
Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data:
Supplementary

Benjamin Coleman 1 Richard G Baraniuk 1 2 Anshumali Shrivastava 1 2

1. Techniques
We obtain our results by combining recent advances in
locality-sensitive hashing (LSH)-based estimation with
standard compressed sensing techniques. This section con-
tains a high-level overview of our strategy to solve the
nearest-neighbor problem.

LSH-based kernel estimators: The array-of-counts esti-
mator (ACE) is an unbiased estimator for kernel functions.
Our first step is to use ACE to estimate arbitrary linear
combinations of kernels. We get sharp estimates of these
linear combinations by averaging over multiple ACEs. We
call this structure a RACE because it consists of repeated
ACEs. The number of repetitions needed for a good es-
timate does not depend on N , the dataset size. Once we
have sharp estimates of the measurements, we apply stan-
dard compressed sensing techniques.

Compressed sensing: A central result of compressed
sensing is that a v sparse vector of length N can be re-
covered from O(v logN/v) linear combinations of its ele-
ments. The coefficients of the linear combination are de-
fined by the measurement matrix. In this context, our mea-
surements are of the vector s(q) ∈ RN , where the ith com-
ponent of s(q) is the kernel evaluation k(xi, q). Since we
are using LSH kernels, k(xi, q) is the LSH collision prob-
ability of q and xi ∈ D. That is, si(q) = p(xi, q). We will
use the terms LSH kernel value and collision probability
interchangeably.

We use one RACE structure to estimate each compressed
sensing measurement. Each RACE gets a different set of
linear combination coefficients, and we choose the coeffi-
cients so that they describe a valid measurement matrix. By
applying sparse recovery to the set of estimated measure-

1Department of Electrical and Computer Engineering, Rice
University, Houston, Texas, USA 2Department of Computer Sci-
ence, Rice University, Houston, Texas, USA. Correspondence to:
Benjamin Coleman <ben.coleman@rice.edu>, Anshumali Shri-
vastava <anshumali@rice.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

ments, we can approximate the kernel evaluations (LSH
collision probabilities) between q and each element in the
dataset. As explained in the “Intuition” section of the main
text, these kernel evaluations are sufficient to perform near
neighbor search. Assuming sparsity, the sketch is sublinear
because each RACE requires a constant amount of memory
and we only need to use O(v logN/v) RACEs.

Query-dependent guarantees: To find neighbors for a
query (q), we recover the kernel values (s(q)) and return
the indices with the largest values as the identities of the
near-neighbors. This process will not succeed if s(q) is
not sparse. Sparsity is the reason for our query-dependent
assumptions. To find the nearest indices, we need s(q) to
have few large elements. The geometric interpretation is
that most elements in the dataset are not near-neighbors of
q. We show that well-established notions of near-neighbor
stability (Beyer et al., 1999) are equivalent to weak sparsity
conditions on s(q), allowing us to express our algorithm
in terms of near neighbor stability. This result connects
sparsity - a compressed sensing idea - with the difficulty of
the near-neighbor search problem. We can analyze a large
class of geometric data assumptions by interpreting them
as sparsity conditions.

If the dataset already satisfies our sparsity condition, then
we proceed directly to recovery. If not, we can force s(q) to
be sparse by raising the kernel function k(xi, q) to a power
K. This modification decreases the bandwidth of the ker-
nel, letting us locate near-neighbors at a finer resolution.
RACE can accommodate this idea by using standard meth-
ods for amplifying a LSH family. Specifically, we construct
the LSH function from K independent realizations of an
LSH family. The result is a new LSH function with the col-
lision probability p(x, q)K . However, there is a price - the
size of each ACE repetition grows larger.

