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Abstract
We propose a novel approach to filter bank learn-
ing for time-series by considering spectral decom-
positions of signals defined as a Group Transform.
This framework allows us to generalize classi-
cal time-frequency transformations such as the
Wavelet Transform, and to efficiently learn the
representation of signals. While the creation of
the wavelet transform filter-bank relies on affine
transformations of a mother filter, our approach
allows for non-linear transformations. The trans-
formations induced by such maps enable us to
span a larger class of signal representations, from
wavelet to chirplet-like filters. We propose a pa-
rameterization of such a non-linear map such that
its sampling can be optimized for a specific task
and signal. The Learnable Group Transform can
be cast into a Deep Neural Network. The experi-
ments on diverse time-series datasets demonstrate
the expressivity of this framework, which com-
petes with state-of-the-art performances.

1. Introduction
To this day, the front-end processing of time-series
remains a keystone toward the improvement of a wealth
of applications such as health-care (Saritha et al., 2008),
environmental sound (Balestriero et al., 2018; Lelandais &
Glotin, 2008), and seismic data analysis (Seydoux et al.,
2016). The common denominator of the recorded signals
in these fields is their undulatory behavior. While these
signals share this common behavior, two significant factors
imply the need of learning the representation: 1) time-series
are intrinsically different because of their physical nature,
2) the machine learning task can be different even within
the same type of data. Therefore, the representation should
be induced by both the signal and the task at hand.
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A common approach to performing inference on time-series
consists of building a Deep Neural Network (DNN) that
operates on a spectral decomposition of the time-series
such as wavelet transform (WT) or Mel Frequency Spectral
Coefficients (MFSC). These decompositions represent the
signal. While the use of these decompositions is extensive,
we show in Section 2 their inherent biases and motivate the
development of a generalized framework. The selection of
the judicious transform is either performed by an expert
on the signal at hand, or by considering filter selection
methods (Coifman & Wickerhauser, 1992; Mallat & Zhang,
1993; Gribonval & Bacry, 2003). However, an inherent
drawback is that the selection of the filters decomposing
the signals is often achieved with criteria that do not align
with the task. For instance, a selection based on the sparsity
of the representation while the task is the classification
of the signals. Besides, these selection methods and
transformations require substantial cross-validations of
a large number of hyperparameters such as mother filter
family, number of octaves, number of wavelets per octave,
size of the window (Le & Argoul, 2004; Cosentino et al.,
2017).

In this work, we alleviate these drawbacks by proposing
a simple and efficient approach by considering the gener-
alization of these spectral decompositions. They consist
of taking the inner product between filters and the signals.
From one decomposition to the other, only the filter bank
differs. The filters of well-known spectral decompositions,
such as the short-time Fourier transform (STFT) and the
continuous wavelet transform (CWT) are built following
a particular scheme. Each filter is the result of the action
of a transformation map on a selected mother filter, e.g.,
a Gabor filter. If the transformation map is induced by a
Group, the representation is called a Group Transform (GT),
and both the group with the mother filter characterize the
decomposition.

We propose to enable the learnability of such a scheme.
More precisely, our contributions are: 1) we generalize
common Group Transforms by proposing the utilization of
strictly increasing and nonlinear transformations, 2) draw
the connection between filters that can be learned by our
framework and commonly observed filters in biological
time-series 3) we show how the equivariance properties of
the representation differs from traditional affine transforma-
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tions, Section 3.1, 4) we propose an efficient way of optimiz-
ing the sampling of such functional space, Section 3.2, and
5) apply our method to three datasets containing comple-
mentary challenges a) artificial data showing the limitation
and drawbacks of well-known GTs, b) a large bird detection
dataset (≈ 20 hours of audio recording, 20× larger than
CIFAR10 in term of number of scalar values in the dataset)
where optimal spectral decomposition are known and de-
veloped by expert, and c) a haptic dataset that does not
benefit from expert knowledge regarding important features,
Section 4.

