Relaxing Bijectivity Constraints with Continuously Indexed Normalising Flows

Rob Cornish 1 Anthony Caterini 1 George Deligiannidis 1 2 Arnaud Doucet 1

Abstract
We show that normalising flows become pathological when used to model targets whose supports have complicated topologies. In this scenario, we prove that a flow must become arbitrarily numerically noninvertible in order to approximate the target closely. This result has implications for all flow-based models, and especially residual flows (ResFlows), which explicitly control the Lipschitz constant of the bijection used. To address this, we propose continuously indexed flows (CIFs), which replace the single bijection used by normalising flows with a continuously indexed family of bijections, and which can intuitively “clean up” mass that would otherwise be misplaced by a single bijection. We show theoretically that CIFs are not subject to the same topological limitations as normalising flows, and obtain better empirical performance on a variety of models and benchmarks.

1 Introduction
Normalising flows (Rezende & Mohamed, 2015) have become popular methods for density estimation (Dinh et al., 2017; Papamakarios et al., 2017; Kingma & Dhariwal, 2018; Chen et al., 2019). These methods model an unknown target distribution P^\star_X on a data space $X \subseteq \mathbb{R}^d$ as the marginal of X obtained by the generative process

$$Z \sim P_Z, \quad X := f(Z), \quad (1)$$

where P_Z is a prior distribution on a space $Z \subseteq \mathbb{R}^d$, and $f : X \to Z$ is a bijection. The use of a bijection means the density of X can be computed analytically by the change-of-variables formula, and the parameters of f can be learned by maximum likelihood using i.i.d. samples from P_X^\star.

To be effective, a normalising flow model must specify an expressive family of bijections with tractable Jacobians.

Affine coupling layers (Dinh et al., 2015; 2017), autoregressive maps (Germain et al., 2015; Papamakarios et al., 2017), invertible linear transformations (Kingma & Dhariwal, 2018), ODE-based maps (Grathwohl et al., 2019), and invertible ResNet blocks (Behrmann et al., 2019; Chen et al., 2019) are all examples of such bijections that can be composed to produce expressive flows. These models have demonstrated significant promise in their ability to model complex datasets and to synthesise realistic data.

In all these cases, f and f^{-1} are both continuous. It follows that f is a homeomorphism, and therefore preserves the topology of its domain (Runde, 2007, Definition 3.3.10). As Dupont et al. (2019) and Dinh et al. (2019) mention, this seems intuitively problematic when P_Z and P^\star_X are supported on domains with distinct topologies, which occurs for example when the supports differ in their number of connected components or “holes”, or when they are “kotted” differently. This seems inevitable in practice, as P_Z is usually quite simple (e.g. a Gaussian) while P^\star_X is very complicated (e.g. a distribution over images).

As our first contribution, we make precise the consequences

Figure 1: Densities learned by a 10-layer ResFlow (left), 100-layer ResFlow (middle), and 10-layer CIF-ResFlow (right) for two datasets (samples shown in black) that are not homeomorphic to the Gaussian prior. The 10-layer ResFlow visibly leaks mass outside of the support of the target due to its small bi-Lipschitz constant. The larger ResFlow improves on this, but still achieves smaller average log probability than the CIF-ResFlow, as is apparent from the greater homogeneity of the right-hand densities.
of using a topologically misspecified prior. We confirm that in this case it is indeed impossible to recover the target perfectly if \(f \) is a homeomorphism. Moreover, in Theorem 2.1 we prove that, in order to approximate such a target arbitrarily well, we must have \(\text{BiLip} f \to \infty \), where \(\text{BiLip} f \) denotes the bi-Lipschitz constant of \(f \) defined as the infimum over \(M \in [1, \infty] \) such that

\[
M^{-1} \| z - z' \| \leq \| f(z) - f(z') \| \leq M \| z - z' \| \quad (2)
\]

for all \(z, z' \in Z \). Theorem 2.1 applies essentially regardless of the training objective, and has implications for the case that \(P_Z \) and \(P_X^* \) both have full support but are heavily concentrated on regions that are not homeomorphic. Since BiLip \(f \) is a natural measure of the “invertibility” of \(f \) (Behrmann et al., 2020), this result shows that the goal of designing neural networks with well-conditioned inverses is fundamentally at odds with the goal of designing neural networks that can approximate complicated densities.

Theorem 2.1 also has immediate implications for residual flows (ResFlows) (Behrmann et al., 2019; Chen et al., 2019), which have recently achieved state-of-the-art performance on several large-scale density estimation tasks. Unlike models based on triangular maps (Jaini et al., 2019), ResFlows have the attractive feature that the structure of their Jacobians is unconstrained, which may explain their greater expressiveness. However, as part of the construction, the bi-Lipschitz constant of \(f \) is bounded, and so these models must be composed many times in order to achieve overall the large bi-Lipschitz constant required for a complex \(P_X^* \).

To address this problem we introduce **continuously indexed flows** (CIFs), which generalise (1) by replacing the single bijection \(f \) with an indexed family of bijections \(\{ F(\cdot; u) \}_{u \in U} \), where the index set \(U \) is continuous. Intuitively, CIFs allow mass that would be erroneously placed by a single bijection to be rerouted into a more optimal location. We show that CIFs can learn the support of a given \(P_X^* \) exactly regardless of the topology of the prior, and without the bi-Lipschitz constant of any \(F(\cdot; u) \) necessarily becoming infinite. CIFs do not specify the form of \(F \), and can be used in conjunction with any standard normalising flow architecture directly.

