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Abstract
We study the problem of learning opinions in so-
cial networks. The learner observes the states of
some sample nodes from a social network, and
tries to infer the states of other nodes, based on the
structure of the network. We show that sample-
efficient learning is impossible when the network
exhibits strong noise, and give a polynomial-time
algorithm for the problem with nearly optimal
sample complexity when the network is suffi-
ciently stable.

1. Introduction
Suppose we are a social media company. A new product
is about to come out, and we would like to learn whether
each individual user has heard about it or not (we will refer
to this as the current opinion of the user). This information
may be useful for further marketing of the product, or for
other purposes. To achieve this goal, we decide to run a poll,
by asking each user visiting our website a few questions
(i.e., inspecting the user). We hope to inspect as few users as
possible, because we would rather let them engage in other
activities on the site. Moreover, since we have no control
over which users will visit our website, the only thing we
can decide is the time interval during which we run the poll,
or equivalently, the rough number of users to inspect.

If our goal is to make sure that our estimates for individ-
ual users are uniformly accurate, without further knowledge
about users, we would have to inspect almost all users. How-
ever, in our role as a social media company, we have access
to the social network formed by our users. In particular,
we know which users are likely to be affected by which
other users. This enables us to infer the opinion of some
users without inspecting them at all, as long as we know
the opinions of certain other users. For example, if user u
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strongly affects user v, and we know that user u is aware
of our product, then we are quite sure that user v is also
aware, because most likely u has told v about the product.
In an extreme case, suppose we know that all users share all
information with each other at all times. Then inspecting
only one user is enough for our purpose, because either ev-
eryone is aware of the new product, or no one is. In general,
how many users we need to inspect depends heavily on the
structure of the network formed by the users. So, given the
structure of the network, we want to know:

• How many users do we need to inspect in order to have
enough information to make an accurate estimate of
the current state? In other words, what is the sample
complexity of learning opinions in a given network?

• Given the opinions of the users inspected, how can we
infer the opinions of other users who have not been
inspected?

While we have illustrated the problem using the example of
marketing a product, the same model can be used for many
other purposes. For instance, we may want to learn whether
users are aware of a particular political candidate, or of a
particular news item. We may want to learn whether an
HIV awareness campaign has reached individual homeless
youth (Wilder et al., 2018). Or, rather than the spread of
information, we may consider the spread of a biological or
computer virus in a network, learning where it is likely to
have spread (Romano et al., 2010).

1.1. Our Results

In this paper, we give (1) a nearly tight bound on the sample
complexity of learning opinions in social networks, and (2)
a polynomial-time algorithm that outputs an approximately
correct estimate of the state of the network with high prob-
ability. Given a desired error rate ε and failure probability
δ, our goal is to design a learning algorithm that outputs,
with probability at least 1 − δ, an estimate of the state of
the network that is accurate for at least 1 − ε fraction of
the nodes. We call this an (ε, δ)-learning algorithm. The
sample complexity of such an algorithm is the number of
labeled nodes (training samples) that it observes; we obtain
an algorithm with nearly optimal sample complexity. Our
results are summarized in the next theorem.
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Theorem 1.1 (Main Result, Informal). Suppose we are
given a (possibly random) network G where information
propagates by reachability, with an (expected) complexity
parameter d. (We will define this parameter later.) Suppose
also that ε ∈ [ε0, 1] and δ ∈ [δ0, 1] are the desired error
rate and failure probability. (Here, ε0 and δ0 are network-
dependent constants that we will define later.) Then, there
exists an efficient (ε, δ)-learning algorithm for G that has a
sample complexity of m = Õ(d/ε).1 Moreover, the above
number of samples is the minimum possible, up to a poly-
logarithmic factor.

1.2. Related Work

Most closely related to our work is the line of research on
learning structures of social networks. The problem of inter-
est there is a sort of inverse problem of the one studied in this
paper: given outcomes of some propagation procedure, the
goal is to recover parameters of the network governing the
propagation. Some representative results in this domain in-
clude (Liben-Nowell & Kleinberg, 2007; Goyal et al., 2010;
Chierichetti et al., 2011; Gomez Rodriguez et al., 2011;
Saito et al., 2011; Du et al., 2012; Guille & Hacid, 2012;
Abrahao et al., 2013; Cheng et al., 2014; Daneshmand et al.,
2014; Du et al., 2014; Narasimhan et al., 2015; He et al.,
2016; Kalimeris et al., 2018). A similar and more recent
line of work is on representation learning for information
propagation (Bourigault et al., 2016; Li et al., 2017; Wang
et al., 2017). By virtue of being an inverse problem, our
results are not directly comparable to all these.

The study of information propagation in a network was initi-
ated by Kempe et al. (2003). Since then, various models of
information propagation have been proposed (Gruhl et al.,
2004; Chen et al., 2010; 2011; Myers et al., 2012). Several
research questions have drawn significant attention in the
context of information propagation, such as influence maxi-
mization (Mossel & Roch, 2007; Chen et al., 2009; 2010;
2011; Borgs et al., 2014; Tang et al., 2014), identification
of influential nodes (Agarwal et al., 2008; Pal & Counts,
2011), and community detection (Faloutsos et al., 2004;
Coscia et al., 2011).

Since the introduction of probably approximately correct
(PAC) learning by Valiant (1984), a series of remarkable
results have provided a rather complete picture for passive
learning from observations. Following the groundbreaking
Vapnik-Chervonenkis (VC) theory (Vapnik, 2013), various
measures of complexity have been considered (Alon et al.,
1997; Bartlett & Mendelson, 2002; Pollard, 2012; Daniely
et al., 2015), based on which tighter generalization bounds
have also been developed (Hanneke, 2016). While these
general results are powerful, as discussed in later sections,

1Õ hides a poly-logarithmic factor.

they cannot be directly applied to the specific problem con-
sidered in this paper.