We can summarize our approach to

• given a filter ψ with its analytical formula

• generate increasing and continuous maps using 1-Layer
Relu Network (the number of increasing and contin-
uous map will be the number of filters in the filter
bank)

• compose the increasing and continuous maps with the
filter ψ

• convolve the filters obtained with the signal to acquire
the representation

2. Related Work and Background
One approach to represent the data consists of building
equivariant-invariant representations. For instance, in (Mal-
lat, 2012; Bruna, 2013) they propose a translation-invariant
representation, the Scattering Transform, which is stable un-
der the action of small diffeomorphisms. In (Oyallon et al.,
2018; Cohen & Welling, 2016), they focus on equivariant-
invariant representations for images, which reduces the sam-
ple complexity and endow DNN’s layers with interpretabil-
ity.

The closest work to ours consist of learning the filter bank in
an end-to-end fashion. (Cakir et al., 2016; Ravanelli & Ben-
gio, 2018; Balestriero et al., 2018; Zeghidour et al., 2018)
investigated the learnability of a mother filter such that it
can be jointly optimized with the DNN. In order to build
the filter bank, this learnable mother filter is transformed
by deterministic affine maps. The representation of the sig-
nal is obtained by convolving the filter bank elements with
the signals. Recently, (Khan & Yener, 2018) investigated
the learnability of the affine transformations, that is, the
sampling of the dilation parameter of the affine group in-
ducing the wavelet filter bank. Optimized jointly with the
DNN, their method allows for an adaptive transformation
of the mother filter. Our work generalizes this approach and
provide its theoretical properties and building blocks.

One of the main drawbacks of these approaches using time-
frequency representation is that the filter bank induces a
bias that might not be adapted to the data. This bias can be

Figure 1. Time-Frequency Tilings at a given time τ : (left) short-
time Fourier transform, i.e., constant bandwidth, (middle) wavelet
transform, i.e., proportional bandwidth, (right) Learnable Group
Transform, i.e, adaptive bandwidth, the ”tiling” is induced by
the learned non-linear transformation underlying the filter bank
decomposition.

understood by considering the time-frequency tiling of each
GT. It is known that the spread of a filter and its Fourier
transform are inversely proportional as per the Heisenberg
uncertainty principle (Mallat, 1999).

Following this principle, we can observe that in the case of
STFT (respectively WT with a Gabor wavelet), at a given
time τ , the signal is transformed by a window of constant
bandwidth (respectively proportional bandwidth) modulated
by complex exponential resulting in a uniform tiling (respec-
tively proportional) on the frequency axis, Figure 1. This
implies that, for instance, in the case of WT, the precision
in frequency degrades as the frequency increases while its
precision in time increases (Mallat, 1999). Thus, WT is
not adapted for fast-varying frequency signals (Xu et al.,
2016). In the case of STFT, the uniform tiling implies that
the precision is constant along the frequency axis. In our
proposed framework, the LGT allows for an adaptive tiling,
as illustrated in Figure 1 such that the trade-off between
time and frequency precision depends on the task and data.

3. Learnable Group Transform
Common time-frequency filter banks are built by transform-
ing a mother filter that we denote by ψ. We consider the
transformations of this mother filter defined as ψ◦g, g ∈ F,
where F defines the functional space of the transformation
and ψ ◦ g denotes the function composition. Note that in
signal processing, such a transformation is called warping
(Goldenstein & Gomes, 1999; Kerkyacharian et al., 2004).
Given a space F, the filter bank with K filters is created by
first, sampling K transformation maps from F and then, by
transforming the mother filter such as

{ψ ◦ g1, . . . , ψ ◦ gK |g1, . . . , gK ∈ F} .

Now, let’s denote a signal by s ∈ L2(R), we will consider
the representation of the signal as the result of its convolu-
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Figure 2. Learnable Group Transform: (left) generating the strictly increasing continuous functions gθk with parameters θk, ∀k ∈
{1, . . . ,K}, where K denotes the number of filters in the filter bank. The x-axis is the time variable and the y-axis the amplitude.
(middle) The mother filter, ψ (presently a Morlet wavelet), is composed with each warping function gθk , where the imaginary part is
shown in red and the real part in blue. The x-axis represents the time and y-axis the amplitude of the filter. These transformations lead to
the filter bank (only the kth element is displayed). Then, the convolutions between the filter bank elements and the signal si lead to the
LGT of the signal. The black box on the LGT representation (right) corresponds to the convolution of the kth filter with the signal. In this
figure, the horizontal axis corresponds to the time, each row corresponds to the convolution with a filter of the filter bank, and the color
displays the amplitude of each inner product. Notice that a complex modulus has been applied to the LGT. The strictly increasing and
continuous piecewise linear functions can be learned efficiently by back-propagating the error induced by the generated GT.

tion with the filter bank elements and denote it by

W[s, ψ](g, .) = [W[s, ψ](g1, .), . . . ,W[s, ψ](gK , .)]
T ,

where

W[s, ψ](g, .) = si ? (ψ ◦ g),∀g ∈ F,

with ? the convolution operator and (.) corresponds to the
time axis.

