair problem as given
in the statement of Theorem 5.4 (where A, B C R? and
|A| = |B| = n). We show that if for every (a,b) € A x B
we have ||a — b||co = 3 then there is an isometric embedding
of AU B into an ultrametric and if there exists (4,b) €
A x B such that ||a — b|]|cc = 1 then any embedding of
A U B to an ultrametric incurs a distortion of 3/2. Once we
show this, the proof of the theorem statement immediately
follows.

Suppose that for every (a,b) € A x Bwehave ||a —b||ec =
3. We construct the following ultrametric embedding. Let
T be a tree with root . Let r have two children c4 and
cg. Both c4 and cp each have n leaves which we identify
with the points in A and points in B respectively. Then we
subdivide the edge between c 4 and its leaves and cg and its
leaves. Notice that any pair of leaves corresponding to two
distinct points in A (resp. in B) are at distance four away
in T. Also notice that any pair of leaves corresponding to
a pair of points in A X B are at distance six. Therefore the
aforementioned embedding is isometric.

Next, suppose that there exists (a,b) € A x B such that
|la — bl = 1. We also suppose that there exists (a’,b) €
A X B such that ||a’ — b||cc = 3. We call Lemma 5.3 with
the point-set {a,a’,b} and parameters v = 2 and 7y = 1.
Thus we have that even just embedding {a,a’,b} into an
ultrametric incurs distortion of 3/2. O

One may wonder if one can extend Theorem 5.1 to the Eu-
clidean metric to rule out approximation algorithms running
in subquadratic time which can approximate the best ul-
trametric to arbitrary factors close to 1. More concretely,
one may look at the hardness of approximation results of
(Rubinstein, 2018; Karthik C. S. & Manurangsi, 2019) on
Closest Pair problem, and try to use them as the starting
point of the reduction. An immediate obstacle to do so
is that in the soundness case of the closest pair problem
(i.e., the completeness case of the computing ultrametric
distortion problem), there is no good bound on the range
of all pairwise distances, and thus the distortion cannot be
estimated to yield a meaningful reduction.

Nonetheless, we introduce a new complexity theoretic hy-
pothesis below and show how that extends Theorem 5.1 to
the Euclidean metric.

Colinearity Hypothesis. Let B; denote the d-
dimensional unit Euclidean ball. In the Colinearity
Problem (CP), we are given as input a set A of n vectors
uniformly and independently sampled from 5;, and we
move one of these sampled points to be closer to the
midpoint of two other sampled points. The goal is to find
these three points. More formally, we can write it as a
decision problem in the following way.

Let Dyni (1, d) be the distribution which samples n points
uniformly and independently from B;. For every p € [0, 1],
let Dpyant (1, d, p) be the following distribution:

1. Sample (ay,...,a,) ~Dyni(n,d).
2. Pick three distinct indices i, j, k in [n] at random.
3. Leta; j be the midpoint of a; and 4;.

4. Letag be (1—p) -ap+p-a;;.
5

. Output (ﬂl, R ,ak_l,ﬁk,ak+1, .. .,an).

Notice that Dy (11, d) =Dpiant (11, d,0). Also, notice that
in Dp1ant (11,d,1) we have planted a set of three colinear
points. The decision problem CP would then be phrased as
follows.

Definition 5.5 (CP). Let p € (0,1]. Given as input a set
of n points sampled from D ,; (n,d) U Dpiane(n,d,p),
distinguish if it was sampled from Dy,;(n,d) or from
Dplant (n/ d, P)

The worst case variant of CP has been studied extensively in
computational geometry and more recently in fine-grained
complexity. In the worst case variant, we are given a set
of n points in R? and we would like to determine if there
are three points in the set that are colinear. This problem
can be solved in time O(n%d). It’s now known that this
runtime cannot be significantly improved assuming the 3-
SUM hypothesis (Gajentaan & Overmars, 1995; 2012). We
putforth the following hypothesis on CP:

Definition 5.6 (Colinearity Hypothesis (CH)). There exists
constants p, € > 0 such that no randomized algorithm run-
ning in time n'¢ can decide CP (with parameters n,d, 0),
for everyd > O, (logn).

