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Abstract
We present a novel communication-efficient
Newton-type algorithm for finite-sum optimiza-
tion over a distributed computing environment.
Our method, named DINO, overcomes both theo-
retical and practical shortcomings of similar ex-
isting methods. Under minimal assumptions, we
guarantee global sub-linear convergence of DINO
to a first-order stationary point for general non-
convex functions and arbitrary data distribution
over the network. Furthermore, for functions sat-
isfying Polyak-Lojasiewicz (PL) inequality, we
show that DINO enjoys a linear convergence rate.
Our proposed algorithm is practically parameter
free, in that it will converge regardless of the se-
lected hyper-parameters, which are easy to tune.
Additionally, its sub-problems are simple linear
least-squares, for which efficient solvers exist, and
numerical simulations demonstrate the efficiency
of DINO as compared with similar alternatives.

1. Introduction
Consider the generic finite-sum optimization problem

min
w∈Rd

{
f(w) ,

1

m

m∑
i=1

fi(w)

}
, (1)

in a centralized distributed computing environment com-
prised of one central driver machine communicating to m
worker machines, where each worker i only has access to fi.
A common application of this problem is where each worker
i has access to a portion of n data points {x1, . . . ,xn}, in-
dexed by a set Si ⊆ {1, . . . , n}, with

fi(w) =
|Si|
n

∑
j∈Si

`j(w;xj), (2)
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where `i is a loss function corresponding to xi and param-
eterized by w. For example, such settings are popular in
industry in the form of federated learning when data is
collected and processed locally, which increases comput-
ing resources and facilitates data privacy (Agarwal et al.,
2018). Another example is in big data regimes, where it
is more practical, or even necessary, to partition and store
large datasets on separate machines (Zhang & Lin, 2015).
Distributing machine learning model parameters is also be-
coming a necessity as some highly successful models now
contain billions of parameters, such as GPT-2 (Radford et al.,
2019; Lee et al., 2014).

The need for distributed computing has motivated the devel-
opment of many frameworks. For example, the popular ma-
chine learning packages PyTorch (Paszke et al., 2017) and
Tensorflow (Abadi et al., 2016) contain comprehensive func-
tionality for distributed training of machine learning models.
Despite many benefits to distributed computing, there are
significant computational bottlenecks, such as those intro-
duced through bandwidth and latency (Shamir & Srebro,
2014; Li et al., 2014; Wangni et al., 2018). Frequent trans-
mission of data is expensive in terms of time and physical
resources (Zhang & Lin, 2015). For example, even transfer-
ring data on a local machine can be the main contributor to
energy consumption (Shalf et al., 2011).

With the bottleneck of communication, there has re-
cently been significant focus on developing communication-
efficient distributed optimization algorithms. This is particu-
larly apparent in regards to popular first-order methods, such
as stochastic gradient descent (SGD) (Haddadpour et al.,
2019; Ivkin et al., 2019; Vogels et al., 2019; Basu et al.,
2019; Teng et al., 2019; Zheng et al., 2019). As first-order
methods solely rely on gradient information, which can of-
ten be computed easily in parallel, they are usually straight-
forward to implement in a distributed setting. However, their
typical inherent nature of performing many computationally
inexpensive iterations, which is suitable and desirable on a
single machine, leads to significant data transmission costs
and ineffective utilization of increased computing resources
in a distributed computing environment (Wang et al., 2018).
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Related Work

In contrast to first-order methods, second-order methods per-
form more computation per iteration and, as a result, often
require far fewer iterations to achieve similar results. In dis-
tributed settings, these properties directly translate to more
efficient utilization of the increased computing resources
and far fewer communications over the network. Motivated
by this potential, several distributed Newton-type algorithms
have recently been developed, most notably DANE (Shamir
et al., 2014), DiSCO (Zhang & Lin, 2015), InexactDANE
and AIDE (Reddi et al., 2016), GIANT (Wang et al., 2018),
and DINGO (Crane & Roosta, 2019).

While each of these second-order distributed methods have
notable benefits, they all come with disadvantages that limit
their applicability. DiSCO and GIANT are simple to im-
plement, as they involve sub-problems in the form of linear
systems. Whereas, the sub-problems of InexactDANE and
AIDE involve non-linear optimization problems and their
hyper-parameters are difficult and time consuming to tune.
DiSCO and GIANT rely on strong-convexity assumptions,
and GIANT theoretically requires particular function form
and data distribution over the network in (2). In contrast,
InexactDANE and AIDE are applicable to non-convex objec-
tives. DINGO’s motivation is to not require strong-convexity
assumptions, i.e., it converges for invex problems (Mishra
& Giorgi, 2008), and still be easy to use in practice, i.e.,
simple to tune hyper-parameters and linear-least squares sub-
problems. DINGO achieves this by optimizing the norm of
the gradient as a surrogate function. Thus, it may converge
to a local maximum or saddle point in non-invex problems.
Moreover, the theoretical analysis of DINGO is limited to
exact update.