Therefore, the properties of the representation are carried
by the mother filter ψ, and space F. In this work, we focus
on the warping that generalizes common time-frequency
decompositions as well as the properties carried by the as-
sociated filter bank, in particular we consider nonlinear
warping. We provide a parameterization of such a warping
and show how one can efficiently learn these parameters.
The decomposition of the signal by this learned filter bank
defines a Group Transform. The overall building blocks
of the LGT, and its application on a signal is depicted in
Figure 2.

3.1. Time Warped Filters

We propose to transform the mother filter by means of a
subset of invertible maps on R. Instead of the affine warping
used in WT, we propose the use of a more general transfor-
mation map space F. In particular, we will use the space of
strictly increasing and continuous functions defined as

C0
inc(R) =

{
g ∈ C0(R)|g is strictly increasing

}
,

where C0(R) defines the space of continuous functions
defined on R. This set of functions is composed of invertible
maps which is crucial in order to derive invariance properties
as well as avoid artifacts in the transformed filters.

The transformation of a mother filter ψ is defined by the
linear operator ρinc(g) such as

ρinc(g)ψ = ψ ◦ g, g ∈ C0
inc(R),

By construction, this space allows for non-linear transfor-
mations of a mother filter. An example of such a warping
can be visualized in Figure 3.

In the next paragraph, we introduce some filters that can
be recovered using this transformation map. For some of
these filters, the estimation of their parameter has been
investigated (Gribonval, 2001; Wang & Jiang, 2008; Xu
et al., 2016), however, our method provides two benefits,
first, the generalization which alleviates the need of selecting
a specific type of filter bank, second, the scalability of our
method leading to a learnable filter bank.

Recovering Standard Filter Banks: The space C0
inc(R)

allows us to span well known transformations. In particular,
a filter can inherit a particular chirpyness1 from nonlinear
transformations belonging to C0

inc(R).

This property is interesting for the decomposition of non-
stationary and fast-varying signals. In fact, various sig-
nals include such an intricate feature, such as bird song,
speech, sonar system (Flandrin, 2001). Among the possible
transformations induced on a mother filter by the mapping
g ∈ C0

inc(R), some of them correspond to well-known filters
described in Table 1.

For instance, let’s consider the case where F is the space of
linear function with positive slope and defined as ∀g ∈
F, g(t) = t

λ , where λ is positive. In this case, we re-
cover the transformation leading to the dilation or con-
traction of a wavelet mother filter. The filter bank is then

1Chirpyness is defined as the rate of change of the instantaneous
frequency of the filter (Mann & Haykin, 1995).
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Figure 3. Transformation of a Morlet Wavelet: For all the filters, the real part is shown in blue and the imaginary in red. (left) Morlet
wavelet mother filter. (middle) Transformation of the mother filter with respect to an affine transform: the dilation parameter 0 < a < 1,
i.e., contraction, and translation b = 0, i.e., no translation. (right) Increasing and continuous transformation of the mother filter for some
randomly generated function g ∈ C0

inc(R) leading to chirplet-like filter.

Table 1. Recovering well-known filters
g ∈ C0

inc(R) ψ ◦ g
Affine Wavelet
Quadratic Convex Increasing Quadratic Chirplet
Quadratic Concave Decreasing Quadratic Chirplet
Logarithmic Logarithmic Chirplet
Exponential Exponential Chirplet

generated by sampling a few elements of the group. In
the case of the dyadic wavelet transform, the dilation pa-
rameters follow a geometric progression of common ratio
equals to 2, such as λk = 2(k−1)/Q, k = 1, ...,K, where
K = J ×Q, with J and Q are the number of octaves and
wavelets per octave, respectively. The filter bank obtained
is
{
ψ( t

λ1
), . . . , ψ( t

λK
)
}

, and the representation of signal is
obtained by convolutions between the filter bank elements
and the signal. Equivalently, the space F can be defined as
affine, and the WT is achieved by inner products between
the filters and the signal.