Our use of a continuous index overcomes several limitations associated with alternative approaches based on a discrete index (Dinh et al., 2019; Duan, 2019), which suffer either from a discontinuous loss landscape or an intractable computational complexity. However, as a consequence, we sacrifice the ability to compute the likelihood of our model analytically. To address this, we propose a variational approximation that exploits the bijective structure of the model and is suitable for training large-scale models in practice. We empirically evaluate CIFs applied to ResFlows, neural spline flows (NSFs) (Durkan et al., 2019), masked autoregressive flows (MAFs) (Papamakarios et al., 2017), and RealNVPs (Dinh et al., 2017), obtaining improved performance in all cases. We observe a particular benefit for ResFlows: with a 10-layer CIF-ResFlow we surpass the performance of a 100-layer baseline ResFlow and achieve state-of-the-art results on several benchmark datasets.

2 Bi-Lipschitz Constraints on Pushforwards

Normalising flows fall into a larger class of density estimators based on **pushforwards**. Given a prior measure \(P_Z \) on \(Z \) and a mapping \(f : Z \to \mathcal{X} \), these models are defined as

\[
P_X := f \# P_Z,
\]

where the right-hand side denotes a distribution with \(f \# P_B(\mathcal{B}) := P_Z(f^{-1}(\mathcal{B})) \) for Borel \(\mathcal{B} \subseteq \mathcal{X} \). Normalising flows take \(f \) to be bijective, which under sufficient regularity yields a closed-form expression for the density\(^2\) of \(P_X \) (Billingsley, 2008, Theorem 17.2).

Intuitively, the pushforward map \(f \) transports the mass allocated by \(P_Z \) into \(\mathcal{X} \)-space, thereby defining \(P_X \) based on where each unit of mass ends up. This imposes a global constraint on \(f \) if \(P_X \) is to match perfectly a given target \(P_X^* \). In particular, denote by \(\text{supp} P_Z \) the support of \(P_Z \). While the precise definition of the support involves topological formalities (see Section B.1 in the Supplement), intuitively this set defines the region of \(Z \) to which \(P_Z \) assigns mass. It is then straightforward to show that \(P_X = P_X^* \) only if

\[
\text{supp} P_X^* = f(\text{supp} P_Z),
\]

where \(A \) denotes the closure of \(A \) in \(\mathcal{X} \).

The constraint (3) is especially onerous for normalising flows because of their bijectivity. In practice, \(f \) and \(f^{-1} \) are invariably both continuous, and so \(f \) is a homeomorphism. Consequently, for these models (3) entails\(^4\)

\[
\text{supp} P_X = \text{supp} P_X^* \quad \text{only if} \quad \text{supp} P_Z \cong \text{supp} P_X^*,
\]

where \(A \cong B \) means that \(A \) and \(B \) are homeomorphic, i.e. isomorphic as topological spaces (Runde, 2007, Definition 3.3.10). This means that \(\text{supp} P_Z \) and \(\text{supp} P_X^* \) must exactly share all topological properties, including number of connected components, number of “holes”, the way they are “knotted”, etc., in order to learn the target perfectly. Condition (4) therefore suggests that normalising flows are not optimally suited to the task of learning complex real-world densities, where such topological mismatch seems inevitable.

\(^1\)Chen et al. (2019) report using 100-200 layers to learn even simple 2D densities.

\(^2\)Throughout, by “density” we mean Lebesgue density. We will write densities using lowercase, e.g. \(p_X \) for the measure \(P_X \).

\(^3\)See Proposition B.3 in the Supplement for a proof.

\(^4\)Note that \(f(\text{supp} P_Z) = f(\text{supp} P_Z) \) here since \(\text{supp} P_Z \) is closed by Proposition B.2 in the Supplement.
However, (4) only rules out the limiting case $P_X = P_X^\star$. In practice it is likely enough to have $P_X \approx P_X^\star$, and it is therefore relevant to consider the implications of a topologically misspecified prior in this case also. Intuitively, this seems to require f become almost nonbijective as P_X approaches P_X^\star, but it is not immediately clear what this means, or whether this must occur for all models. Likewise, in practice it might be reasonable to assume the density of P_X^\star is everywhere strictly positive. In this case, even if P_X^\star is concentrated on some very complicated set, the constraint (4) would trivially be met if P_Z is Gaussian, for example. Nevertheless, it seems that infinitesimal regions of mass should not significantly change the behaviour required of f, and we would therefore like to extend (4) to apply here also.

The bi-Lipschitz constant κ naturally quantifies the “invertibility” of f. Behrmann et al. (2020) recently showed a relationship between the bi-Lipschitz constant and the numerical invertibility of f. If f is injective and differentiable,

$$\text{BiLip } f = \max \left(\sup_{z \in Z} ||Df(z)||_{op}, \sup_{x \in f(Z)} ||Df^{-1}(x)||_{op} \right),$$

where $Dg(y)$ is the Jacobian of g at y and $||\cdot||_{op}$ is the operator norm. A large bi-Lipschitz constant thus means f or f^{-1} “jumps” somewhere in its domain. More generally, if f is not injective, then $\text{BiLip } f = \infty$, while if $\text{BiLip } f < \infty$, then f is a homeomorphism from Z to $f(Z)$.