Contributions

We present a novel communication-efficient distributed
second-order optimization algorithm that combines many of
the above-mentioned desirable properties. Our algorithm is
named DINO, for “DIstributed Newton-type Optimization
method”. Our method is inspired by the novel approach of
DINGO, which allowed it to circumvent various theoreti-
cal and practical issues of other methods. However, unlike
DINGO, we minimize (1) directly and our analysis involves
less assumptions and is under inexact update; see Tables 1
and 2 for high-level algorithm properties.

A summary of our contributions is as follows.

1. The analysis of DINO is simple, intuitive, requires very
minimal assumptions and can be applied to arbitrary non-
convex functions. Namely, by requiring only Lipschitz
continuous gradients ∇fi, we show global sub-linear con-
vergence for general non-convex (1). Recall that additional
assumptions are typically required for the analysis of second-

order methods. Such common assumptions include strong
convexity, e.g., in (Roosta & Mahoney, 2019), and Lipschitz
continuous Hessian, e.g., in (Xu et al., 2019), which are both
required for GIANT. Although the theory of DINGO does
not require these, it still assumes additional unconventional
properties of the Hessian and, in addition, is restricted to
invex problems, as a strict sub-class of general non-convex
models. Furthermore, in our analysis, we don’t assume spe-
cific function form or data distribution for applications of
the form (2). For example, this is in contrast to GIANT,
which is restricted to loss functions involving linear predic-
tor models and specific data distributions.

2. DINO is practically parameter free, in that it will con-
verge regardless of the selected hyper-parameters. This is
in sharp contrast to many first-order methods. The hyper-
parameters of InexactDANE and AIDE require meticulous
fine-tuning and these are sensitive to the given application.
DINO is simple to tune and performs well across a variety
of problems without modification of the hyper-parameters.

3. The sub-problems of DINO are simple. Like DINGO,
the sub-problems of our method are simple linear least-
squares problems for which efficient and robust direct and
iterative solvers exists. In contrast, non-linear optimization
sub-problems, such as those arising in InexactDANE and
AIDE, can be difficult to solve and often involve additional
hard to tune hyper-parameters.

Notation and Definitions

Throughout the paper, vectors and matrices are denoted by
bold lower-case and bold upper-case letters, respectively,
e.g., v and V. We use regular lower-case and upper-case
letters to denote scalar constants, e.g., d or L. The common
Euclidean inner product is denoted by 〈x,y〉 = xTy for
x,y ∈ Rd. Given a vector v and matrix A, we denote their
vector `2 norm and matrix spectral norm as ‖v‖ and ‖A‖,
respectively. The Moore–Penrose inverse of A is denoted
by A†. We let wt ∈ Rd denote the point at iteration t.
For notational convenience, we denote gt,i , ∇fi(wt),
gt , ∇f(wt), Ht,i , ∇2fi(wt) and Ht , ∇2f(wt). We
also let

H̃t,i ,

[
Ht,i

φI

]
∈ R2d×d and g̃t ,

(
gt

0

)
∈ R2d, (3)

where φ > 0, I is the identity matrix, and 0 is the zero
vector. We say that a communication round is performed
when the driver uses a broadcast or reduce operation to send
or receive information to or from the workers in parallel, re-
spectively. For example, computing the gradient gt requires
two communication rounds, i.e., the driver broadcasts wt

and then, using a reduce operation, receives gt,i from all
workers to then form gt =

∑m
i=1 gt,i/m.
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Table 1. Comparison of problem class, function form and data distribution. DINGO is suited to invex problems in practice, as it may
converge to a local maximum or saddle point in non-invex problems (Crane & Roosta, 2019). This is a modified table from (Crane &
Roosta, 2019).