Notice that unlike OVH or 3-SUM hypothesis, we are
not assuming a subquadratic hardness for CP, but only
assume a superlinear hardness, as CP is closely related
to the Light bulb problem (Valiant, 1988), for which we
do have subquadratic algorithms (Valiant, 2015; Karppa
et al., 2016; Alman, 2019). Elaborating, we now provide
an informal sketch of a reduction from CP to the Light
bulb problem: given 1 points sampled from Dy (n,d) U
Dp1ant (1,d, p), we first apply the sign function (+1 if the
value is positive and -1 otherwise) to each coordinate of the
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sampled points, to obtain points on the Boolean hypercube.
Then we only retain each point w.p. 1/2 and discard the
rest. If the points were initially sampled from Dy (1, d)
then the finally retained points will look like points sam-
pled uniformly and independently from the Boolean hyper-
cube, whereas, if the points were initially sampled from
Dyp1ant (1,d, p) then there are two pairs of points that are
p’-correlated (0" depends on p) after applying the sign func-
tion and exactly one of the two pairs is retained with constant
probability.

Returning to the application of CH to ultrametric embedding,
assuming CH, we prove the following result.

Theorem 5.7. Assuming CH, there exists €,6 > 0 such that
no randomized algorithm running in time n\*¢ can given as
input an instance of ULT consisting of n points of dimension
d := O (logn) in Euclidean metric distinguish between
the following two cases.

Completeness: The distortion of the best ultrametric em-
bedding is at most 1 4 9/2.

Soundness: The distortion of the best ultrametric embed-
ding is at least 1 + 6.

We use the following fact about random sampling from
high-dimensional unit ball.

Fact 1 ((Vershynin, 2018)). For every 6 > 0 there
exists ¢ € 1IN such that the following holds. Let
(a1,...,an) ~Dyni(n,c-logn). Then with high prob-
ability we have that for all distinct i, j in [n],

la; —ajlla € (B—6,8+9),

for some universal scaling constant > 1.

Proof of Theorem 5.7. Let ¢, p be the constants from CH.
Let 0 := p/9 and c be an integer guaranteed from Fact 1.
Let A be the input to CP (where A CB; and |A| = n). We
may assume that d > clogn. We show that if all points
in A were picked independently and uniformly at random
from B, then there is an embedding of A into an ultrametric
with distortion less than 1 4 24 and if otherwise A was
sampled from Dy ant (11,d,y) then any embedding of A
to an ultrametric incurs a distortion of 1 + 44. Once we
show this, the proof of the theorem statement immediately
follows.

Suppose that A was sampled from D,,,; (11, d). From Fact 1
we have that for all distinct a;, a i in A,

|a; —ajl2 € (B—6,8+9),

for some universal scaling constant 8 > 1. Then the ultra-
metric embedding is simply given by identifying A with

the leaves of a star graph on n + 1 nodes. The distor-

tion in the embedding in such a case would be at most
+4

b5 <1429/p <1426,

Next, suppose that A was sampled from Dp1ant (11,4, ).

Then there exists 3 points ai,aj,'dk in A such that the fol-

lowing distances hold:

la; —ajll2 = =94,

lla; — axll2, [la; — all2
<\ (49722 +3/3((1—p) - (B+0)?
<B-—op.

We call Lemma 4.3 with the point-set {a;, a;, d }. Thus we
have that even just embedding {a;, a;, @} into an ultramet-
ric incurs distortion of 1 + 44. O

Note that we can replace CH by a search variant and this
would imply the lower bound to the search variant of the
ULT problem (unlike Theorem 4.1).