The following theorem shows that if the supports of P_Z and P_X^\star are not homeomorphic, then the bi-Lipschitz constant of f must grow arbitrarily large in order to approximate P_X^\star.

Theorem 2.1. Suppose P_Z and P_X^\star are probability measures on \mathbb{R}^d_Z and \mathbb{R}^d_X respectively, and that $\text{supp } P_Z \neq \text{supp } P_X^\star$. Then for any sequence of measurable $f_n : \mathbb{R}^d_Z \rightarrow \mathbb{R}^d_X$, we can have $f_n \# P_Z \xrightarrow{D} P_X^\star$ only if

$$\lim_{n \rightarrow \infty} \text{BiLip } f_n = \infty.$$

Weak convergence is implied by the minimisation of all standard statistical divergences used to train generative models, including the KL and Jensen-Shannon divergences and the Wasserstein metric (Arjovsky et al., 2017, Theorem 2). Thus, Theorem 2.1 states that these quantities can vanish only if the bi-Lipschitz constant of the learned mapping becomes arbitrarily large. Likewise, note that we do not assume $d_Z = d_X$ so that this result also applies to injective flow models (Kumar et al., 2019), as well as other pushforward-based models such as GANs (Goodfellow et al., 2014).

Theorem 2.1 also applies when $\text{supp } P_Z$ is almost not homeomorphic to $\text{supp } P_X^\star$, as is made precise by the following corollary. Here ρ denotes any metric for the weak topology; see Chapter 6 of Villani (2008) for standard examples.

Corollary 2.2. Suppose P_Z and P_X^0 are probability measures on \mathbb{R}^d_Z and \mathbb{R}^d_X respectively with $\text{supp } P_Z \neq \text{supp } P_X^0$. Then there exists nonincreasing $M : [0, \infty) \rightarrow [1, \infty]$ with $M(\epsilon) \rightarrow \infty$ as $\epsilon \rightarrow 0$ such that, for any probability measure P_X^\star on \mathbb{R}^d_X, we have $\text{BiLip } f \geq M(\epsilon)$ whenever $\rho(P_X^\star, P_X^0) \leq \epsilon$ and $\rho(f \# P_Z, P_X^\star) \leq \epsilon$.

In other words, if the target is close to a probability measure with non-homeomorphic support to that of the prior (i.e. $\rho(P_X^\star, P_X^0)$ is small), and if the model is a good approximation of the target (i.e. $\rho(f \# P_Z, P_X^\star)$ is small), then the Bi-Lipschitz constant of f must be large.

Proofs of these results are in Section B.3 of the Supplement.

2.1 Practical Implications

The results of this section indicate a limitation of existing flow-based density models. This is most direct for residual flows (ResFlows) (Behrmann et al., 2019; Chen et al., 2019), which take $f = f_L \circ \cdots \circ f_1$ with each layer of the form

$$f_L^{-1}(x) = x + g_L(x), \quad \text{Lip } g_L \leq \kappa < 1.$$

Here Lip denotes the Lipschitz constant, which is bounded by a fixed constant κ throughout training. The Lipschitz constraint is enforced by spectral normalisation (Miyato et al., 2018; Gouk et al., 2018) and ensures each f_L is bijective. However, it also follows (Behrmann et al., 2019, Lemma 2) that

$$\text{BiLip } f \leq \max(1 + \kappa, (1 - \kappa)^{-1})^{L} < \infty,$$

and Theorem 2.1 thus restricts how well a ResFlow can approximate P_X^\star with non-homeomorphic support to P_Z. Figure 1 illustrates this in practice for simple 2-D examples.

It is possible to relax (6) by taking $\kappa \rightarrow 1$. However, this can have a detrimental effect on the variance of the Russian roulette estimator (Kahn, 1955) used by Chen et al. (2019) to compute the Jacobian, and in Section B.4 of the Supplement we give a simple example in which the variance is in fact infinite. Alternatively, we can also loosen the bound (6) by taking $L \rightarrow \infty$, and Figure 1 shows that this does indeed lead to better performance. However, greater depth means greater computational cost. In the next section we describe an alternative approach that allows relaxing the bi-Lipschitz constraint of Theorem 2.1 without modifying either κ or L, and thus avoids these potential issues.

Unlike ResFlows, most normalising flows used in practice have an unconstrained bi-Lipschitz constant (Behrmann et al., 2020). As a result, Theorem 2.1 does not prevent
these models from approximating non-homeomorphic targets arbitrarily well, and indeed several architectures have been proposed that can in principle do so (Huang et al., 2018; Jaini et al., 2019). Nevertheless, the constraint (4) shows that these models still face an underlying limitation in practice, and suggests we may improve performance more generally by relaxing the requirement of bijectivity. We verify empirically in Section 5 that, in addition to ResFlows, our proposed method also yields benefits for flows without an explicit bi-Lipschitz constraint.

Finally, Theorem 2.1 has implications for the numerical stability of normalising flows. It was recently pointed out by Behrmann et al. (2020) that, while having a well-defined mathematical inverse, many common flows can become numerically noninvertible over the course of training, leading to low-quality reconstructions and calling into question the accuracy of density values output by the change-of-variables formula. Behrmann et al. (2020) suggest explicitly constraining BiLip f in order to avoid this problem. Theorem 2.1 shows that this involves a fundamental tradeoff against expressivity: if greater numerical stability is required of our normalising flow, then we must necessarily reduce the set of targets we can represent arbitrarily well.