2. Preliminaries
In this section, we review relevant concepts from learning
theory and social network analysis, and formally define the
problem investigated in this paper. Throughout the paper,
for any set S and point x, let S(x) = I[x ∈ S] denote the
indicator that x ∈ S.

2.1. The Theory of PAC Learning

The problem studied in this paper is an extension to the
classical problem of probably approximately correct (PAC)
learning (Valiant, 1984). In this problem, there is a space
X of data points, a distribution D over X , and a hypothesis
class H ⊆ 2X . We are also given the parameters ε, δ > 0,
respectively denoting the desired error rate and failure prob-
ability. Now, given m iid samples {(xi, yi)}i∈[m] where
xi ∼ D and yi = c(xi) (recall that c(xi) = I[xi ∈ c]) that
correspond to a ground truth c ∈ H, the goal of the (ε, δ)
PAC learning algorithm is to return a hypothesis h ∈ H
such that with probability at least 1− δ,

Pr
x∼D

[c(x) 6= h(x)] ≤ ε.

We are interested in minimizing the number of samples m,
i.e., the sample complexity of the algorithm. This is closely
related to the VC dimension of the hypothesis classH:

Definition 2.1 (VC Dimension). A set S is shattered by a
family of sets F , if for any T ⊆ S, there exists U ∈ F ,
such that S ∩ U = T . The VC dimension of a hypothesis
classH over a space X , denoted VC(H), is the cardinality
of the largest set S ⊆ X shattered byH.

The sample complexity of PAC learning is given by the
following theorem (see, e.g., (Kearns & Vazirani, 1994)):

Theorem 2.1 (VC Theorem, the Realizable Case). Fix X
andH. Consider any D over X , c ∈ H, δ > 0, and ε > 0.
Now, given m = O((VC(H) log(1/ε) + log(1/δ))/ε) i.i.d.
samples from D, the following holds with probability at
least 1 − δ: any hypothesis h ∈ H that is consistent with
all the m samples (i.e., h(xi) = yi for all i ∈ [m]) satisfies

Pr
x∼D

[h(x) 6= c(x)] ≤ ε.

Moreover, this bound is tight in the sense that any al-
gorithm achieving this guarantee requires Ω((VC(H) +
log(1/δ))/ε) samples.

2.2. Social Network Analysis

We now review a few basic concepts in social network analy-
sis, which provide the language for describing how nodes of
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the network interact with each other. These interactions en-
able inference of the opinions of nodes that are not inspected.
Each node has two possible opinions or states, active and
inactive, encoding whether the node is aware of an idea
(e.g., a new product) or not. Following conventions in social
network analysis, we assume the final opinions of nodes are
formed via the following information propagation process:
A subset of nodes (the seed set) is active at the beginning.
Over time, active nodes make other (previously inactive)
nodes active, according to some propagation model. Once a
node becomes active, it never returns to the inactive state.
The propagation stops eventually with a set of active nodes,
which represents the final state of the network.

We consider a general propagation model based on live-
edge graphs (see, e.g., (Chen et al., 2010)).2 In this model,
a network over nodes V (where |V | = n) is modeled by a
distribution G over possible realizations of the network, each
of which is a simple directed graph over V . Given the seed
set S0 ⊆ V , the propagation is governed by the following
(random) process: First, a realized graphG = (V,E) ∼ G is
drawn from the distribution G. Information then propagates
in steps, where in each step, any previously inactive node
v that has an edge (u, v) from a previously active node u
becomes active. The set of active nodes in step i is given
by:

Si = Si−1 ∪ {u | ∃v ∈ Si−1, s.t. (v, u) ∈ E}.

The above procedure defines a monotone sequence of sets
of active nodes S0 ⊆ S1 ⊆ S2 ⊆ . . .. The propagation
stops once Si = Si−1 for some i > 0, and this must happen
at some stage since |Si| ≤ n for all i. (In fact, for any
i ≥ n − 1, Si = Si+1.) We say S∞ = Sn−1 is the final
state of the network. Note that S∞ is the set of nodes
reachable from the seed set in the random graph G. (Recall
that for any set of nodes S ⊆ V and any node u ∈ V ,
S(u) = I[u ∈ S].)

Note that although we described the propagation model
above as a deterministic process defined over a randomly
generated network, it also captures the complementary
model of random propagation in a fixed network. For in-
stance, suppose we have a fixed network Gf , and for every
edge (u, v), we are given a probability puv of node u activat-
ing node v along edge (u, v) (independent of other edges).
To model this in our framework, we would first generate
a random network G from the given network Gf , where
edge (u, v) in Gf is realized independently with probability
puv in G. Once this network is generated, we can define
the propagation process as deterministic propagation in G

2As far as we know, the live-edge graph model considered
in this paper was developed in a folklore fashion. The name
appeared in (Kempe et al., 2003), but there the actual model is
more restricted, and is now often referred to as the triggering
model.

based on reachability as defined above. Clearly, these are
equivalent views and result in the same final network state.

2.3. Learning Opinions in Social Networks

We now proceed to define our problem formally. A problem
instance comprises a set of nodes V (where |V | = n) and a
(possibly random) network G over V (in the form of a live-
edge graph defined above). The node set V is explicitly part
of the input. The random network G (i.e., the corresponding
probability distribution) may not be explicitly defined; in-
deed, its support can be exponentially large in the number of
vertices. Nevertheless, the algorithm can draw i.i.d. samples
from G; we will typically call each such graph a sampled
graph. Now, the actual propagation happens on a graph
G∗ ∼ G; we call this the realized graph. The algorithm does
not have access to the realized graph.