Problem Class Function Form Data Distribution

DINO Non-Convex Any Any
DINGO (Crane & Roosta, 2019) Invex Any Any
GIANT (Wang et al., 2018) Strongly Convex `j(w;xj) = ψj(〈w,xj〉) + γ‖w‖2 in (2) |Si| > d in (2)
DiSCO (Zhang & Lin, 2015) Strongly Convex Any Any
InexactDANE (Reddi et al., 2016) Non-Convex Any Any
AIDE (Reddi et al., 2016) Non-Convex Any Any

Table 2. Comparison of number of hyper-parameters (under exact update), communication rounds per iteration (under inexact update)
and the type of optimization problem to solve in the sub-problem. Additional hyper-parameters may be introduced under inexact update,
such as in the solver used for the non-linear optimization sub-problems of InexactDANE and AIDE. We assume DINO, DINGO and
GIANT use two communication rounds per iteration for line-search. This is a modified table from (Crane & Roosta, 2019).

Number of Communication Rounds Sub-Problem
Hyper-parameters Per Iteration Optimization

(Under Exact Update) (Under Inexact Update) Type

DINO 2 6 Linear
DINGO (Crane & Roosta, 2019) 2 4 to 8 Linear
GIANT (Wang et al., 2018) 0 6 Linear
DiSCO (Zhang & Lin, 2015) 0 2 + 2 · (sub-problem iterations) Linear
InexactDANE (Reddi et al., 2016) 2 4 Non-Linear
AIDE (Reddi et al., 2016) 3 4 · (inner InexactDANE iterations) Non-Linear

2. Derivation
In this section, we describe the derivation of DINO, as de-
picted in Algorithm 1. Each iteration t involves computing
an update direction pt and a step-size αt and then forming
the next iterate wt+1 = wt + αtpt.

Update Direction

When forming the update direction pt, computing H̃†t,ig̃t

and (H̃T
t,iH̃t,i)

−1gt constitute the sub-problems of DINO,
where H̃t,i and g̃t are as in (3). Despite these being the
solutions of simple linear least-squares problems, it is still
unreasonable to assume these will be computed exactly. In
this light, we only require that the approximate solutions
satisfy the following conditions.

Condition 1 (Inexactness Condition). For all iterations t,
all worker machines i = 1, . . . ,m are able to compute ap-
proximations v(1)

t,i and v
(2)
t,i of H̃†t,ig̃t and (H̃T

t,iH̃t,i)
−1gt,

respectively, that satisfy:

‖H̃T
t,iH̃t,iv

(1)
t,i −Ht,igt‖ ≤ ε(1)i ‖Ht,igt‖, (4a)

‖H̃T
t,iH̃t,iv

(2)
t,i − gt‖ ≤ ε(2)i ‖gt‖, (4b)

〈v(2)
t,i ,gt〉 > 0, (4c)

where 0 ≤ ε(1)i , ε
(2)
i < 1 are constants.

For practical implementations of DINO, as with DINGO,
DiSCO and GIANT, we don’t need to compute or store ex-
plicitly formed Hessian matrices, i.e., our implementations
are Hessian-free. Namely, approximations of H̃†t,ig̃t and
(H̃T

t,iH̃t,i)
−1gt can be efficiently computed using iterative

least-squares solvers that only require access to Hessian-
vector products, such as in our implementation described
in Section 4. These products can be computed at a similar
cost to computing the gradient (Schraudolph, 2002). Hence,
DINO is applicable to (1) with a large dimension d.

Condition 1 has a significant practical benefit. Namely, the
criteria (4) are practically verifiable as they don’t involve any
unknowable terms. Requiring ε(1)i , ε

(2)
i < 1 ensures that

the approximations are simply better than the zero vector.
The condition in (4c) is always guaranteed if one uses the
conjugate gradient method (CG) (Nocedal & Wright, 2006),
regardless of the number of CG iterations.

We now derive the update direction pt for iteration t. Our
approach is to construct pt so that it is a suitable descent
direction of (1). Namely, it satisfies 〈pt,gt〉 ≤ −θ‖gt‖2,
where θ is a selected hyper-parameter of DINO. We begin
by distributively computing the gradient, gt, of (1) and then
broadcast it to all workers. Each worker i computes the
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vector v(1)
t,i , as in (4a), lets pt,i = −v(1)

t,i and checks the

condition 〈v(1)
t,i ,gt〉 ≥ θ‖gt‖2.