3 Continuously Indexed Flows

In this section we propose continuously indexed flows (CIFs) for relaxing the bijectivity of standard normalising flows. We begin by defining the model we consider, and then detail our suggested training and inference procedures. In the next section we discuss advantages over related approaches.

3.1 Model Specification

CIFs are obtained by replacing the single bijection f used by normalising flows with an indexed family \(\{F(u)\}_{u \in U} \), where \(U \subseteq \mathbb{R}^{d_u} \) is our index set and each \(F(u) : Z \to X \) is a bijection. We then define the model \(P_X \) as the marginal of \(X \) obtained from the following generative process:

\[
Z \sim P_Z, \quad U \sim P_U|Z(z), \quad X := F(Z; U).
\]
(7)

Like (1), we assume a prior \(P_Z \) on \(Z \), but now also require conditional distributions \(P_U|Z(z) \) on \(U \) for each \(z \in Z \).

We can increase the complexity of (7) by taking \(P_Z \) itself to have the same form. This is directly analogous to the standard practice of composing simple bijections to obtain a richer class of normalising flows. In our context, stacking \(L \) layers of (7) corresponds to the generative process

\[
Z_0 \sim P_{Z_0}, \quad U_\ell \sim P_{U_\ell|Z_{\ell-1}}, \quad Z_\ell := F_\ell(Z_{\ell-1}; U_\ell), \quad \ell \in \{1, \ldots, L\}.
\]
(8)

where \(\ell \in \{1, \ldots, L\} \). We then take \(P_X \) to be the marginal of \(X := Z_L \). We have found this construction to improve significantly the expressiveness of our models and make extensive use of it in our experiments below. Note that this corresponds to an instance of (7) where, defining \(F_\ell(\cdot; u_1, \ldots, u_\ell) := F_\ell(\cdot; u_\ell) \circ \cdots \circ F_1(\cdot; u_1) \), we take \(Z = Z_0, U = \{U_1, \ldots, U_\ell\} \), and \(P_{U|Z}(du|z) = \prod_\ell P_{U_\ell|Z_{\ell-1}}(du_\ell|F_\ell(z; u_{\ell-1}, \ldots, u_1)) \), and \(F = F_L \). We use this to streamline some of the discussion below.

Previous works, most notably RAD (Dinh et al., 2019), have considered related models with a discrete index set \(U \). We instead consider a continuous index. In particular, our \(U \) will be an open subset of \(\mathbb{R}^{d_U} \), with each \(P_{U|Z}(\cdot|z) \) having a density \(p_{U|Z}(\cdot|z) \). A continuous index confers various advantages that we describe in Section 4. The choice also requires a distinct approach to training and inference that we describe in Section 3.2.

We require choices of \(p_{U|Z} \) and \(F \) for each layer of our model. Straightforward possibilities are

\[
F(z; u) = f(e^{-s(w)} \circ z - t(u)) \quad (9)
\]

\[
p_{U|Z}(\cdot|z) = \text{Normal}(\mu^p(z), \Sigma^p(z)) \quad (10)
\]

for any bijection \(f \) (e.g. a ResFlow step) and appropriately defined neural networks \(s, t, \mu^p, \) and \(\Sigma^p \). Here the exponential of a vector is meant elementwise, and \(\circ \) denotes elementwise multiplication. Note that (9) may be used with all existing normalising flow implementations out-of-the-box. These choices yielded strong empirical results despite their simplicity, but more sophisticated alternatives are certainly possible and may bring improvements in some applications.

3.2 Training and Inference

Heuristically,8 (7) yields the joint “density”

\[
p_{X,U,Z}(x, u, z) := p_Z(z) p_{U|Z}(u|z) \delta(x - F(z; u)),
\]

where \(p_Z \) is the density of \(P_Z \) and \(\delta \) is the Dirac delta. If \(F \) is sufficiently regular, we can marginalise out the dependence on \(z \) by making the change of variable \(x' := F(z; u) \), which means \(dz = |\det D^{-1}(x'; u)| \, dx \).9 This yields a proper density for \((X, U)\) by integrating over \(x'\):

\[
p_{X,U}(x, u) := p_Z(F^{-1}(x; u)) \times p_{U|Z}(u|F^{-1}(x; u)) \times |\det D^{-1}(x'; u)|.
\]
(11)

For an \(L \)-layered model, an extension of this argument also gives the following joint density for each \((Z_\ell, U_1:\ell)\):

\[
p_{Z_\ell, U_1:\ell}(z_\ell, u_1:\ell) := p_{Z_{\ell-1}, U_1:\ell-1}(F_\ell^{-1}(z_\ell; u_\ell), u_1:\ell-1) \times p_{U_\ell|Z_{\ell-1}}(u_\ell|F_\ell^{-1}(z_\ell; u_{\ell-1})) \times |\det D^{-1}(z_\ell; u_{\ell})|.
\]

Note this requires \(Z = X = \mathbb{R}^d \) and \(U = \mathbb{R}^{d_U} \), i.e. these domains are not strict subsets. We assume this in all our experiments.

8We make this rigorous in Section B.5 of the Supplement.

9Here \(DF(z; u) \) denotes the Jacobian with respect to \(z \) only.
Taking $X := Z_L$ as before we obtain $p_{X,U_1:L}$ and hence a density for P_X via

$$p_X(x) := \int p_{X,U_1:L}(x, u_{1:L}) \, du_{1:L}. \quad (13)$$

Since \mathcal{U} is continuous, this is not analytically tractable. To facilitate likelihood-based training and inference, we make use of a variational scheme that we describe now.