While the WT filter bank can easily be recovered, our mod-
elization of the filter bank does not allow for elements with
a number of oscillations that differ from the mother filter.
To enable such a transformation, another function h with
a number of oscillations that differs from the mother filter
could be multiplied with the mother filter, such that h×ψ◦g
provides the elements of the filter bank. Therefore, STFT
is not part of the representations that such a framework
encompasses.

In this work, we also consider the case where the repre-
sentation of the signal is performed by convolutions. This
representation has equivariance properties that are induced
by the convolutional operator as well as the space C0

inc(R).

Equivariance Properties of The Filter Bank: The
equivariance-invariance properties of signal representations
play a crucial role in the efficiency of the algorithm at hand
as they define how some variations in the signal may or
may not be captured (Mallat, 2016). These properties can

be intuitively explained and analyzed by considering the
representation of the signal as a function of group elements.
Details regarding the background of group theory and its
link with wavelet analysis are provided in Appendix A. Con-
sidering the mapping ρinc = ψ ◦ g, g ∈ C0

inc(R), as a group
action on the space of the mother filter, i.e., L2(R), or more
precisely, a representation of a group on L2(R), we can
develop the equivariance properties of the LGT. The proof
that ρint is in fact a representation is given in Appendix D.1.
We can consider the set C0

inc(R) with the operation � con-
sisting of the composition of functions to form the group
of strictly increasing and continuous maps denoted by Ginc.
This formulation eases the derivation of the equivariance
properties of group transforms which can be defined for a
group G for all g, g′ ∈ G by

W[ρ(g′)si, ψ](g, .) = W[si, ψ]((g′)−1 � g, .).

Transforming the signal with respect to the group G and
computing its representation is equal to computing the rep-
resentation of the signal and then transforming the represen-
tation. If G corresponds to the affine group, the associated
group transform is the WT, which is equivariant to scal-
ings and translations. One can already notice that since
W(., .) employs convolution to decompose the signal, for
any group G, the LGT is translation equivariant. We now
focus on more specific equivariance properties of the LGT
by defining the local equivariance for all g, g′ ∈ G by

∃τ ∈ R,W[ρ(g′)si, ψ](g, τ) = W[si, ψ]((g′)−1 � g, τ).

That is, the representation of a local transformation of a sig-
nal in a window centered at τ is equal to the transformation
of the representation at τ . The size of the window depends
on the support of the filter. As a matter of fact, assuming that
the representation of Ginc is unitary, we have the following
proposition.
Proposition 1. The LGT is locally equivariant with respect
to the action of the group Ginc.

The proof is given in Appendix D.

As we mentioned, a filter bank ofK filters is created by sam-
pling the space C0

inc(R). We now show how this sampling
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can be achieved efficiently by proposing a parametrization
of functions belonging to such a space.

3.2. Learning the Time Warping

In this work, we are specifically interested in the learnability
of such an increasing and continuous map. We provide a
way to sample this space via its parameterization. We use
piecewise affine functions constrained such that they belong
to the class of strictly increasing and continuous functions,
which can be efficiently performed by sorting the output of
a 1-layer ReLU NN.

Adaptive Knot Implementation: To implement the non-
linear mapping induced by the representation of the piece-
wise affine group, we use the fact that a piecewise contin-
uous function can be re-written as a 1-layer ReLU Neural
Network (Arora et al., 2016; Yarotsky, 2017).

Besides the computational advantages of such relationships
and the differentiable property of the weights of the NN, this
model is a knot-free piecewise affine mapping, providing
more flexibility regarding the warping function. The knot-
free mapping implies that instead of having each affine piece
of the function with uniform support, it can vary. As such,
this flexibility induces better approximation property (Jupp,
1978). Then, the increasing constraint on the mapping is
implemented by sorting the output of the NN. This operation
has a O(n log n) complexity and is applied on the warped
time, which is usually of size ≈ 29.

Objective Function and Learning: Let θk be the param-
eters of each increasing piecewise affine map computed by
the NN and we denote by gθk the sorted outputs of the NN.
The LGT filter bank has the following form

{ψ ◦ gθ1 , . . . , ψ ◦ gθK} .