All workers i in

It ,
{
i = 1, . . . ,m | 〈v(1)

t,i ,gt〉 < θ‖gt‖2
}
, (5)

has a local update direction pt,i that is not a suitable descent
direction of (1), as 〈pt,i,gt〉 > −θ‖gt‖2. We now enforce
descent in their local update direction. For this, we consider
the problem

min
pt,i

‖Ht,ipt,i + gt‖2 + φ2‖pt,i‖2 (6)

s.t. 〈pt,i,gt〉 ≤ −θ‖gt‖2,

where φ is a selected hyper-parameter of DINO as in (3).
It is easy to see that, when 〈H̃†t,ig̃t,gt〉 < θ‖gt‖2, the
problem (6) has the exact solution

pt,i = −H̃†t,ig̃t − λt,i(H̃T
t,iH̃t,i)

−1gt,

λt,i =
−〈H̃†t,ig̃t,gt〉+ θ‖gt‖2〈

(H̃T
t,iH̃t,i)−1gt,gt

〉 > 0.

Therefore, to enforce descent, each worker i ∈ It computes

pt,i = −v(1)
t,i − λt,iv

(2)
t,i ,

λt,i =
−〈v(1)

t,i ,gt〉+ θ‖gt‖2

〈v(2)
t,i ,gt〉

> 0,

where v
(2)
t,i is as in (4b) and (4c). The term λt,i is positive

by the definition of It and the condition in (4c). This lo-
cal update direction pt,i has the property that 〈pt,i,gt〉 =
−θ‖gt‖2. Using a reduce operation, the driver obtains the
update direction pt =

∑m
i=1 pt,i/m. By construction, pt is

now guaranteed to be a descent direction for (1) satisfying
〈pt,gt〉 ≤ −θ‖gt‖2.

Step-Size

We use Armijo line search to compute a step-size αt.
Namely, we choose the largest αt > 0 such that

f(w + αtpt) ≤ f(wt) + αtρ〈pt,gt〉, (7)

with some constant ρ ∈ (0, 1). As pt is always a descent
direction, we obtain a strict decrease in the function value.
This happens regardless of the selected hyper-parameters
θ and φ. Line search can be conducted distributively in
parallel with two communication rounds, such as in our im-
plementation in Section 4. DINO only transmits vectors of
size linear in dimension d, i.e., O(d). This is an important
property of distributed optimization methods and is con-
sistent with DINGO, DiSCO, DANE, InexactDANE and
AIDE.

Algorithm 1 DINO
1: input initial point w0 ∈ Rd, gradient tolerance δ ≥ 0,

maximum iterations T , line search parameter ρ ∈ (0, 1),
parameter θ > 0 and regularization parameter φ > 0 as
in (3).

2: for t = 0, 1, 2, . . . , T − 1 do
3: Distributively compute the full gradient gt.
4: if ‖gt‖ ≤ δ then
5: return wt

6: else
7: The driver broadcasts gt and, in parallel, each

worker i computes v(1)
t,i in (4a).

8: In parallel, each worker i, such that 〈v(1)
t,i ,gt〉 ≥

θ‖gt‖2, lets pt,i = −v(1)
t,i .

9: In parallel, each worker i, such that 〈v(1)
t,i ,gt〉 <

θ‖gt‖2, computes

pt,i = −v(1)
t,i − λt,iv

(2)
t,i ,

λt,i =
−〈v(1)

t,i ,gt〉+ θ‖gt‖2

〈v(2)
t,i ,gt〉

> 0,

where v
(2)
t,i is as in (4b) and (4c).

10: Using a reduce operation, the driver computes
pt =

1
m

∑m
i=1 pt,i.

11: Choose the largest αt > 0 such that

f(w + αtpt) ≤ f(wt) + αtρ〈pt,gt〉.

12: The driver computes wt+1 = wt + αtpt.
13: end if
14: end for
15: return wT .

3. Analysis
In this section, we present convergence results for DINO.
We assume that f , in (1), attains its minimum on some
non-empty subset of Rd and we denote the corresponding
optimal function value by f∗. As was previously mentioned,
we are able to show global sub-linear convergence under
minimal assumptions. Specifically, we only assume that the
local gradient∇fi, on each worker i, is Lipschitz continu-
ous.