Assuming an L-layered model (8), we introduce an approximate posterior density $q_{U_1:L|X} \approx p_{U_1:L|X}$ and consider the evidence lower bound (ELBO) of $\log p_X(x)$:

$$\mathcal{L}(x) := \mathbb{E}_{u_{1:L} \sim q_{U_1:L|X} \mid x} \left[\log \frac{p_{X,U_1:L}(x, u_{1:L})}{q_{U_1:L|X}(u_{1:L} \mid x)} \right]. \quad (14)$$

It is a standard result that $\mathcal{L}(x) \leq \log p_X(x)$ with equality if and only if $q_{U_1:L|X}$ is the exact posterior $p_{U_1:L|X}$. This allows learning an approximation to P_X by maximising $\sum_{i=1}^n \mathcal{L}(x_i)$ jointly in $p_{X,U_1:L}$ and $q_{U_1:L|X}$, where we assume a dataset of n i.i.d. samples $x_i \sim P_X$.

We now consider how to parametrise an effective $q_{U_1:L|X}$. Standard approaches to designing inference networks for variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014; Rezende & Mohamed, 2015; Kingma et al., 2016), while mathematically valid, would not exploit the conditional independencies induced by the bijective structure of (8). We therefore propose a novel inference network that is specifically targeted towards our model, which we compare with existing VAE approaches in Section 4.3. In particular, our $q_{U_1:L|X}$ has the following form:

$$q_{U_1:L|X}(u_{1:L} \mid x) := \prod_{\ell=1}^{L} q_{U_\ell|Z_\ell}(u_{\ell} \mid z_{\ell}), \quad (15)$$

with $z_L := x$ and $z_\ell := F_{F^{-1}_\ell}(z_{\ell+1} \mid u_{\ell+1})$ for $\ell \in \{1, \ldots, L-1\}$, and $q_{U_\ell|Z_\ell}$ can be any parameterised conditional density. We show in Section B.6 of the Supplement that the posterior $p_{U_\ell|X}$ factors in the same way as (15), so that we do not lose any generality. Observe also that this scheme shares parameters between $q_{U_1:L|X}$ and $p_{X,U_1:L}$ in a natural way, since the same F_ℓ are used in both.

We assume each $q_{U_\ell|Z_\ell}$ can be suitably reparameterised (Kingma & Welling, 2014; Rezende et al., 2014) so that, for some function H_ℓ and some density η_ℓ that does not depend on the parameters of $q_{U_\ell|Z_\ell}$ and $p_{X,U_1:L}$, we have $H_\ell(\epsilon, z_\ell) \sim q_{U_\ell|Z_\ell}(z_\ell \mid \epsilon)$. We can then obtain unbiased estimates of $\mathcal{L}(x)$ using Algorithm 1, which corresponds to a single-sample approximation to the expectation in (14). It is straightforward to see that Algorithm 1 has $\Theta(L)$ complexity. Differentiating through this procedure allows maximising $\sum_{i=1}^n \mathcal{L}(x_i)$ via stochastic gradient descent. At test time, we can also directly estimate $\log p_X(x)$ by using importance sampling as described by Rezende et al. (2014, (40)). In particular, letting $\hat{\mathcal{L}}^{(1)}, \ldots, \hat{\mathcal{L}}^{(m)}$ denote the result of separate calls to ELBO(x), we have

$$m^{-1} \log \text{SumExp}(\hat{\mathcal{L}}^{(1)}, \ldots, \hat{\mathcal{L}}^{(m)}) \rightarrow \log p_X(x) \quad (16)$$

almost surely as $m \to \infty$.

Algorithm 1 Unbiased estimation of $\mathcal{L}(x)$

```python
function ELBO(x):
    z_L ← x
    Δ ← 0
    for ℓ = 1, L do
        ϵ ∼ η_ℓ
        u ← H_ℓ(ϵ, z_ℓ)
        z_{ℓ+1} ← F_{F^{-1}_ℓ}(z_ℓ \mid u)
        Δ ← Δ + log p_{U_ℓ|Z_ℓ}(u | z_ℓ) - log q_{U_ℓ|Z_ℓ}(u | z_ℓ)
        + log |det D_{F^{-1}_ℓ}(z_ℓ \mid u)|
    end for
    return Δ + log q_{Z_0}(z_0)
end function
```

In all our experiments we used

$$q_{U_\ell|Z_\ell}(z_\ell) = \text{Normal}(\mu_\ell(z_\ell), \Sigma_\ell^2(z_\ell)) \quad (17)$$

for appropriate neural networks μ_ℓ and Σ_ℓ, which is immediately reparameterisable as described e.g. by Kingma & Welling (2014). We found this gave good enough performance that we did not require alternatives such as IAF (Kingma et al., 2016), but such options may also be useful.

Finally, Algorithm 1 requires an expression for $\log |det D_{F^{-1}_\ell}(z_\ell \mid u_\ell)|$. For (9) this is

$$\log |det D_{F^{-1}_\ell}(e^{x(u_\ell)} \odot (z_\ell + t_\ell(u_\ell)))| + \sum_{i=1}^d [s_\ell(u_\ell)],$$

where $[x]_i$ denotes the ith dimension of x.

4 Comparison with Related Models

4.1 Comparison with Normalising Flows

We now compare CIFs with normalising flows, and in particular describe how CIFs relax the constraints of bijectivity identified in Section 2.