Given a set of signals {si ∈ L2(R)}Ni=1 and given a task
specific loss function L, we aim at solving the following
optimization problem

min
Θ

N∑
i=1

L
(
F (W[si, ψ](gΘ, .))

)
,

where Θ = (θ1, . . . , θK), N denotes the number of signals,
K the number of filters, F represents a DNN, and we recall
that

W[si, ψ](gΘ, .) = [W[si, ψ](gθ1 , .), . . . ,W[si, ψ](gθK , .)]
T .

Since, the gθk are computed by sorting the output of the
NN and the parameters can be learned by a gradient descent
optimization jointly with the parameters of F .

Model Constraints to Reduce Aliasing: The nonlinear-
ity of the transformation might reduce the localization of
the filter in the frequency domain, and produce aliasing.
For some applications, the localization of each filter in the
frequency domain is crucial, e.g., the bird detection task in
Section 4.2.

In order to limit the possible aliasing induced by the piece-
wise increasing mappings applied to the mother filter, we
propose different settings. Besides, these constraints also
impact the type of filter bank our method can reach.

First, we propose a normalization of the frequency of the
transform filter (denoted in the result tables by nLGT). This
normalization helps to reduce the aliasing induced by the
filters. We propose to use f̂ , the normalized frequency f
with respect to the maximum slope of the piecewise affine
mapping. For instance, in the case of a Morlet wavelet, the
normalization is as follows

(ψ ◦ gθ)(t) = π−
1
4 exp

(
2πjf̂gθ(t)

)
exp
(
− 1

2 (gθ(t)/σ)2
)
,

where f̂ = f/maxl∈{1,...,n} al, where n denotes the num-
ber of pieces of the piecewise map, and al the slope of
each piece, j is the imaginary unit, and σ is the width pa-
rameter defining the localization of the wavelet in time
and frequency. This normalization will be performed for
each sample of the group, and thus for each generated filter
k ∈ {1, . . . ,K} of the filter bank.

Second, we constrain the domain of the piecewise affine
map (denoted in the result tables by cLGT). In the following
experiments, we propose a dyadic constraint of the domain
as in the WT. The support of the filter is close to the sup-
port of a wavelet filter bank. However, the envelope of the
filter and the instantaneous frequency still has a learned
chirpyness.

4. Experiments
For all the experiments and all the settings, i.e., LGT, nLGT,
cLGT, cnLGT, the increasing and continuous piecewise
affine map is initialized randomly, and the optimization is
performed with Adam Optimizer, and the number of knots
of each piecewise affine map is 256. The mother filter
used for our setting is a Morlet wavelet filter. The code
of the LGT framework is provided in the following reposi-
tory https://github.com/Koldh/LearnableGroupTransform-
TimeSeries.

4.1. Artificial Data: Classification of Chirp Signals

We present an artificial dataset that demonstrates how a spe-
cific time-frequency tiling might not be adapted or would re-
quire cross-validations for a given task and data. To build the
dataset, we generate one high frequency ascending chirp and
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Figure 4. Learnable Group Transform Filters for the Artificial Data - Each row displays two selected filters (left and right sub-figure)
for different settings: (from top to bottom) nLGT, cLGT, cnLGT. For each subfigure, the left part corresponds to the filter before training
and the right part to the filter after training. The blue and red denote the real and imaginary parts of the filters, respectively.

Table 2. Testing Accuracy for the Chirp Signals Classification Task
Representation + Non-Linearity + Linear Classifier Accuracy
Wavelet Transform (64 Filters) 53.01 ± 5.1
Short-Time Fourier Transform (64 Filters) 65.1 ± 11.9
Short-Time Fourier Transform (128 Filters) 86.6 ± 9.8
Short-Time Fourier Transform (512 Filters) 100 ± 0.0
LGT (64 Filters) 92.9 ± 4.0
nLGT (64 Filters) 95.7 ± 3.3
cLGT (64 Filters) 56.8 ± 1.6
cnLGT (64 Filters) 100.0 ± 0.0

one descending high-frequency chirp of size 8192 following
the chirplet formula provided in (Baraniuk & Jones, 1996).
Then for both chirp signals, we add Gaussian noise samples
(100 times for each class), see Figures in Appendix C.1.
The task aims at being able to detect whether the chirp is
ascending or descending. Both the training and test sets
are composed of 50 instances of each class. For all models,
set the batch size to 10, the number of epochs to 50. Each
experiment was repeated 5 times with randomly sampled
train and test set, and the accuracy was the result of the
average over these 5 runs. Each GT is composed with a
complex modulus, and the inference is performed by a lin-
ear classifier. For the case of WT and LGT, the size of the
filters is 512.