Assumption 1 (Local Lipschitz Continuity of Gradient).
The function fi in (1) is twice differentiable for all i =
1, . . . ,m. Moreover, for all i = 1, . . . ,m, there exists con-
stants Li ∈ (0,∞) such that∥∥∇fi(x)−∇fi(y)∥∥ ≤ Li‖x− y‖,

for all x,y ∈ Rd.
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As already mentioned, assuming Lipschitz continuous gra-
dient is common place. Recall that Assumption 1 implies∥∥∇f(x)−∇f(y)∥∥ ≤ L‖x− y‖, (8)

for all x,y ∈ Rd, where L ,
∑m

i=1 Li/m. This in turn
gives for all α ≥ 0

f(wt + αpt) ≤ f(wt) + α
〈
pt,gt

〉
+
α2L

2
‖pt‖2. (9)

Recall, for a linear system Ax = b, with non-singular
square matrix A, the condition number of A is κ(A) ,
‖A−1‖‖A‖. As H̃t,i has full column rank, the matrix
H̃T

t,iH̃t,i is invertible and, under Assumption 1, has con-
dition number at most (L2

i + φ2)/φ2. Therefore, under
Condition 1 and Assumption 1 we have

‖v(1)
t,i − H̃†t,ig̃t‖

≤ ε(1)i

(
L2
i + φ2

φ2

)
‖H̃†t,ig̃t‖, (10a)∥∥v(2)

t,i − (H̃T
t,iH̃t,i)

−1gt

∥∥
≤ ε(2)i

(
L2
i + φ2

φ2

)∥∥(H̃T
t,iH̃t,i)

−1gt

∥∥, (10b)

for all iterations t and all workers i = 1, . . . ,m. We also
have the upper bound

‖H̃†t,i‖ ≤
1

φ
, (11)

for all iterations t and all i = 1, . . . ,m; see (Crane &
Roosta, 2019) for a proof.

Theorem 1 (Convergence of DINO). Suppose Assumption 1
holds and that we run Algorithm 1 with inexact update such
that Condition 1 holds with ε(2)i < 2

√
Ki/(1 + Ki) for

all i = 1, . . . ,m, with Ki = (L2
i + φ2)/φ2. Then for all

iterations t we have f(wt+1) ≤ f(wt) − τρθ‖gt‖2 with
constants

τ =
2(1− ρ)θ
La2

, (12a)

a =
1

φ

(
1 +

1

m

m∑
i=1

ε
(1)
i Ki

)
+

1

m

m∑
i=1

bi, (12b)

bi =

(
1 + ε

(2)
i Ki

1− ε(2)i (1 +Ki)/(2
√
Ki)

)
(12c)

×
(
1

φ

(
1 + ε

(1)
i Ki

)
+ θ

)√
Ki, (12d)

where ρ, θ and φ are as in Algorithm 1, Li are as in Assump-
tion 1, L is as in (8), ε(1)i are as in (4a), and ε(2)i are as in
(4b).

Proof. Recall that for iteration t, each worker i ∈ It, as
defined in (5), computes

pt,i = −v(1)
t,i − λt,iv

(2)
t,i ,

λt,i =
−〈v(1)

t,i ,gt〉+ θ‖gt‖2

〈v(2)
t,i ,gt〉

> 0.

The term λt,i is both well-defined and positive by the def-
inition of It and the condition in (4c). The inexactness
condition in (4b) implies

− 〈v(2)
t,i ,gt〉+

〈
(H̃T

t,iH̃t,i)
−1gt,gt

〉
= −

〈
H̃T

t,iH̃t,iv
(2)
t,i − gt, (H̃

T
t,iH̃t,i)

−1gt

〉
≤ ε(2)i ‖gt‖

∥∥(H̃T
t,iH̃t,i)

−1gt

∥∥.
By Assumption 1 and the Kantorovich inequality
(Gustafson, 1995), we have

ε
(2)
i ‖gt‖

∥∥(H̃T
t,iH̃t,i)

−1gt

∥∥
≤ ε(2)i

1 +Ki

2
√
Ki

〈
(H̃T

t,iH̃t,i)
−1gt,gt

〉
.

Therefore,

〈v(2)
t,i ,gt〉 ≥

(
1− ε(2)i

1 +Ki

2
√
Ki

)〈
(H̃T

t,iH̃t,i)
−1gt,gt

〉
,

where the right-hand side is positive by the assumption
ε
(2)
i < 2

√
Ki/(1 + Ki) and the condition ‖gt‖ > δ in

Algorithm 1.