4.1.1 Advantages

Observe that (7) generalises normalising flows: if $F(\cdot; u)$ does not depend on u, then we obtain (1). Moreover, training with the ELBO in this case does not reduce performance compared with training a flow directly, as the resulting show results. Here the components of our model F_θ, p_θ^{θ}, q_θ^{θ} are parameterised by $\theta \in \Theta$, and for a given choice of parameters θ we will denote by P_θ^X and \mathcal{L}^θ the corresponding distribution and ELBO (14) respectively.
We also summarise our discussion above with the following

Proposition 4.1. Suppose there exists $\phi \in \Theta$ such that, for
some bijection $f : Z \to X$, $P_{\phi}(\cdot; u) = f(\cdot)$ for all $u \in U$.
Likewise, suppose $P_{U|Z}^\phi$ and $q_{U|X}^\phi$ are such that, for some
density r on U, $P_{U|Z}^\phi(z) = q_{U|X}^\phi(x) = r(\cdot)$ for all $z \in Z$
and $x \in X$. If $E_{z \sim P_X}[L^\theta(x)] \geq E_{z \sim P_Z}[L^\theta(x)]$, then

$$D_{KL}(P_X \parallel P_X^\phi) \leq D_{KL}(P_Z \parallel f#P_Z).$$

Simply stated, in the limit of infinite data, optimising the
ELBO will yield at least as performant a model (as measured
by the KL) as any normalising flow our model family
can express. The proof is in Section B.7 of the Supplement.
In practice, our choices (9), (10), and (17) can easily re-
alise the conditions of Proposition 4.1 by zeroing out the
output weights of the neural networks (other than f)
involved. Thus, for a given f, we have reason to expect a
comparative or better performing model (as measured by
average log-likelihood) when trained as a CIF rather than as
a normalising flow.

We expect this will in fact lead to improved performance
because, intuitively, $P_{U|Z}$ can reroute z that would other-
wise map outside of $\text{supp } P_X$. To illustrate, fix f in (9)
and choose some $z \in Z$. If $f(z) \in \text{supp } P_X^\phi$, then setting
$F(z; u) = f(z)$ for all $u \in U$ as described above ensures
$F(z; U) \in \text{supp } P_X^\phi$ when $U \sim P_{U|Z}(\cdot|z)$. If conversely
$f(z) \notin \text{supp } P_X^\phi$, then we still have $F(z; U) \in \text{supp } P_X^\phi$
almost surely if $P_{U|Z}(\cdot|z)$ is supported on $\{u \in U : F(z; u) \in \text{supp } P_X\}$. Of course, if f is too simple, then
$P_{U|Z}$ must heuristically become very complex in order to
obtain this behaviour. This would seem to make inference
harder, leading to a looser ELBO (14) and thus overall
worse performance after training. We therefore expect CIFs
to work well for f that, like the 10-layer ResFlow in Figure 1,
can learn a close approximation to the support of the
target but “leak” some mass outside of it due to (4) or
Theorem 2.1. A CIF can then use $P_{U|Z}$ to “clean up” these
small extraneous regions of mass.

We provide empirical support for this argument in Section 5.
We also summarise our discussion above with the following
precise result. Here ∂A denotes the boundary of a set A.

Proposition 4.2. If $P_X^\phi(\partial \text{supp } P_X) = 0$ and $(z, u) \mapsto F(z; u)$ is jointly continuous with

$$F(\text{supp } P_Z \times U) \supseteq \text{supp } P_X^\phi,$$

then there exists $P_{U|Z}$ such that $\text{supp } P_X = \text{supp } P_X^\phi$ if
and only if, for all $z \in \text{supp } P_Z$, there exists $u \in U$ with

$$F(z; u) \in \text{supp } P_X^\phi.$$

The assumptions here are fairly minimal: the boundary
condition ensures P_X^ϕ is not pathological, and if (18)
does not hold, then $D_{KL}(P_X \parallel P_X) = \infty$ for every $P_{U|Z}$.

Additionally, the following result gives a sufficient condition
under which it is possible to learn the target exactly.

Proposition 4.3. If $F(z; \cdot) : U \to X$ is surjective for each $z \in Z$, then there exists $P_{U|Z}$ such that $P_X = P_X^\phi$.

See Section B.8 of the Supplement for proofs. These results
do not require $\text{supp } P_Z \approx \text{supp } P_X$, thereby showing CIFs
relax the constraint (4) for standard normalising flows.

Of course, in practice, our parameterisation (9) does not
necessarily ensure that F will satisfy these conditions, and
our parameterisation (10) may not be expressive enough to
instantiate the $P_{U|Z}$ that is required. However, these results
show that CIFs provide at least a mechanism for correcting a
topologically misspecified prior. When F and $P_{U|Z}$ are
sufficiently expressive, we can expect that they will learn to
approximate these conditions over the course of training if
doing so produces a better density estimate. We therefore
anticipate CIFs will improve performance for ResFlows,
where Theorem 2.1 applies, and may have benefits more
generally, since all flows are ultimately constrained by (4).

4.1.2 DISADVANTAGES

On the other hand, CIFs introduce additional overhead com-
pared with regular normalising flows. It therefore remains to
show we obtain better performance on a fixed computational
budget, which requires using a smaller model. Empirically
this holds for the models and datasets we consider in
Section 5, but there are likely cases where it does not, particu-
larly if the topologies of the target and prior are similar.