As we can observe in Table 2, the WT, as well as the STFT
with few numbers of filters, perform poorly on this dataset.
The chirp signals to be analyzed are localized close to the
Nyquist frequency, and in the case of WT, as illustrated in
Figure 1, the wavelet filter bank has a poor frequency reso-
lution in high frequency while benefiting from a high time
resolution. In this experiment, we can see that this charac-

teristic the WT time-frequency tiling implies that through
time, the small frequency variations of the chirp are not
efficiently captured. In the case of STFT, as the number of
filters decreases, the frequency resolution is altered. Thus,
this frequency variation is not captured. Using a large win-
dow for the STFT increases the frequency resolution of the
tiling and thus enables to capture the difference between the
two classes. In the LGT setting, the tiling has adapted to the
task and produces good performances except for the cLGT
model. In fact, the domain of the piecewise linear map is
constrained to be dyadic, and thus the adaptivity of the filter
bank is reduced, which is not suitable for this specific task.

Some of the filters can be visualized in Figure 4, as well as
the representations of the signals in Appendix C.1.2. This
experiment shows an example of signals that are not easily
classified by neither the proportional-bandwidth nor the
constant-bandwidth without considering cross-validation of
hyperparameters.

4.2. Supervised Bird Detection

Table 3. Testing AUC for the Bird Detection Task
Representation + Non-Linearity + Deep Network AUC
MFSC (80 Filters) 77.83 ± 1.34
Conv. Filter init. random (80 Filters) 66.77 ± 1.04
Conv. Filter init. Gabor (80 Filters) 67.67 ± 0.98
Spline Conv. init. random (80 Filters) (Balestriero et al., 2018) 78.17 ± 1.48
Spline Conv. init. Gabor (80 Filters) (Balestriero et al., 2018) 79.32 ± 1.52
LGT (80 Filters) 78.41 ± 1.38
nLGT (80 Filters) 75.50 ± 1.39
cLGT (80 Filters) 79.14 ± 0.83
cnLGT (80 Filters) 79.68 ± 1.35

We now propose a large scale dataset to validate the suitabil-
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Figure 5. Learnable Group Transform - Visualization of a sample containing a bird song (cLGT), where (left) at the initialization and
(right) after learning. For each subfigure, the x-axis corresponds to time and the y-axis to the different filters. Notice that the y-axis
usually corresponds to the scale or the center-frequency of the filters. Other representations are displayed in Appendix C.2.2. We can
observe that compared to the initialization, the learned representation is sparser and the SNR is increased. Besides, the representation is
less redundant in the frequency axis.

Figure 6. Learnable Group Transform Filters for the Bird Detection Data - Each row displays two selected filters (left and right
sub-figure) for different settings: (from top to bottom) LGT, nLGT, cLGT. For each subfigure, the left part corresponds to the filter before
training and the right part to the filter after training. The blue and red denote the real and imaginary parts of the filters, respectively.

ity of our model in a noisy and realistic setting. The dataset
is extracted from the Freesound audio archive (Stowell &
Plumbley, 2013). This dataset contains about 7, 000 field
recording signals of 10 seconds sampled at 44 kHz, repre-
senting slightly less than 20 hours of audio signals. The
content of these recordings varies from water sounds to city
noises. Among these signals, some contain bird songs that
are mixed with different background sounds having more
energy than the bird song. A visualisation of a sample is
shown in Appendix C.2.1. The given task is a binary classi-
fication where one should predict the presence or absence
of a bird song. As the dataset is unbalanced, we use the
Area Under Curve (AUC) metric. The results we propose
for both the benchmarks and our models are evaluated on a
test set consisting of 33% of the total dataset.