Under these conditions, the goal is to design an algorithm
that can “learn” S∞ on the realized graph G∗ for any seed
set S0 in the following sense: For any population distribu-
tion D defined on the set of vertices V , and for any values
of parameters δ, ε > 0, suppose the algorithm is given m
i.i.d. labeled samples {(ui, oi)}i∈[m] where for any i ∈ [m],
ui ∼ D and

oi = S∞(ui) = I[ui ∈ S∞].

Then, the algorithm computes a hypothesis set H ⊆ V
of active nodes, such that with probability at least 1 − δ
over the random realized graph G∗ from G and the random
generation of the labeled samples from D, the following
holds:

Pr
u∼D

[S∞(u) 6= H(u)] ≤ ε.

We are interested in minimizing the sample complexity m.

In words, given a network modeled by a live-edge graph, the
problem asks for an algorithm, that, with high probability,
approximately recovers the final outcome of a propagation
process starting from any seed set, by observing i.i.d. sam-
ples of the outcome only. As described above, the algorithm
is not aware of the realization of the network, i.e., the real-
ized graph G∗, and this prevents us from applying existing
results from learning theory directly.

Below is a concrete example of the problem of learning
opinions in social networks. Again there is a fixed network
Gf over nodes V , where every edge (u, v) is associated with
a probability puv of node u activating node v along edge
(u, v). Let the network G be the distribution of G in which
every edge (u, v) realizes independently with probability
puv . V and G constitute a problem instance — the algorithm
knows V and can sample from G. The procedure of learning
with V and G then happens in the following way. First
a seed set S0 ⊆ V and a population distribution D are
chosen adversarially. Then nature draws a realized graph
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G∗ ∼ G in which every edge (u, v) exists independently
with probability puv, and propagation happens in G∗ from
S0, resulting in S∞. The algorithm then observes m i.i.d.
labeled samples {(ui, oi)}i∈[m] where for any i ∈ [m], ui ∼
D and oi = S∞(ui). Based on these labeled samples, the
algorithm computes a hypothesis H ⊆ V which probably
approximately recovers S∞ with respect to D.

We also remark that the problem becomes trivial with
Ω̃(n/ε) samples. In this case, one can learn the state of
the network irrespective of (and ignoring) its structure. To
this end, we aim to find a parameter of the network that
tightly characterizes the minimum number of samples re-
quired to recover the outcome of the propagation.

3. Warmup: Deterministic Networks
To develop some intuition for the problem, we first investi-
gate a special case where the network is deterministic.We
present a few observations, given which the problem can be
solved by applying the classical VC theorem.

Let G = (V,E) be the only possible realization of G. The
key observation is that the effective hypothesis class to be
considered might be much smaller than 2V . In fact, for any
u ∈ V and v ∈ V where v is reachable from u, for any
seed set S0, it is impossible that in the final outcome of the
propagation, u ∈ S∞ but v /∈ S∞. In general, we only
need to consider hypotheses where no such contradictions
happen. In other words, the propagation procedure on G
induces a hypothesis class H ⊆ 2V . In light of the VC
theorem, we now consider the VC dimension of this asso-
ciated hypothesis class H, which we define to be the VC
dimension of the graph G. Projecting the definition of VC
dimension to graphs, we get the following definition:

Definition 3.1 (VC Dimension of Directed Graphs). The
VC dimension VC(G) of a directed graph G = (V,E) is
the size of the maximum set S ⊆ V of nodes, such that for
any u, v ∈ S where u 6= v, there is no u to v path in G.

In fact, the above definition coincides with the VC dimen-
sion of the hypothesis class associated with the graph.

Proposition 3.1. Let G be any directed graph, andH be its
associated hypothesis class defined above. Then VC(G) =
VC(H).

Proof. Let G = (V,E) be any directed graph, andH be its
associated hypothesis class. We show below that a set of
nodes S ⊆ V is shattered by H if and only if there is no
path from any node in S to any other node in S.

Suppose S satisfies for any u, v ∈ S where u 6= v, there
is no u to v path. Consider any subset of nodes T ⊆ S.
We show that there exists some S0 ⊆ V such that the
corresponding outcome of propagation S∞ ∈ H satis-

fies S∞ ∩ S = T . In fact, let S0 = T . Since for any
u ∈ T and v ∈ S \ T , u cannot reach v, we always have
(S \ T ) ∩ S∞ = ∅, which implies S∞ ∩ S = T .

Now suppose S is shattered byH. Let u, v ∈ S be any two
nodes in S where u 6= v. We argue that there is no path
from u to v. To see this, let S∞ ∈ H be a feasible outcome
of the propagation, where u ∈ S∞ and v /∈ S∞. Such an
outcome always exists, because S is shattered byH. Then,
if u can reach v, we have u ∈ S∞ =⇒ v ∈ S∞, which is a
contradiction.

We make a few remarks regarding the above definition.

• Restricted to deterministic networks, one can always
assume without loss of generality that the unique real-
ization G is acyclic. This is because for any strongly
connected component in G, either all nodes in the com-
ponent are in S∞, or none of the nodes is. One can
therefore effectively contract any such component into
a single node. Moreover, this contraction does not
affect the VC dimension of G.

• Given the above observation, the definition of the VC
dimension of a graph coincides precisely with the con-
cept of the width of a graph (or that of a partially or-
dered set). As a result, the VC dimension of any graph
can be computed in polynomial time (Felsner et al.,
2003).