Likewise, CIFs sacrifice the exactness of normalising flows.
We do not see this as a significant problem for the task of
density estimation, since the importance sampling estimator
(16) means that at test time we can obtain arbitrary accuracy
by taking m to be large. However, the lack of a closed-
form density does limit the use of CIFs in some downstream
tasks. In particular, CIFs cannot immediately be plugged
in to a variational approach in the manner of Rezende &
Mohamed (2015), since this requires exact likelihoods.
However, it may be possible to use CIFs in the context of
an extended-space variational framework along the lines of
Agakov & Barber (2004), and we leave this for future work.

4.2 Comparison with Discretely Indexed Models

Similar models to CIFs have been proposed that use a dis-
crete index space. In the context of Bayesian inference,
Duan (2019) proposes a single-layer ($L = 1$) model consist-
ing of (7) with $U = \{1, \ldots, I\}$ and $F(\cdot; i) = f_i$ for separate
normalising flows f_1, \ldots, f_I. A special case of this frame-
work is given by deep Gaussian mixture models (Van den
Oord & Schrauwen, 2014; van den Oord & Dambre, 2015),
which corresponds to using invertible linear transformations
for each f_i. In this case, (13) becomes a summation that can

\[\text{See Proposition B.1 and Proposition B.3 in the Supplement.} \]
be computed analytically. However, this quickly becomes intractable as \(L \) grows larger, since the cost to compute this is seen to be \(\Theta(I^L) \). Unlike for a continuous \(u \), this cannot easily be reduced to \(\Theta(L) \) using a variational approximation as in Section 3.2, since a discrete \(q_{U|X} \) is not amenable to the reparameterisation trick. In addition, the use of separate bijections also means that the number of parameters of the model grows as \(I \) increases. In contrast, a continuous index allows a natural mechanism for sharing parameters across different \(F(\cdot; u) \) as in (9).

Prior to Duan (2019), Dinh et al. (2019) proposed RAD as a means to mitigate the \(\Theta(I^L) \) cost of naively stacking discrete layers. RAD partitions \(X \) into \(I \) disjoint subsets \(B_1, \ldots, B_I \) and defines bijections \(f_i : Z \to B_i \) for each \(i \). The model is then taken to be the marginal of \(X \) in

\[
Z \sim P_Z, \quad U \sim P_{U|Z}(\cdot|Z), \quad X := f_U(Z),
\]

where each \(P_{U|Z}(\cdot|z) \) is a discrete distribution on \(\{1, \ldots, I\} \). Note that this is not an instance of our model (7), since we require each \(F(\cdot; u) \) to be surjective onto \(X \). The use of partitioning means that (13) is a summation with only a single term, which reduces the cost for \(L \) layers to \(\Theta(L) \). However, partitioning also makes \(p_X \) discontinuous. This leads to a very difficult optimisation problem and Dinh et al. (2019) only report results for simple 2-D densities. Additionally, partitioning requires ad-hoc architectural changes to existing normalising flows, and does not directly address the increasing parameter cost as \(I \) grows large.

4.3 Comparison with Variational Autoencoders

CIFs also generalise a broad family of variational autoencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014). Recall that VAEs take

\[
p_X(x) := \int p_U(u)p_{X|U}(x|u) \, du \tag{20}
\]

for some choices of densities \(p_U \) and \(p_{X|U} \).\(^{11}\) For instance, a mean-field Gaussian observation density has

\[
p_{X|U}(\cdot|u) := \text{Normal}(t(u), \text{diag}(e^{s(u)})),
\]

where \(t, s : U \to \mathcal{X} \), and \(\text{diag}(v) \) denotes the matrix with diagonal \(v \in \mathbb{R}^d \) and zeros elsewhere. If \(P_Z \) is a standard Gaussian, if each \(P_{U|Z}(\cdot|z) \) has independent density \(p_U \), and if \(F \) is (9) with \(f \) the identity, then it follows that (7) has marginal density (20) (modulo the signs of \(s \) and \(t \)).\(^{12}\)

More generally, every VAE model (20) with each \(p_{X|U}(\cdot|u) \) strictly positive corresponds to an instance of (7) where \(U \) is sampled independently of \(Z \). To see this, let \(p_Z \) be any strictly positive density on \(Z \), and let each \(F(\cdot; u) \) be the Knothe-Rosenblatt coupling (Villani, 2008) of \(p_Z \) and \(p_{X|U}(\cdot|u) \). By construction each \(F(\cdot; u) \) is invertible and gives \(F(Z; u) \sim p_{X|U}(\cdot|u) \) when \(Z \sim p_Z \). As a result, (7) again yields \(X \) with a marginal density defined by (20). Consequently, CIFs generalise the VAE framework by adding an additional edge in the graphical model as shown in Figure 2.

On the other hand, CIFs differ from VAEs in the way they are composed. Whereas CIFs stack by taking \(p_Z \) to be a CIF, VAEs are typically stacked by taking \(p_U \) to be a VAE (Rezende et al., 2014; Kingma et al., 2016; Burda et al., 2016; Sønderby et al., 2016). This has implications for the design of the inference network \(q_{U|L,X} \). In particular, a hierarchical VAE obtained in this way is Markovian, so that

\[
p_{U_{1:L}|X}(x, u_{1:L}) = p_{U_1|X}(u_1|x) \prod_{i=2}^{L} p_{U_i|U_{i-1}}(u_i|u_{i-1}),
\]

where \(L \) is the number of layers. This directly allows specifying \(q_{U_{1:L}|X} \) to be of the same form without any loss of generality (Kingma et al., 2014; Burda et al., 2016; Sønderby et al., 2016). Conversely, CIFs do not factor in this way, which motivates our alternative approach in Section 3.2.