Reduce near-neighbor to compressed sensing recovery:
Using compressed sensing, we can estimate the kernel val-
ues within an ε additive tolerance. To solve the near-
neighbor problem, we make ε small enough to distinguish
between near-neighbors and the rest of the dataset. The
value of ε depends on K. Increasing K makes s(q) sparse
but also increases the amount of storage required for the

Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data: Supplementary

sketch. Therefore, we want K to be just large enough. By
balancing the sparsity requirement with the memory, we in-
troduce a query-dependent multiplicative O(N b) factor for
the sketch size. This term is sub-linear (b < 1) when s(q) is
sufficiently sparse or, equivalently, when q is a stable query.
Our sketch requires O(N b log3(N)) bits, where b depends
on the query stability.

2. Theory
In this section, we provide a detailed explanation of the
theory with complete proofs.

2.1. Estimation of Compressed Sensing Measurements

In this section, our goal is to prove that the RACE algo-
rithm can estimate the compressed sensing measurements
of s(q), the vector of kernel evaluations. We begin by con-
structing a modified version of ACE that can estimate any
linear combination of s(q) components. Then, we derive a
variance bound on this estimator and apply the median of
means technique.

We can estimate the linear combination by incrementing
the ACE array using the linear combination coefficients.
Suppose we are given a sequence of linear combination co-
efficients {ri}Ni=1. The original ACE estimator simply in-
crements the array A at index L(xi) by 1. We will use the
notation 1i to refer to the indicator function 1L(xi)=L(q).
That is, 1i is 1 when the query collides with element
xi from the dataset. For the original ACE algorithm,
A[L(q)] =

∑
xi∈D 1i. In our case, we increment A[L(xi)]

by ri and therefore we have A[L(q)] =
∑
xi∈D ri 1i. The

expectation of this estimator is the linear combination of
LSH kernels (collision probabilities).

Theorem 3. Given a dataset D, K independent LSH func-
tions l(·) and any choice of constants ri ∈ R, RACE can
estimate a linear combination of si(q) = p(xi, q)

K with
the following variance bound.

E[A[L(q)]] =
∑
xi∈D

rip(xi, q)
K (1)

var(A[l(q)]) ≤ |s̃(q)|21 (2)

where L(·) is formed by concatenating the K copies of l(·)
and s̃i(q) =

√
si(q).

Proof. For the sake of presentation, let Z = A[L(q)].

Expectation: The count in the array can be written as

Z =
∑
xi∈D

ri 1i

By linearity of the expectation operator

E[Z] =
∑
xi∈D

ri E[1i]

E[1i] is simply the collision probability of L, thus

E[Z] =
∑
xi∈D

rip(xi, q)
K

Variance: The variance is bounded above by the second
moment. The second moment of this estimator can be writ-
ten as

E[Z2] =
∑
xi∈D

∑
xj∈D

rirj E[1i 1j]

Use the Cauchy-Schwarz inequality to bound E[1i 1j] ≤√
E[1i]

√
E[1j]. Thus

E[Z2] ≤
∑
xi∈D

∑
xj∈D

rirj

√
p(xi, q)K

√
p(xj , q)K

=

(∑
xi∈D

ri

√
p(xi, q)K)

)2

For our analysis, we will assume that ri ∈ [−1, 1]. This is
valid because we can always scale the compressed sensing
matrix so that it is true. Then the bound becomes

var(Z) ≤

(∑
xi∈D

√
p(xi, q)K)

)2

= |̃s(q)|21

Using Theorem 3 and the median-of-means (MoM) tech-
nique, we can obtain an arbitrarily close estimate of each
compressed sensing measurement yi(q). Suppose we inde-
pendently repeat the ACE estimator and compute the MoM
estimate from the repetitions. Let ŷi(q) be the MoM es-
timate of yi(q) computed from a set of independent ACE
repetitions of A[l(q)]. Then we have a pointwise bound on
the error for each yi(q).

Lemma 1. For any ε > 0 and given

O
(|s̃(q)|21

ε2
log
(1

δ

))
independent ACE repetitions, we have the following bound
for the MoM estimator

yi(q)− ε ≤ ŷi(q) ≤ yi(q) + ε (3)

with probability 1− δ for any query q.

Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data: Supplementary

Proof. For presentation, we will drop the index and write
ŷi(q) as ŷ where the context is clear. We use a very com-
mon proof technique with the median-of-means estimator
ŷ. With probability at least 1 − δ and n independent real-
izations of the random variable, we can estimate the mean
with MoM so that

Pr

[
|ŷ − y|≤

√
32

var(ŷ)

n
log

(
1

δ

)]
≥ 1− δ

We can substitute the variance bound from Theorem 3 in
for var(ŷ) without changing the validity of the inequality.
To have the lemma, we need |ŷ − y|≤ ε. We will choose n
to be large enough that√

32
|̃s(q)|21
n

log

(
1

δ

)
≤ ε

Therefore, we need n ACE repetitions, where n is

n = 32
|s̃(q)|21
ε2

log
(1

δ

)

Lemma 1 only works for one of the compressed sensing
measurements. To ensure that all M of the measurements
obey this bound with probability 1− δ, we apply the prob-
ability union bound to get Theorem 4. Note that the mul-
tiplicative M factor comes from the fact that we are using
ACE to estimate M different measurements.

Theorem 4. For any ε > 0 and given
O
(
M
|s̃(q)|21
ε2 log

(
M
δ

))
independent ACE repetitions,

we have the following bound for each of the M measure-
ments with probability 1− δ for any query q

yi(q)− ε ≤ ŷi(q) ≤ yi(q) + ε (4)

Proof. We want all measurements to succeed with proba-
bility 1− δ. The probability union bound states that if δi is
the failure probability for measurement i, then the overall
failure probability is smaller than

∑M
i=1 δi. We would like

this probability to be smaller than δ, so we put δi = δ
M for

each RACE estimator. By Lemma 1, we need

32
|s̃(q)|21
ε2

log
(M
δ

)
repetitions for each measurement. There are M measure-
ments, so we need

32M
|s̃(q)|21
ε2

log
(M
δ

)
repetitions in total.

2.2. Query-Dependent Sparsity Conditions

Before we can discuss compressed recovery of s(q), we
need to limit our analysis to vectors s(q) that are sparse. In
this section, we introduce a permissive way to bound the
sparsity of s(q) for our analysis. Our bounds are forgiv-
ing in the sense that we assume as little underlying sparsity
as possible - with stronger assumptions, you can get better
bounds. We also connect sparsity with near-neighbor sta-
bility. We analyze these conditions in the context of com-
pressed sensing and computational geometry.

We need bounds for |s(q)|1 and |s̃(q)|1. Our vector s(q) has
three properties that make these bounds possible. First, the
collision probabilities are bounded: p(xi, q) ∈ [0, 1]. Sec-
ond, increasing K causes each element of s(q) to decrease,
since s(q)i = p(xi, q)

K . Third we may choose K to be as
large as necessary. Therefore, we can force |s(q)|1 to be ar-
bitrarily small by choosing K sufficiently large. However,
each ACE estimator requires O(rK logN) memory where
r is the number of hash codes that L can return. There-
fore, we want K to be just large enough so that we do not
increase the space too much.

We will analyze sparsity under the equidistant assumption.
Under this assumption, all points other than the v nearest
neighbors are equidistant to the query. This is a relatively
weak way to describe sparsity, but we still get an accept-
able dependence of K on N . Stronger assumptions require
smaller K and therefore less space. To choose K, we need
a good way to characterize the sparsity of s(q). We begin
by defining two query-dependent values ∆ and B. ∆ is
related to the stability of the near-neighbor query and B is
related to sparsity.