• Many natural graphs have small VC dimension. For
example, a clique of any size, as well as a chain of any
length, has VC dimension 1.

Based on the above observations, for deterministic G, we
may apply the classical VC theory to our problem as follows:

Theorem 3.1 (Learning Opinions in Social Networks, the
Deterministic Case). Fix a deterministic network G =
(V,E). Consider any seed set S0, distribution D over V ,
failure probability δ > 0 and error rate ε > 0. Given
m = O((VC(G) log(1/ε) + log(1/δ))/ε) i.i.d. samples
from D, with probability at least 1− δ, any hypothesis set
H ∈ H in the associated hypothesis class that is consistent
with all the samples satisfies

Pr
u∼D

[S∞(u) 6= H(u)] ≤ ε.

Moreover, this result is tight in that any algorithm providing
this guarantee requires Ω((VC(G)+log(1/δ))/ε) samples.

To compute a hypothesisH consistent with the samples, one
can simply take all sampled nodes that are active (denoted
A), and let H be the set of all nodes reachable from A in
G. It is straightforward to check that H is in fact consistent
with G and the sampled nodes. This gives an algorithm that
is both sample efficient and computationally efficient.
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4. The General Case: Random Networks
In the previous section, we demonstrated an interesting
connection between the problem of learning opinions in
social networks and the classical VC theory for passive
learning. In particular, we identified a network dependent
parameter, namely its width, that defines the VC dimension
of the induced hypothesis class, and therefore dictates the
sample complexity of learning on the network. We now
generalize these results to random networks.

Now, the network G is no longer deterministic, but is a non-
trivial probability distribution over graphs. This randomness
of the network precludes the use of the VC theorem directly
to obtain learning algorithms with a nontrivial sample com-
plexity bound. In fact, the VC dimension VC(G) of the
realized graph G ∼ G is now random. At best, one may
hope for a sample complexity bound that depends on the
expectation of, or even perhaps some upper bound on, the
value of VC(G) where G ∼ G. In this section, we first
show that this, in general, is not possible. We then identify
a condition under which sample efficient learning is possi-
ble, and give a nearly optimal learning algorithm under this
condition.

4.1. Obstacles to Learning in General Networks

We first discuss a key difference between learning in deter-
ministic and random networks, which makes it impossible
to design sample efficient learning algorithms that work for
arbitrary random networks. Recall that in this case, the
learning algorithm does not know the actual realization of
the random network. Since the labels of the sample nodes
depend on both the seed set and the realized graph, the learn-
ing task becomes intuitively difficult when the randomness
of the network “overwhelms” the information encoded in
the seed set. We make this intuition concrete by showing
that in certain pathological cases where G is poorly concen-
trated, any algorithm needs Ω(n) samples to learn the label
of a single fixed node with constant probability, even though
VC(G) = 1 for all realizable graphs G under G.

Consider the following construction of G. To generate G ∼
G, we first generate a uniform random permutation σ : V →
[n] of V , where σ(u) is the rank of u ∈ V . G = (V,E) is
then defined by the following: for any u, v ∈ V ,

(u, v) ∈ E ⇐⇒ σ(u) + 1 = σ(v).

That is, G is a directed chain formed by connecting con-
secutive nodes in the permutation σ. Clearly G always has
width 1, i.e., VC(G) = 1.

Now fix the seed set S0 to be a fixed node u0, and let D be
the uniform distribution over V . Observe that in the final
outcome of the propagation, for any node u 6= u0,

u ∈ S∞ ⇐⇒ σ(u0) ≤ σ(u),

where σ(·) is the permutation defining G. We can show the
following lower bound:

Proposition 4.1. By observing i.i.d. labeled samples, for
any u 6= u0, an algorithm needs Ω(n) samples to recover
S∞(u) with probability 9/10.

Proof. Observe that the Bayesian optimal algorithm for re-
covering S∞(u) is the following. If u is among the sampled
nodes, then output its label. Otherwise, output the major-
ity label of the sampled nodes. In the argument below, we
further allow the algorithm the additional advantage that
it always knows the true majority label, and outputs this
true majority label when u is not among the sampled nodes.
There are two possible ways of correctly recovering S∞(u):

• u happens to be one of the labeled samples.

• u happens to have the true majority label.

Suppose we observe m = cn samples for some c > 0. The
probability that the first case happens is 1− (1− 1/n)m ≈
1 − 1/ec. For the second case, recall that the algorithm
always outputs the true majority label. Even then, the proba-
bility that the majority label coincides with S∞(u) is given
by ∑

n/2≤i≤n

2

n
· i
n
≈ 3

4
.

Taking a union bound over these two cases, the probability
of the algorithm outputting the correct label is at most 7

4−
1
ec ,

which is less than 9/10 for small enough c.

In other words, one needs to inspect a constant fraction of
the nodes in order to obtain a constant error rate.

4.2. Stability of Networks

Proposition 4.1 rules out the possibility of any non-trivial
sample complexity bounds without making further assump-
tions on the network. In the counterexample, the main
obstacle to an efficient learning algorithm is the lack of con-
centration of G, for any reasonable notion of concentration.
To this end, we identify a mild condition that captures the
intrinsic “stability” of random networks, and give a learning
algorithm subject to this condition.