In order to compare with previously used methods, we use
the same seeds to sample the train and test set, the batch
size, i.e., 10, and the learning rate cross-validation grid as in
(Balestriero et al., 2018). For each model, the best hyperpa-
rameters are selected, and we train and evaluated randomly

10-times the models with early stopping, the results are
shown in Table 3. While the first layer of the architecture
has a model-dependent representation (i.e., MFSC, LGT,
Conv. filters,...), we use the state-of-the-art architecture
(Grill & Schlüter, 2017) for the DNN architecture, described
in Appendix B.2. Notice that this specific DNN architecture
has been designed and optimized for MFSC representation.

As we can see in Table 3, the case without constraints (LGT)
reaches better accuracy than the domain expert benchmark
(MFSC). Besides, including more constraints on the model
(cnLGT) reduces overfitting and further improve results to
outperform the other benchmarks. One can also remark
that both the LGT framework and learnable mother wavelet
reach almost the same accuracy, while they both outperform
the hand-crafted feature as well as the unconstrained convo-
lutional filters. One can notice that all the learned filters in
Figure 6 contain either an increasing chirp or a decreasing
chirp, corresponding respectively to the convexity or con-
cavity of the instantaneous phase of the filter and thus of the
piecewise linear map. Such a feature is being used and is
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Figure 7. Learnable Group Transform Filters for the Haptics Data - Each row displays two selected filters (left and right sub-figure)
for different settings: (from top to bottom) nLGT, cLGT, cnLGT. For each subfigure, the left part corresponds to the filter before training
and the right part to the filter after training. The blue and red denote the real and imaginary parts of the filters, respectively.

crucial in the detection and analysis of bird song (Stowell &
Plumbley, 2012).

4.3. Haptics Dataset Classification
Table 4. Testing Accuracy for the Haptics Classification Task

Model Accuracy
DTW (Al-Naymat et al., 2009) 37.7
BOSS (Schäfer, 2015) 46.4
Residual NN (Wang et al., 2017) 50.5
COTE ((Bagnall et al., 2015) 51.2
Fully Convolutional NN (Wang et al., 2017) 55.1
WD + Convolutional NN (Khan & Yener, 2018) 57.5

LGT (96 Filters)+ Non-Linearity + Linear Classifier 53.5
nLGT (96 Filters)+ Non-Linearity + Linear Classifier 50.4
cLGT (96 Filters)+ Non-Linearity + Linear Classifier 58.2
cnLGT (96 Filters)+ Non-Linearity + Linear Classifier 54.3

The Haptics dataset is a classification problem with five
classes and 155 training and 308 testing samples from the
UCR Time Series Repository (Chen et al., 2015), where
each time-series has 1092 time samples. As opposed to
the bird dataset where features of interests are known, and
competitive methods have been established, there is no ex-
pert knowledge regarding the specific signal features (see
Table 4). One can see that our method outperforms other
approaches in the cLGT setting while performing the classi-
fication with a linear classifier as opposed to other methods
using DNN algorithms. This demonstrates the capability
of our method to transform the data efficiently while not
requiring a further change of basis as well as knowledge on
the features of interests. Besides, even in a small dataset
regime, our approach is capable of learning an efficient
transformation of the data.

We provide in Figure 7 the visualization of some sampled
filters before and after learning as well as representations in

Appendix C.3.2. As opposed to the supervised bird dataset,
we can see that the filters do not coincide with well-known
filters that are commonly used in signal processing. This is
an example of an application where the features of interest
in the signals are unknown, and one requires a learnable
representation.

5. Conclusion
In this work, we enable the learnability of Group Trans-
form and generalize the wavelet transform by introducing
non-linear transformations of a mother filter as well as an
efficient way to sample this mapping. We establish the con-
nections with well-known time-frequency filters that are
common in diverse biological signals as well as the deriva-
tion of the equivariance properties of the LGT. Also, we have
shown a tractable way to learn to sample these transforma-
tions using a 1-layer NN enabling an end-to-end approach.
Our approach competes with state-of-the-art methods with-
out a priori knowledge on the signal power spectrum and
outperforms classical hand-crafted time-frequency repre-
sentations. Interestingly, in the bird detection experiment,
we recover chirplet filters that are known to be crucial to
their detection, while in the case of the haptic dataset where
important features to be captured to perform the classifica-
tion of the signals are unknown, the filters learned are very
dissimilar to classical time-frequency filters and allow to
outperform state-of-the-art methods with a linear classifier.
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