∆-Stable Queries: We want a parameter that measures
the difficulty of the query. For the v-nearest neighbor prob-
lem, let xv and xv+1 be the vth and (v+ 1)th nearest neigh-
bors, respectively. Using the same notation as before, let ∆
be defined as

∆ =
p(xv+1, q)

p(xv, q)
(5)

∆ governs the stability of the nearest neighbor query. It is
a measure of the gap between the near-neighbors and the
rest of the dataset. If ∆ = 1, then the vth and (v + 1)th

neighbors are the same distance away. In this case, it is
impossible to tell the difference between them. If ∆ ≈ 0,
then it means that neighbors v+ 1, v+ 2, ... are all very far
away. Our definition of ∆ is similar to the definition of an
ε-unstable query. In fact, we can express a ∆-stable query
as an ε-unstable query by finding the distances that corre-
spond to p(xv+1, q) and p(xv, q). This is possible because
the collision probability is a monotone function of distance.

Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data: Supplementary

B-Bounded Queries: We want a flexible way to bound
the sum:

|s(q)|1=
∑
xi∈D

p(xi, q)
K

For convenience, we will suppose that the elements xi are
sorted based on their distance from the query. This is not
necessary - it just simplifies the presentation. When we
write p(xi, q), we mean that xi is the ith near neighbor of
the query. We will use the notation pi = p(xi, q). Define a
constant B as

B =

N∑
i=v+1

s̃i
s̃v+1

=

N∑
i=v+1

√
pKi
pKv+1

(6)

B is a query-dependent value that measures the sparsity of
s. It bounds the size of the tail entries of s. A bound on B
implies a bound on |s|1 and |s̃|1.

Lemma 2. |s|1≤ |s̃|1 and |s̃|1≤ v +B
√
pKv+1

Proof. It is easy to see that si ≤
√
si because 0 ≤ si ≤ 1.

For the second inequality, break the summation for |s̃|1 into
two components:

|s̃|1=

v∑
i=1

√
pKi +

N∑
i=v+1

√
pKi

The first term corresponds to the nearest v points in the
dataset. The second term corresponds to the rest of the
dataset. For the first term, we will use the trivial bound
that

√
pKi ≤ 1. For the second term,

N∑
i=v+1

√
pKi =

N∑
i=v+1

√
pKi

√
pKv+1√
pKv+1

=
√
pKv+1B

Using B and ∆, we can find a value of K that bounds
|s(q)|1 and |s̃(q)|1.
Theorem 5. Given a query q and query-dependent param-
eters B and ∆, if

K =
⌈
2

logB

log 1
∆

⌉
then

p(xv, q)
K ≥

N∑
i=v+1

p(xi, q)
K

and we have the bounds

|s(q)|1≤ v + 1

|s̃(q)|1≤ v + 1

Proof. Start with the inequality

√
pKv ≥

N∑
i=v+1

√
pKi

Now divide both sides by
√
pKv+1.

(√
pv
pv+1

)K
≥

N∑
i=v+1

√
pKi√
pKv+1

Observe that the left side is equal to ∆−K/2 and the right
side to B. Thus we have

∆−K/2 ≥ B

We use the smallest integer K that satisfies this inequality

K ≥ 2
logB

log 1
∆

To bound the L1 norms, observe that pv ≤ 1 and that
the summation ≤ pv . To get the final inequality in the
theorem, start with the inequality in terms of pi rather
than

√
pi and follow the same steps. The result will be

K ≥ logB/− log ∆. Our choice of K also satisfies this
inequality (the |s̃|1 bound is more restrictive).

Equidistant Assumption: If we wanted to make the
bound in Lemma 2 or K in Theorem 5 as large as possi-
ble, we would set B = N − v. To have B = N − v,
we need pv+1 = pv+2 = ... = pN . Since the collision
probability is a monotone function of distance, this condi-
tion means that all non-neighbors are equidistant from the
query. The rationale behind our equidistant assumption is
that it represents the worst possible ∆-stable query. We are
also motivated by (Beyer et al., 1999), who also identify the
equidistant case as a particularly hard instance of the near-
neighbor problem. When B = N , the vector is minimally
sparse and we rely on K to do all of the work. Theorem 5
works for any distribution of points, so we could repeat the
analysis with B < O(N) under stronger sparsity assump-
tions. However, our sketch is sublinear for stable queries
even under the equidistant assumption. In the next section,
we will see that the memory required by our sketch depends
on pv and ∆.