Definition 4.1 ((ε0, δ0)-Stable Networks). Consider a net-
work G with node set V , and let G and G′ be two i.i.d.
graphs drawn from G. Then, G is said to be (ε0, δ0)-stable
with respect to a distribution D defined over V , if the final
outcomes of propagation S∞ and S′∞ in G and G′ respec-
tively from any seed set S0, satisfy the following: with
probability at least 1− δ0 over G,

Pr
G′∼G,u∼D

[S∞(u) 6= S′∞(u)] ≤ ε0.
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Algorithm 1 Learning Algorithm for General Networks
Input: A network G over V that is (ε0, δ0)-stable, m
labeled sample nodes {(ui, oi)}i∈[m], desired error rate
ε ≥ C1 · ε0 and failure probability δ ≥ C2 · δ0. (C1 and
C2 are absolute constants.)
Output: A hypothesis set H ⊂ V .

Draw θ := 100
ε log 1

δ i.i.d. sample graphs {G(k)}k∈[θ],
where G(k) ∼ G for all k ∈ [θ].
for k ∈ [θ] do

Compute hypothesis set H(k) by calling Algorithm 2
on G(k) and {(ui, oi)}i∈[m].

end for
H ← ∅.
for u ∈ V do
cu =

∑
k∈[θ]H

(k)(u).
H ← H ∪ {u} if cu ≥ θ/2.

end for
Return H .

In words, a network is (ε0, δ0)-stable if the outcome S∞
of the propagation from S0 does not lie in the “tail” with
probability at least 1− δ0, in which case the expected dis-
tance from the outcome S∞ to an i.i.d. copy of itself S′∞ is
at most ε0. This is rather mild, since it does not even require
the expected distance between two independent outcomes of
propagation to have small second moment, even condition-
ing on one of them being not in the tail. Technically, with
a small second moment, one would expect good concen-
tration behavior of S∞, making it practically deterministic.
This is not the case for the notion of (ε0, δ0)-stability. As
we will see, our algorithm is independent of any explicit
concentration property of S∞.

We also remark that the notion of (ε0, δ0)-stability may
not be the only nontrivial condition that permits efficient
learning. On the other hand, it does provide a way of param-
eterizing random networks which allows us to derive almost
matching upper and lower bounds on the sample complexity.
To this end, (ε0, δ0)-stability appears to be a natural notion
that captures the intrinsic resolution of random networks,
and may generalize to other learning settings.

4.3. Efficient Algorithm for Stable Networks

Our learning algorithm, Algorithm 1, works in the following
way. First, the algorithm draws a number of i.i.d. sample
graphs from G (note that it does not have access to the re-
alized graph in which the propagation happens; if it did,
we would be in the deterministic case given in the previous
section). The algorithm then tries to fit the labels of the sam-
pled nodes for each of these sampled graphs separately by
finding the hypothesis set that is consistent (i.e., minimizing

Algorithm 2 Empirical Risk Minimization in Networks
Input: A graph G = (V,E), m labeled sample nodes
{(ui, oi)}i∈[m].
Output: A hypothesis set H ⊆ V .

Create a capacitated graph G′ = (V ′, E′). Let V ′ ←
V ∪ {s, t}, E′ ← E. Assign all edges currently in E′

capacity∞.
for i ∈ [m] do

if oi = 1 then
LetE′ ← E′∪{(s, ui)}, where the new edge (s, ui)
has capacity 1.

else
Let E′ ← E′∪{(ui, t)}, where the new edge (ui, t)
has capacity 1.

end if
end for
Compute an s-t min-cut, let H ⊆ V be the set of nodes
of G on the s-side of the cut. Return H .

the number of sampled nodes whose labels are inconsistent
with the hypothesis). In other words, the algorithm finds
the empirical risk minimizer (ERM) for each of the sampled
graphs. Note that here, the best hypothesis set for a sam-
pled graph may not be perfectly consistent with the sampled
nodes — this is because the sampled nodes are part of the
outcome of the propagation process on the actual realization
of the network, which is possibly different from the sampled
graphs. With these empirical risk minimizers, the algorithm
then computes and outputs the node-wise majority vote, i.e.,
a node is in the output hypothesis if and only if it is in more
than half of these ERMs.

To efficiently compute ERMs on sampled graphs, Algo-
rithm 1 calls a subroutine Algorithm 2. Algorithm 2 treats
the ERM problem as a constrained combinatorial optimiza-
tion problem. Concretely, it models the problem in the
following way: each sample node with label 1 has weight 1,
and each sample node with label 0 has weight −1. The
algorithm tries to find a subset of all nodes with maxi-
mum weight, subject to the constraint that for any edge
(u, v) ∈ E, if u is in the subset, then v must also be in
the subset. This problem turns out to be polynomial-time
solvable via a minimum cut subroutine.

We now analyze the efficiency and correctness of Algo-
rithm 1.

Theorem 4.1 (Learning Opinions in Social Networks, the
General Case). Let G be a (possibly random) network de-
fined on a node set V that is (ε0, δ0)-stable with respect to
some distribution D over V . Let S0 ⊆ V be any seed set.
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Further, suppose Algorithm 1 is given

m = O

(
EG∼G [VC(G)] log(1/ε) + log(1/δ)

ε

)
random samples, where δ ≥ C1 · δ0 and ε ≥ C2 · ε0.
Then, with probability at least 1− δ, Algorithm 1 outputs a
hypothesis set H ⊆ V that satisfies

Pr
u∼D

[S∞(u) 6= H(u)] ≤ ε.

Moreover, Algorithm 1 runs in time poly(n, 1/ε, log(1/δ)).
(Here, C1 > 0 and C2 > 0 above are absolute constants.)

Before proving the theorem, we remark that the above
sample complexity bound is optimal up to a factor of
O(log(1/ε)). This can be seen by restricting G to be deter-
ministic, and comparing to the lower bound in Theorem 3.1.