It follows from (10) and (11) that

λt,i‖v(2)
t,i ‖

≤
(

1 + ε
(2)
i Ki

1− ε(2)i (1 +Ki)/(2
√
Ki)

)

×
(
−〈v(1)

t,i ,gt〉+ θ‖gt‖2
)‖(H̃T

t,iH̃t,i)
−1gt

∥∥∥∥(H̃T
t,i)
†gt

∥∥2
≤ 1

φ

(
1 + ε

(2)
i Ki

1− ε(2)i (1 +Ki)/(2
√
Ki)

)

×
(
‖v(1)

t,i ‖‖gt‖+ θ‖gt‖2∥∥(H̃T
t,i)
†gt

∥∥
)

≤
(

1 + ε
(2)
i Ki

1− ε(2)i (1 +Ki)/(2
√
Ki)

)

×
(
1

φ

(
1 + ε

(1)
i Ki

)
+ θ

)√
Ki‖gt‖.
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This and (10a), and how pt,i = −v(1)
t,i for i /∈ It, imply

‖pt‖ ≤
1

m

(∑
i/∈It

‖pt,i‖+
∑
i∈It

‖pt,i‖
)

≤ 1

m

( m∑
i=1

‖v(1)
t,i ‖+

∑
i∈It

λt,i‖v(2)
t,i ‖

)
≤ a‖gt‖,

where a is as in (12b). This and (9) imply

f(wt +αpt) ≤ f(wt)+α〈pt,gt〉+
α2La2

2
‖gt‖2, (13)

for all α ≥ 0.

For all α ∈ (0, τ ], where τ is as in (12a), we have

α2La2

2
‖gt‖2 ≤ α(1− ρ)θ‖gt‖2,

and as 〈pt,gt〉 ≤ −θ‖gt‖2, by construction, we obtain

α2La2

2
‖gt‖2 ≤ α(ρ− 1)〈pt,gt〉.

From this and (13) we have

f(wt + αpt) ≤ f(wt) + αρ〈pt,gt〉,

for all α ∈ (0, τ ]. Therefore, line-search (7) will pass for
some step-size αt ≥ τ . Moreover, f(wt+1) ≤ f(wt) −
τρθ‖gt‖2.

Theorem 1 implies a global sub-linear convergence rate for
DINO. Namely, as f∗ ≤ f(wt+1) ≤ f(wt) − τρθ‖gt‖2,
we have

t∑
k=1

‖gk‖2 ≤
f(w0)− f∗

τρθ
,

for all iterations t. This implies limt→∞ ‖gt‖ = 0 and

min
0≤k≤t

{
‖gk‖2

}
≤ f(w0)− f∗

tτρθ
,

for all iterations t. Reducing the inexactness error ε(1)i or
ε
(2)
i in Condition 1 lead to improved constants in the rate

obtained in Theorem 1.

The hyper-parameters θ and φ have intuitive effects on
DINO. Increasing θ will also increase the chance of It,
in (5), being large. In fact, if It is empty for all iterations t,
then, in Theorem 1, the condition on ε(2)i can be removed
and the term τ can be improved to

τ =
2(1− ρ)θ
La2

, a =
1

φ

(
1 +

1

m

m∑
i=1

ε
(1)
i

L2
i + φ2

φ2

)
.

The hyper-parameter φ controls the condition number of
H̃T

t,iH̃t,i, which is at most (L2
i +φ2)/φ2. Increasing φ will

decrease the condition number and make the sub-problems
of DINO easier to solve, as can be seen in (10), while also
causing a loss of curvature information in the update direc-
tion. Also, the upper bound on ε(2)i can be made arbitrarily
close to 1 by increasing φ. In practice, simply setting θ and
φ to be small often gives the best performance.

Theorem 1 applies to arbitrary non-convex (1) satisfying
the minimal Assumption 1. Additional assumptions on the
function class of (1) can lead to improved convergence rates.
One such assumption is to relate the gradient∇f(wt) to the
distance of the current function value f(wt) to optimality
f∗. This can allow rates to be derived as iterates approach
optimality. A simple assumption of this type is the long-
standing Polyak-Lojasiewicz (PL) inequality (Karimi et al.,
2016). A function satisfies the PL inequality if there exists
a constant µ > 0 such that

f(w)− f∗ ≤ 1

µ

∥∥∇f(w)
∥∥2, (14)

for all w ∈ Rd. Under this inequality, DINO enjoys the
following linear convergence rate.
Corollary 1 (Convergence of DINO Under PL Inequal-
ity). In addition to the assumptions of Theorem 1, sup-
pose that the PL inequality (14) holds and we run Algo-
rithm 1. Then for all iterations t we have f(wt+1)− f∗ ≤
(1 − τρµθ)

(
f(wt) − f∗

)
, where ρ and θ are as in Algo-

rithm 1, τ is as in Theorem 1, and µ is as in (14). Moreover,
for any choice of θ > 0 we have 0 ≤ 1− τρµθ < 1.