Note finally that CIFs should not be conflated with the large class of methods that use normalising flows to improve the inference procedure in VAEs (Rezende & Mohamed, 2015; Kingma et al., 2016; van den Berg et al., 2018). These approaches are orthogonal to ours and indeed may be useful for improving our own inference procedure by replacing (17) with a more expressive model.

4.4 Other Related Work

Additional related methods have been proposed. Within a classification context, Dupont et al. (2019) identify topological problems related to ODE-based mappings (Chen et al., 2019) noting that this notation is nonstandard for VAEs in order to align with the rest of the paper. Here our \(U \) corresponds to \(z \) as used by Kingma & Welling (2014).

\(^{11}\)Note that this notation is nonstandard for VAEs in order to align with the rest of the paper. Here our \(U \) corresponds to \(z \) as used by Kingma & Welling (2014).

\(^{12}\)Here \(Z \) corresponds to \(s \) as used by Kingma & Welling (2014).
which like normalising flows are homeomorphisms and hence preserve the topology of their input. To avoid this, Dupont et al. (2019) propose augmenting the data by appending auxiliary dimensions and learning a new mapping on this space. In contrast, CIFs may be understood as augmenting not the data but instead the model by considering a family of individual bijections on the original space.

In addition, Ho et al. (2019) use a variational scheme to improve on the standard dequantisation method proposed by Theis et al. (2016) for modelling image datasets with normalising flows. This approach is potentially complementary to CIFs, but we do not make use of it in our experiments.

5 Experiments

We evaluated the performance of CIFs on several problems of varying difficulty, including synthetic 2-D data, several tabular datasets, and three image datasets. In all cases we took $\mathcal{Z} = \mathcal{X} = \mathbb{R}^d$ with d the dimension of the dataset. We used the stacked architecture (8) with the prior P_Z, a Gaussian. At each layer, F had form (9) with f a primitive flow step from a baseline architecture (e.g. a single residual block for ResFlow). Each $p_U|Z$ and $q_U|X$ had form (10) and (17) respectively. We provide an overview of our results for the tabular and image datasets here. Full experimental details, including additional 2-D figures along the lines of Figure 1, are in Section C of the Supplement. See github.com/jrmcornish/cif for our code.

5.1 Tabular Datasets

We tested the performance of CIFs on several problems of varying difficulty, including synthetic 2-D data, several tabular datasets, and three image datasets. In all cases we took $\mathcal{Z} = \mathcal{X} = \mathbb{R}^d$ with d the dimension of the dataset. We used the stacked architecture (8) with the prior P_Z, a Gaussian. At each layer, F had form (9) with f a primitive flow step from a baseline architecture (e.g. a single residual block for ResFlow). Each $p_U|Z$ and $q_U|X$ had form (10) and (17) respectively. We provide an overview of our results for the tabular and image datasets here. Full experimental details, including additional 2-D figures along the lines of Figure 1, are in Section C of the Supplement. See github.com/jrmcornish/cif for our code.

5.2 Image Datasets

We also considered CIFs applied to the MNIST (LeCun, 1998), Fashion-MNIST (Xiao et al., 2017), and CIFAR-10 (Krizhevsky & Hinton, 2009) datasets. Following our tabular experiments, we trained a multi-scale convolutional ResFlow and a corresponding CIF-ResFlow, as well as a larger baseline ResFlow to account for the additional parameters and depth introduced by our method. Note that these models were significantly smaller than those used by Chen et al. (2019): e.g. for CIFAR10, the ResFlow used by Chen et al. (2019) had 25M parameters, while our two baseline ResFlows and our CIF-ResFlow had 2.4M, 6.2M, and 5.6M parameters respectively. We likewise considered RealNVPs with the same multi-scale convolutional architecture used by Dinh et al. (2017) for their CIFAR-10 experiments. For these runs we trained baseline RealNVPs, corresponding CIF-RealNVPs, and larger baseline RealNVPs with more depth and parameters.

The results are given in Table 2 and Table 3. Observe CIFs outperformed the baseline models for all datasets, which shows that our approach can scale to high dimensions. For the CIF-ResFlows, we also obtained better performance than Chen et al. (2019) on MNIST and better performance than Glow (Kingma & Dhariwal, 2018) on CIFAR10, despite using a much smaller model. Samples from all models are shown in Section C.2 of the Supplement.

6 Conclusion and Future Work

The constraint (4) shows that normalising flows are unable to exactly model targets whose topology differs from that...
Acknowledgements

Rob Cornish is supported by the EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines & Systems (EP/L015897/1) and NVIDIA. Anthony Caterini is a Commonwealth Scholar supported by the U.K. Government. Arnaud Doucet is partially supported by the U.S. Army Research Office, and by the U.K. Ministry of Defence (MoD) grant EP/R013616/1 and the U.K. EPSRC under grant numbers EP/R034710/1 and EP/R018561/1.

References

Continuously Indexed Flows

Kumar, A., Poole, B., and Murphy, K. Learning generative samplers using relaxed injective flow. In ICML Workshop on Invertible Neural Nets and Normalizing Flows, 2019.