Proof of Theorem 4.1. First observe that Algorithm 1 runs
in time poly(n, 1/ε, log(1/δ)). This is because the algo-
rithm takes m = poly(n, 1/ε, log(1/δ)) labeled sample
nodes, and performs empirical risk minimization with these
nodes on θ = poly(n, 1/ε, log(1/δ)) sampled graphs. In
each of these, the algorithm calls Algorithm 2 on an in-
put of polynomial size. The latter simply computes a min-
cut which is polynomial-time in the input size, and there-
fore, is poly(n, 1/ε, log(1/δ)). Finally, the algorithm scans
through the ERMs and the nodes, and computes the majority
vote in polynomial time.

Now we show Algorithm 1 in fact outputs a hypothesis with
the desired error rate and failure probability. We first show
that Algorithm 2 is correct, i.e., it does return an ERM:

Lemma 4.1. Given a graph G = (V,E) and labeled sam-
ple nodes {(ui, oi)}i∈[m], Algorithm 2 finds a set H ⊆ V
consistent with G that minimizes the empirical risk given
by: ∑

i∈[m]

I[H(ui) 6= oi].

Proof. Let w : V → Z be a weight function over nodes.
We construct w such that for any u ∈ V ,

w(u) =
∑
i∈[m]

I[u = ui] · (2oi − 1).

Observe that minimizing the empirical risk is equivalent to
finding a set H ⊆ V consistent with G that maximizes the

total weight
∑
u∈H w(u). In fact,∑

u∈H
w(u) =

∑
u∈H

∑
i∈[m]

I[u = ui] · (2oi − 1)

=
∑
i∈[m]

(2oi − 1)
∑
u∈H

I[u = ui]

=
∑
i∈[m]

(2oi − 1) ·H(ui)

=
∑
i∈[m]

(oi − I[H(ui) 6= oi])

=
∑
i∈[m]

oi −
∑
i∈[m]

I[H(ui) 6= oi].

We further argue that maximizing
∑
u∈H w(u) is equivalent

to the min-cut in Algorithm 2. Observe that in any finite
capacity s-t cut in G′, for any edge e = (u, v) ∈ E in
the graph G, it cannot be the case that u is in the s-side of
the cut, and v is in the t-side of the cut. As a result, finite
capacity s-t cuts in G′ correspond to feasible outcomes of
propagation in G. In fact, fixing a finite capacity cut (where
all nodes in the s-side of the cut form a set H), for each
node u ∈ V where w(u) 6= 0, there are two cases:

• u is in the s-side of the cut, or equivalently, u ∈ H .
When this happens, we have to cut all edges from u to
t, each of which corresponds to a sampled node (ui, oi)
where ui = u and oi = 0. In this case, we incur cost∑
i∈[m]

I[ui = u](1−oi) =
∑
i∈[m]

I[ui = u](H(u)−oi).

• u is in the t-side of the cut, or equivalently, u /∈ H .
When this happens, we have to cut all edges from s
to u, each of which corresponds to a sampled node
(ui, oi) where ui = u and oi = 1. In this case, we
incur cost∑
i∈[m]

I[ui = u](oi−0) =
∑
i∈[m]

I[ui = u](oi−H(u)).

So the total cost we incur can be written as∑
u∈V

∑
i∈[m]

I[ui = u](H(u)− oi) · (2H(u)− 1)

=
∑
u∈V

∑
i∈[m]

I[ui = u](2H(u)2 −H(u)− 2H(u)oi + oi)

=
∑
u∈V

∑
i∈[m]

I[ui = u](H(u)(1− 2oi) + oi)

=
∑
u∈H
−w(u) +

∑
i∈[m]

oi.

Observe that the min-cut minimizes the above cost, which
is equivalent to maximizing

∑
u∈H w(u). This concludes

the proof of the lemma.
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We can now apply the following lemma about the error rate
of ERMs:

Lemma 4.2. Fix a feature space X and a hypothesis class
H ⊆ 2X . Fix any distributionD overX , c ⊆ X , δ′ > 0 and
ε′ > 0. Moreover, suppose there is a hypothesis h∗ ∈ H
such that Prx∼D[h∗(x) 6= c(x)] ≤ ε′/2. Now, consider
any ERM h ∈ H for at least m′ = O((VC(H) log(1/ε′) +
log(1/δ′))/ε′) samples {(xi, yi)}i∈[m′], i.e.,

h ∈ argminh′∈H
∑
i∈[m]

I[h′(xi) 6= yi].

Then, with probability at least 1 − δ′, h has error rate at
most ε′, i.e., Prx∼D[h(x) 6= c(x)] ≤ ε′.

The lemma is a straightforward adaptation of the classical
VC theorem, and can be proved by modifying the original
proof, replacing the additive concentration bounds by their
multiplicative versions.

We now bound the error rate and failure probability of Al-
gorithm 1. Let S∞ be the outcome of the actual propaga-
tion from S0 on the realized graph G∗. Moreover, for any
k ∈ [θ], let S(k)

∞ be the outcome of the propagation from S0

on the sampled graph G(k). Since G is (ε0, δ0)-stable, with
probability at least 1 − δ0 over the random choice of G∗,
the following holds:

for any k ∈ [θ], Pr
G(k)∼G,u∼D

[S∞(u) 6= S(k)
∞ (u)] ≤ ε0.

We condition on the above event from now on. Otherwise,
we consider the algorithm to have failed (which happens
with probability at most δ0).

For k ∈ [θ], let e(k) be the difference between S∞ and S(k)
∞ :

e(k) = Pr
u∼D

[S∞(u) 6= S(k)
∞ (u)].