2.3. Reduce Near-Neighbor to Compressed Recovery

In this section, we will combine all of our results to create a
near-neighbor sketch under the equidistant assumption. For
simplicity, we restrict our attention to the CMS. The main
challenge is to ensure that the kernel values recovered by
our algorithm are within ε of the true ones.

Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data: Supplementary

There are two sources of error: the CMS recovery and the
RACE estimator. We will use εC for the CMS error and
εE for the estimator error. The value of εC is determined
by the CMS recovery guarantee while εE is determined by
Theorem 4. We will use M = O

(
1
εC

log N
δ

)
measure-

ments for the CMS. Each measurement can differ from the
true value by up to εE . This situation is known as measure-
ment noise. For the CMS, measurement noise propagates
as-is to the recovered output values. This happens because
the CMS recovery procedure returns one of the cell values
as its estimate for each component of ŝ. If the cell values
in ĈMS deviate from the true CMS values by ≤ εE , then
the output of ĈMS deviates from the true output by ≤ εE .

si(q)− εE ≤ ŝi(q) ≤ si(q) + εE + εC |s(q)|1 (7)

By choosing appropriate values for εC and εE , we obtain a
concise statement for the pointwise recovery guarantee of
our estimated CMS.

Theorem 6. We require

O

(
|s̃(q)|21|s(q)|1

ε3
log

(
|s(q)|1
εδ

log

(
N

δ

))
log

(
N

δ

))
ACE estimates to recover ŝ(q) such that

si(q)−
ε

2
≤ ŝi(q) ≤ si(q) +

ε

2
(8)

with probability 1− δ.

Proof. Put εE = ε/4 and εC = ε/4|s(q)|1. Then the error
is

si(q)−
ε

4
≤ ŝi(q) ≤ si(q) +

ε

2

To have εC = ε/4|s(q)|1 with probability 1 − δC we must
have

M = O

(
|s|1
ε

log

(
N

δC

))
CMS measurements. For all measurements to have εE =
ε/4 with probability 1− δE , we must have

O
(
M
|s̃(q)|21
ε2

log
(M
δE

))
ACE repetitions. The first requirement comes from the
CMS guarantee. The second comes from Theorem 4.For
both of these conditions to hold with probability 1− δ, we
use the union bound and put δC = δE = δ/2. To obtain
the result, substitute M into the second requirement. We
can safely ignore the constant factors inside the logarithm
because they are constant additive terms.

2.4. Near-Neighbor Sketch Size

To differentiate between the v and the (v+1)th elements of
s, we need to have ε < sv − sv+1. This means that we can
identify the v nearest neighbors by setting ε < pKv − pKv+1.

Lemma 3. Put K = d2 logN
log 1

∆

e. Then

ε = pKv − pKv+1 = O

(
N

2 log pv
log 1

∆

)
(9)

Proof.
pKv − pKv+1 = pKv (1−∆K)

Substitute K:

p
2 log N

log 1
∆

v (1−∆
2 log N

log 1
∆)

Recall the identity

xlog y/log x = y

First address the ∆K term. Observe that

∆
2 log N

log 1
∆ =

(
∆

log N
log ∆

)−2

= N−2

Next address the pKv term. Observe that

p
2 log N

log 1
∆

v =

(
p

log N
log pv
v

) log pv
log 1

∆
= N

2 log pv
log 1

∆

Put these together:

pKv − pKv+1 = N
2 log pv

log 1
∆ (1−N−2)

Since (1−N−2)→ 1 with N , we have that

pKv − pKv+1 = O

(
N

2 log pv
log 1

∆

)
This result may seem strange, but remember that pv < 1.
Therefore, ε = pKv − pKv+1 is a negative power of N . Also,
we restrict ∆ to the range where 2 logN

log 1
∆

> 1. Otherwise,
K = 1 and the lemma is unnecessary.