6. Experiments

We present some experiments performed on three standard
datasets: DIABETES (768 samples, 8 features), MICE
(1080 samples, 77 features), PENDIGITS (10992 samples,
16 features) and compare our C++ implementation of the
algorithm described above to the classic linkage algorithms
(average, complete, single or ward) as implemented in the
Scikit-learn library (note that the Scikit-learn implemen-
tation is also in C++). The measure we are interested in

. . . . A
is the maximum distortion max (u'v) s
(Ll,U)GP HM—T)HZ

dataset and A the ultrametric output by the algorithm. Note
that average linkage, single )and ward linkage can underes-
A(u,v

) lu—ol = )
v. In practice, the smallest ratio given by average linkage
lies often between 0.4 and 0.5 and between 0.8 and 0.9 for
ward linkage. For single linkage, the maximum distortion
is always 1 and hence the minimum distortion can be very
small. For a fair comparison, we normalize the ultrametrics
by multiplying every distances by the smallest value for

where P is the

timate distances, i.e.,

< 1 for some points # and

which ‘fu(j‘;j]‘)z becomes greater than or equal to 1 for all
pairs. Note that what matters most in hierarchical clustering
is the structure of the tree induced by the ultrametric and
performing this normalization (a uniform scaling) does not

change this structure.

ApproxULT stands for the C++ implementation of our al-
gorithm. To compute the y-approximate Kruskal tree, we
implemented the idea from (Har-Peled et al., 2013), that
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DIABETES | MICE | PENDIGITS
Average 11.1 9.7 27.5
Complete 18.5 11.8 33.8
Single 6.0 4.9 14.0
Ward 61.0 59.3 433.8
ApproxULT 41.0 51.2 109.8
ApproxAccULT 9.6 94 37.2
Farach et al. 6.0 4.9 13.9

Table 1. Max distortions

uses the locality-sensitive hash family of (Andoni & In-
dyk, 2006) and runs in time O(nd + n!+1/7* log? n). The
parameter y is related to choices in the design of the locality-
sensitive hash family. It is hard to give the precise <y that we
choose during our experiments since it relies on theoretical
and asymptotic analysis. However, we choose parameters to
have, in theory, a 7y around 2.5. Observe that our algorithm
is roughly cut into two distinct parts: computing a y-KT
tree T, and using T to compute the approximate cut weights
and the corresponding cartesian tree. Each of these parts
play a crucial role in the approximation guarantees. To un-
derstand better how important it is to have a tree T close to
an exact MST, we implemented a slight variant of Approx-
ULT, namely ApproxAccULT, in which T is replaced by
an exact MST. Finally, we also made an implementation of
the quadratic running time Farach et al.’s algorithm since it
finds an optimal ultrametric. The best known algorithm for
computing an exact MST of a set of high-dimensional set
of points is @(1?) and so ApproxAccULT and Farach et
al.’s algorithm did not exhibit a competitive running time
and were not included in Figure 1.

Table 1 shows the maximum distortions of the different al-
gorithms. Farach et al. stands for the baseline since the
algorithm outputs the best ultrametric. For the linkage al-
gorithms, the results are deterministic hence exact (up to
rounding) while the output of our algorithm is probabilistic
(this probabilistic behavior comes from the locality-sensitive
hash families). We performed 100 runs for each datasets.
We observe that ApproxULT performs better than Ward’s
method while being not too far from the others. Approx-
AccULT performs almost better than all algorithms except
single linkage, this emphasizes the fact that finding effi-
ciently accurate y-KT is important. Interestingly single
linkage is in fact close to the optimal solution.

Figure 1 shows the average running time, rounded to 102
seconds. We see that for small datasets, ApproxULT is
comparable to linkage algorithms, while ApproxULT is
much faster on a large dataset, as the complexity analysis
predicts (roughly 36 times faster than the slowest linkage
algorithm and 10 times faster than the fastest one).

average
complete
single
ward
approxuLt

100 4

10-1 4

0.010.010.010.010.01

1072 A

DIABETES

PENDIGITS

Figure 1. Average running time, in seconds. Logarithmic scale.
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