Observe that {e(k)}k∈[θ] are i.i.d. random variables in [0, 1],
whose expectation does not exceed ε0.

We now apply Lemma 4.2 with different parameters (partic-
ularly, different ε′ = ε(k)) for each G(k), to bound the error
rate of H(k) w.r.t. the actual outcome S∞. For any k ∈ [θ],
apply Lemma 4.2 with m′ = m, δ′ = δ/3θ and

ε′ = ε(k) = max

(
2e(k),

ε

8
·
(

1 +
VC(G(k))

EG∼G [VC(G)]

))
.

Note that the condition of Lemma 4.2 is satisfied. In partic-
ular, there is a hypothesis S(k)

∞ consistent with G(k) that has

error rate e(k) ≤ ε(k)/2. Then,

m′

= O

(
VC(G(k)) log(1/ε′) + log(1/δ′)

ε′

)
≤ O

(
((8 + o(1))(VC(G(k)) log(1/ε) + log(1/δ))

ε(1 + VC(G(k))/EG∼G [VC(G)])

)
≤ O

(
(8 + o(1))(EG∼G [VC(G)] log(1/ε) + log(1/δ))

ε

)
≤m,

where the last inequality holds when the constant in the
choice of m is large enough. So, by Lemma 4.2, we get the
following: with probability at least 1− δ′, H(k) satisfies

Pr
u∼D

[S∞(u) 6= H(k)(u)] ≤ ε(k).

Taking a union bound over k ∈ [θ], this inequality holds
simultaneously for all H(k) with probability at least 1− θ ·
δ′ ≥ 1− δ/3. Again, we condition on the above event from
now on, and consider the algorithm to have failed otherwise
(which happens with probability at most δ/3).

Observe that the expected error rate of {H(k)}k is already
low (i.e., on the order of ε). To be specific, note that {G(k)}k
are still i.i.d. variables with distribution G even if we condi-
tion on the event that Algorithm 2 succeeds for all {Gk}k,
since the latter depends only on the randomness in the la-
beled sample nodes. As a result, for any k ∈ [θ], we have:

EG(k) [ε(k)]

= EG(k)

[
max

(
2e(k),

ε

8

(
1 +

VC(G(k))

EG∼G [VC(G)]

))]
≤ EG(k)

[
2e(k) +

ε

8

(
1 +

VC(G(k))

EG∼G [VC(G)]

)]
≤ 2EG(k) [e(k)] +

ε

8
+ ε · EG(k) [VC(G(k))]

8EG∼G [VC(G)]

≤ 2ε0 +
ε

4
.

Since ε ≥ C1 · ε0, the above is upper bounded by ε/3
whenever C1 ≥ 24. But, each H(k) may still have error rate
larger than ε with probability larger than δ. Here, we apply
majority voting to boost the probability of success.

First, we bound the average error rate of {H(k)}k using
concentration inequalities, and show that with high proba-
bility (i.e., at least 1− δ/3), it is at most ε/2. Observe that
{ε(k)}k are i.i.d. variables in [0, 1].3 For small enough δ, by

3The above choice of εk itself may exceed 1. However, since
ε(k) is an upper bound of a probability, one can always truncate
ε(k) at 1, which does not increase the mean. We omit this in the
proof for the sake of brevity.
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the multiplicative Chernoff bound,

Pr

1

θ

∑
k∈[θ]

ε(k) ≥ ε

2


= Pr

1

θ

∑
k∈[θ]

ε(k) ≥
(

1 +
1

2

)
· ε

3


≤ exp

(
− (1/2)2 · (θε/3)

2 + 1/2

)
= exp

(
10 log(δ)

3

)
≤ δ

3
.

We remark that the actual mean of ε(k) may be smaller than
ε/3, but that only makes the probability smaller. So with
probability at least 1− δ

3 ,

1

θ

∑
k∈[θ]

ε(k) ≤ ε

2
.

The final step is to show that the majority vote amplifies the
average error rate of the ERMs by at most a factor of 2.

Lemma 4.3. Fix a feature space X , a distribution D
over X , and c ⊆ X . Suppose there are θ subsets of X ,
{h(k)}k∈[θ], satisfying

1

θ

∑
k∈[θ]

Pr
x∼D

[c(x) 6= h(k)(x)] ≤ ε′,

for some ε′ > 0. Then the pointwise majority vote h of
{h(k)}k∈[θ], defined such that for any x ∈ X ,

h(x) = I

∑
k∈[θ]

h(k)(x) ≥ θ

2

 ,
satisfies Prx∼D[h(x) 6= c(x)] ≤ 2ε′.

Proof. Fix some x ∈ X . Suppose c(x) 6= h(x). Then it
has to be the case that∑

k∈[θ]

I[h(k)(x) 6= c(x)] ≥ θ

2
.

So it always holds that

1

θ

∑
k

I[h(k)(x) 6= c(x)] ≥ 1

2
· I[h(x) 6= c(x)].

Now one may bound the difference between h and c in the

following way.

Pr
x∼D

[h(x) 6= c(x)] = Ex∼D[I[h(x) 6= c(x)]]

≤ Ex∼D

2

θ

∑
k∈[θ]

I[h(k)(x) 6= c(x)]


=

2

θ

∑
k∈θ

Ex∼D[I[h(k)(x) 6= c(x)]]

=
2

θ

∑
k∈θ

Pr
x∼D

[h(k)(x) 6= c(x)]

≤ 2ε′,

which gives the desired bound.