We are finally ready to state our main result. We assume
the equidistant case and put K = d2 logN

log 1
∆

e according to
Theorem 5 and we plug the result into Theorem 6.

Theorem 7. Given a query q, a dataset D and an LSH
function that can output r different values, we can construct
a sketch to solve the v-nearest neighbor problem with prob-
ability 1− δ in size

O

(
v3N b1 log

(
v

δ
N b2 log

N

δ

)
log

(
N

δ

)
logN

)

Sub-linear Memory Sketches for Near Neighbor Search on Streaming Data: Supplementary

bits, where

b1 =
6|log pv|+2 log r

log 1
∆

b2 =
2|log pv|

log 1
∆

xv is the vth nearest neighbor of q inD, xv+1 is the (v+1)th

nearest neighbor of q in D, and ∆ = pv+1

pv
.

Proof. Assume the equidistant case and put K =
d2 logN

log 1
∆

e. Then Theorem 6 states that we require

O

(
(v + 1)3

ε3
log

(
v + 1

εδ
log

(
N

δ

))
log

(
N

δ

))
ACE repetitions. The (v+1)3 terms came from the bounds
in Theorem 5. Put ε = pKv − pKv+1 and use Lemma 3 to get
that ε−1 = N b2 . The requirement is now

O

(
v3N3b2 log

(
N b2

v

δ
log

(
N

δ

))
log

(
N

δ

))
ACE repetitions. Each ACE repetition requires rK logN
bits. Apply the same trick as in Lemma 3 to get that

rK = r
2 log N

log 1
∆ = N

2 log r

log 1
∆

The total requirement is therefore

O

(
v3N b1 log

(
N b2

v

δ
log

(
N

δ

))
log

(
N

δ

)
log(N)

)
bits.

Our main theorem from the main text (Corollary 7.1) is a
substantially simplified version of Theorem 7.
Corollary 7.1. It is possible to construct a sketch that
solves the exact v-nearest neighbor problem with proba-
bility 1− δ using O

(
N b log3 (N)

)
bits, where

b =
6|log pv|+2 log r

log 1
∆

Here, r is the range of the LSH function, and pv is the colli-
sion probability of the vth nearest neighbor with the query.

Proof. The proof involves expanding Theorem 7 and drop-
ping terms. Observe that

log

(
N b1

v

δ
log

(
N

δ

))
= b1 logN + log v − log δ + log (logN − log δ)

This is multiplied by v3N b2 , (logN − log δ) and logN .
The N b2 term asymptotically dominates the expression.
We are left with

O
(
v3N b log3N

)

3. Analysis Assuming Sparsity
Here, we present results when we assume sparsity rather
than near-neighbor stability. Suppose that with K = 1, we
have |s̃(q)|1≤ C where C is a query-dependent bound. In
this case, we can dispense with Section 2.2 as we no longer
need to choose K so that we get a bound for |s(q)|1. This
greatly simplifies the analysis. In particular, we can directly
apply Theorem 6 with the new bound for |s̃(q)|1.

Corollary 7.2. Given a query q with |s̃(q)|1≤ C, a dataset
D and an LSH function that can output r different values,
we can construct a sketch to solve the v-nearest neighbor
problem with probability 1− δ in size

O

(
rC3

ε3
log

(
C

εδ
log

(
N

δ

))
log

(
N

δ

)
log(N)

)
bits, where ε = pv − pv+1.

Proof. Substitute the bound |s(q)|1≤ |s̃(q)|1≤ C into The-
orem 6. We require

O

(
C3

ε3
log

(
C

εδ
log

(
N

δ

))
log

(
N

δ

))
ACE repetitions. To prove the corollary, put ε = pv −
pv+1 and multiply by r logN (the cost to store each ACE
repetition).

References
Beyer, K., Goldstein, J., Ramakrishnan, R., and Shaft,

U. When is “nearest neighbor” meaningful? In Inter-
national conference on database theory, pp. 217–235.
Springer, 1999.