Proof. As f(wt+1) ≤ f(wt) + αtρ〈pt,gt〉 and αt ≥ τ ,
the PL inequality, (14), implies

f(wt+1)− f(wt) ≤ αtρ〈pt,gt〉
≤ −τρθ‖gt‖2

≤ −τρµθ
(
f(wt)− f∗

)
,

which gives f(wt+1)− f∗ ≤ (1− τρµθ)
(
f(wt)− f∗

)
.

From 〈pt,gt〉 ≤ −θ‖gt‖2 and (13) we have

f(wt + αpt) ≤ f(wt)− αθ‖gt‖2 +
α2La2

2
‖gt‖2, (15)

for all α ≥ 0. The right-hand side of (15) is minimized
when α = θ/(La2). It has a minimum value of f(wt) −(
θ2/(2La2)

)
‖gt‖2, which, by (15), must be at least f∗.

This and (14) imply

θ2

2La2
‖gt‖2 ≤ f(wt)− f∗ ≤

1

µ
‖gt‖2,

which gives θ ≤
√

2La2/µ. Therefore,

τρµθ =
2ρµ(1− ρ)θ2

La2
≤ 4ρ(1− ρ) ≤ 1,
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Table 3. Number of iterations completed in one hour. In one column, the driver and all five worker machines are running on one node. In
another, they are running on their own instances in the distributed computing environment over AWS. The performance improvement,
going from one node to AWS, is also presented. We use the code from (Crane & Roosta, 2019) to replicate their AWS results.

Number of Iterations Number of Iterations Change When
(Running on one Node) (Running over AWS) Going to AWS

DINO 3 12 +300%
DINGO (Crane & Roosta, 2019) 3 12 +300%
GIANT (Wang et al., 2018) 4 18 +350%
DiSCO (Zhang & Lin, 2015) 7 19 +171%
InexactDANE (Reddi et al., 2016) 213 486 +128%
AIDE (Reddi et al., 2016) 214 486 +127%
SGD (Chen et al., 2016) 1743 1187 −32%
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Figure 1. Softmax regression problem on the EMNIST Digits dataset. SVRG, in InexactDANE, and SGD both have a learning rate of
10−1 and AIDE has τ = 1. Here, we have five worker nodes, i.e., m = 5 in (1).

which implies 0 ≤ 1− τρµθ < 1.

The PL inequality has become widely recognized in both
optimization and machine learning literature (Lei et al.,
2019). The class of functions satisfying the condition con-
tains strongly-convex functions as a sub-class and contains
functions that are non-convex (Karimi et al., 2016). This
inequality has shown significant potential in the analysis
of over-parameterized problems and is closely related to
the property of interpolation (Bassily et al., 2018; Vaswani
et al., 2019). Functions satisfying (14) are a subclass of
invex functions (Roosta et al., 2018). Invexity is a general-
ization of convexity and was considered by DINGO. Linear
MLP and some linear ResNet are known to satisfy the PL
inequality (Furusho et al., 2019).

4. Experiments
In this section, we examine the empirical performance
of DINO in comparison to the, previously discussed, dis-
tributed second-order methods DINGO, DiSCO, GIANT,

InexactDANE and AIDE. We also compare these to syn-
chronous SGD (Chen et al., 2016). In all experiments,
we consider (1) with (2), where S1, . . . , Sm partition
{1, . . . , n} with each having equal size n/m. In Table 3 and
Figures 1 and 2, we compare performance on the strongly
convex problem of softmax cross-entropy minimization with
regularization on the EMNIST Digits dataset. In Figure 3,
we consider the non-convex problem of non-linear least-
squares without regularization on the CIFAR10 dataset with
`j(w;xj) =

(
yj − log(1 + exp 〈w,xj〉)

)2
in (2), where

yj is the label of xj . Although GIANT and DiSCO require
strong convexity, we run them on this problem and indicate,
with an “×” on the plot, if they fail. Code is available at
https://github.com/RixonC/DINO.