Now we apply Lemma 4.3 to {H(k)}k∈[θ], with ε′ = ε/2.
The condition is satisfied, since the error rate of H(k) is
upper bounded by ε(k), and the average of these {ε(k)}k
is at most ε/2. As a result, the majority vote H , which is
the output of Algorithm 1, has error rate at most ε. As for
the failure probability, recall that the algorithm may fail
in 3 cases: (1) the realized graph G∗ lies in the tail, so no
property can be guaranteed by the (ε0, δ0)-stability of G,
which happens with probability at most δ0, (2) one of the
calls to Algorithm 2 fails, which happens with probability
at most δ/3 over the labeled sample nodes, and (3) the
upper bound on the average error rate of {H(k)}k exceeds
ε/2, which happens with probability at most δ/3 over the
sampled graphs {G(k)}k. So, taking a union bound over
these three cases, we infer that the total probability of failure
does not exceed δ ≥ 3δ0 for any C2 ≥ 3. This concludes
the proof of Theorem 4.1.

5. Conclusion and Future Research
While various aspects of information propagation in social
networks have been extensively studied, the problem of in-
ferring the state of a network based on the structure induced
by such propagation procedures has remained largely unex-
plored. In this paper, we study the algorithmic and statistical
aspects of learning opinions in social networks. Our results
show that in the classical live-edge graph model, nontrivial
(and in fact, nearly optimal) inference is possible if and only
if the noise exhibited by the network is not overwhelmingly
large. Future research directions include generalizing our
results to other models of social networks, as well as other
notions of information propagation. Also, our results can be
interpreted as a generalization of the VC theorem to random
hypothesis classes with some specific properties. Another
interesting research question is whether such generalization
is possible for more general hypothesis classes. Answering
these questions would broaden the understanding of both
social network analysis and the theory of passive learning.
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A. Omitted Proofs
Proof of Lemma 4.2. We first show the easy part of the claim, i.e., with high probability h∗ has empirical error at most 3

5ε
′.

By the multiplicative Chernoff bound, we have

Pr

[
1

m′

∑
i

I[h∗(xi) 6= yi] ≥
3

5
ε′

]
≤ exp

(
− (1/5)2m′(ε′/2)

2 + 1/5

)
.

For a properly chosen constant in m′, this is at most δ′/2.

Now consider the harder part, i.e., with high probability, any hypothesis h where Pr[h(x) 6= c(x)] ≥ ε′ has empirical error
at least 3

4ε
′ > 3

5ε
′. We apply the double sampling technique. That is, we first sample 2m′ iid samples, denoted S, and then

choose uniformly at random m′ elements from S to form S1. Clearly S1 is identically distributed as {(xi, yi)}i∈[m]. Let E1
be the event that there exists some h ∈ H where Pr[h(x) 6= c(x)] ≥ ε′, such that

1

m′

∑
(x,y)∈S1

I[h(x) 6= y] ≤ 3

4
ε′.

We want to show that Pr[E1] ≤ δ′/2. Let S2 = S \ S1, and E2 be a proxy of E1, i.e., the event that there exists h ∈ H where
Pr[h(x) 6= c(x)] ≥ ε′, such that

1

m′

∑
(x,y)∈S1

I[h(x) 6= y] ≤ 3

4
ε′, (1)

and moreover,
1

m′

∑
(x,y)∈S2

I[h(x) 6= y] ≥ 7

8
ε′. (2)

One may show that Pr[E2 | E1] = Ω(1) for the choice of m′ in the lemma. So to upper bound Pr[E1], we only have to show
Pr[E2] ≤ C · δ′, where

C =
1

2
Pr[E2 | E1] = Ω(1).

We argue below that for any choice of S, Pr[E2 | S] ≤ C · δ′, and therefore Pr[E2] ≤ C · δ′. Intuitively, fixing S, E2 is
the event that for some h ∈ H, the sample points misclassified by h is distributed in an unbalanced way into S1 and S2.
By Sauer’s Lemma (see, e.g., (Kearns & Vazirani, 1994)), fixing S where |S| = 2m′, the number of effectively different
hypotheses on S inH, i.e.,

N = |{h ∩ S | h ∈ H}|,
is at most (2em′/d)d, where d = VC(H). Therefore we only need to consider these N hypotheses. The plan is, for each
h ∩ S, we bound the probability that the points in S misclassified by h ∩ S are distributed in a sufficiently unbalanced way
into S1 and S2, and then take a union bound over these N hypotheses.

Fix any h|S = h ∩ S. Without loss of generality, suppose

1

m′

∑
(x,y)∈S

I[h|S(x) 6= y] ≥ 13

16
ε′.

We bound below the probability that h|S satisfies (1), which clearly upper bounds p(h|S). The argument for the other case
is totally symmetric.

Note that by the choice of S1, the random variables {I[h|S(x) 6= y]}(x,y)∈S1
are negatively correlated. Therefore we only

need to bound

Pr

 1

m′

∑
i∈[m′]

zi ≤
3

4
ε′

 ,
where {zi}i∈[m′] are iid Bernoulli variables with mean at least 13

16ε
′ > 3

4ε
′. Again, by the multiplicative Chernoff bound,

Pr

 1

m′

∑
i∈[m′]

zi ≤
3

4
ε′

 ≤ exp

(
− (1/12)2m′ · (3/4)ε′

2

)
= exp(−Ω(mε′)).
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So in any case,
p(h|S) = exp(−Ω(mε′)).

Now taking a union bound over the N possible choices of h|S , we get

Pr[E2] ≤ N · exp(−Ω(mε′)) ≤ (em/d)d exp(−Ω(mε′)).

Given a properly chosen constant in m′, the above is upper bounded by C · δ′, and therefore

Pr[E1] ≤ 1

2
δ′.

Putting the above together, the lemma follows immediately.