We first describe some of the implementation details. The
sub-problems of DINO, DINGO, DiSCO, GIANT and In-
exactDANE are limited to 50 iterations, without precondi-
tioning. For DINO, we use the well known iterative least
squares solvers LSMR (Fong & Saunders, 2011) and CG to
approximate v(1)

t,i and v
(2)
t,i in Algorithm 1, respectively. For

DINO, and DINGO as in (Crane & Roosta, 2019), we use

https://github.com/RixonC/DINO
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Figure 2. Softmax regression problem on the EMNIST Digits dataset. We compare DINO with exact sub-problem solve and inexact
sub-problem solve. Here, we have five worker nodes, i.e., m = 5 in (1).
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Figure 3. Non-linear least-squares problem on the CIFAR10 dataset. SVRG, in InexactDANE, and SGD have a learning rate of 10−4 and
10−3, respectively, and AIDE has τ = 100. GIANT failed immediately. Here, we have 50 worker nodes, i.e., m = 50 in (1).

the hyper-parameters θ = 10−4 and φ = 10−6. For DINO,
DINGO and GIANT we use distributed backtracking line-
search to select the largest step-size in {1, 2−1, . . . , 2−50}
that passes, with an Armijo line-search parameter of 10−4.
For InexactDANE, we set the hyper-parameters η = 1 and
µ = 0, as in (Reddi et al., 2016), which gave high perfor-
mance in (Shamir et al., 2014). We also use the sub-problem
solver SVRG (Johnson & Zhang, 2013) and report the best
learning rate from {10−5, . . . , 105}. We let AIDE call only
one iteration of InexactDANE, which has the same param-
eters as the stand-alone InexactDANE algorithm. We also
report the best acceleration parameter, τ in (Reddi et al.,
2016), from {10−5, . . . , 105}. For SGD, we report the best
learning rate from {10−5, . . . , 105} and at each iteration all
workers compute their gradient on a mini-batch of n/(5m)
data points.

The run-time is highly dependent on the distributed comput-
ing environment, which is evident in Table 3. Here, we run
the methods on a single node on our local compute cluster.

We also run them over a distributed environment comprised
of six Amazon Elastic Compute Cloud instances via Ama-
zon Web Services (AWS). These instances are located in
Ireland, Ohio, Oregon, Singapore, Sydney and Tokyo. This
setup is to highlight the effect of communication costs on
run-time. As can be seen in Table 3, the second-order meth-
ods experience a notable speedup when going to the more
powerful AWS setup, whereas SGD experiences a slow-
down. DINO, DINGO and GIANT performed the most
local computation in our experiments and they also had the
largest increase in iterations. Similar behaviour to that in
Table 3 can also be observed for the non-linear least-squares
problem.

In Figures 1, 2 and 3, we compare the number of commu-
nication rounds required to achieve descent. We choose
communication rounds as the metric, as time is highly de-
pendent on the network. DINO is competitive with the other
second-order methods, which all outperform SGD. Recall
that InexactDANE and AIDE are difficult to tune. Between
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Figures 1 and 3, notice the significant difference in the se-
lected learning rate for SVRG of InexactDANE and the
acceleration parameter of AIDE. Meanwhile, DINO and
DINGO have consistent performance, despite not changing
hyper-parameters.

In Figure 2, we compare the convergence of DINO with ex-
act sub-problem solve and with inexact sub-problem solve.
As suggested by our theory, exact update gives better con-
vergence, while this improvement is only minor. As was
previously discussed, approximations to the sub-problem
solutions can be efficiently computed using iterative least-
squares solvers, which only need access to Hessian-vector
products, that require O(d2) time. Whereas, exact solution
to the sub-problems, which often necessitates access to the
explicitly formed Hessian matrix, requiresO(d3) time. This
is infeasible with moderate to large problem dimension.

In the non-convex problem in Figure 3, GIANT fails imme-
diately as CG fails on all 50 worker nodes. DiSCO does not
fail and has poor performance. This suggests that locally
around the initial point w0, the full function f is exhibiting
convexity, while the local functions fi are not. Moreover, in
Figure 3 the dimension d, which is 3072, is larger than the
number of training samples, 1000, on each worker node.

5. Conclusion and Future Work
In the context of centralized distributed computing environ-
ment, we present a novel distributed Newton-type method,
named DINO, which enjoys several advantageous properties.
DINO is guaranteed to converge under minimal assumption,
its analysis is simple and intuitive, it is practically parameter
free, and it can be applied to arbitrary non-convex functions
and data distributions. Numerical simulations highlight
some of these properties.

The following is left for future work. First, characterizing
the relationship between the hyper-parameters θ and φ of
DINO. As was discussed, they have intuitive effects on the
algorithm and they are easy to tune. However, there is a
non-trivial trade off between them that will be explored in
future work. Second, analysing the connection between
DINO and over-parameterized problems. Finally, extend-
ing the theory of DINO to alternative forms of line search,
such as having each worker perform local line search and
then aggregating this information in a way that preserves
particular properties.
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