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A. Preliminaries
Theorem 6 (Basic Composition (Dwork et al., 2006)). LetM1 be an ε1-differentially private algorithm, and letM2 be an
ε2-differentially private algorithm. Then their composition (M1,M2) is (ε1 + ε2)-differentially private.

Algorithm 3 Report Noisy Max: REPORTMAX(X,∆, {f1, . . . , fm}, ε)
Input: database X , set of queries {f1, . . . , fm} each with sensitivity ∆, privacy parameter ε
for i = 1, . . . ,m do

Compute fi(X)
Sample Zi ∼ Lap(∆

ε )
end for
Output i∗ = argmax

i∈[m]

(fi(X) + Zi)

Theorem 7 ((Dwork & Roth, 2014)). REPORTMAX is ε-differentially private.

Algorithm 4 Above Noisy Threshold: ABOVETHRESHOLD(X,∆, {f1, f2, . . .}, T, ε)
Input: database X , stream of queries {f1, f2, . . .} each with sensitivity ∆, threshold T , privacy parameter ε
Let T̂ = T + Lap( 2∆

ε )
for each query i do

Let Zi ∼ Lap( 4∆
ε )

if fi(X) + Zi > T̂ then
Output ai = >
Halt

else
Output ai = ⊥

end if
end for

Theorem 8 ((Dwork et al., 2009)). ABOVETHRESHOLD is ε-differentially private.

Theorem 9 ((Dwork et al., 2009)). For any sequence of m queries f1, . . . , fm with sensitivity ∆ such that |{i < m :
fi(X) ≥ T − α}| = 0, ABOVETHRESHOLD outputs with probability at least 1− β a stream of a1, . . . , am ∈ {>,⊥} such
that ai = ⊥ for every i ∈ [m] with f(i) < T − α and ai = > for every i ∈ [m] with f(i) > T + α as long as

α ≥ 8∆ log(2m/β)

ε
.

Our proofs use the following concentration inequality.

Theorem 10 (McDiarmid (McDiarmid, 1989)). Define the discrete derivatives of the function f(X1, . . . , Xn) of independent
random variables X1, . . . , Xn as

Dif(x) := sup
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn)

− inf
z
f(x1, . . . , xi−1, z, xi+1, . . . , xn). (2)

Then for X1, . . . , Xn independent, f(X1, . . . , Xn) is subgaussian with variance proxy 1
4

∑n
i=1 ||Dif ||2∞, and

Pr[f(X1, . . . , Xn)− E[f(X1, . . . , Xn)] ≥ t]

≤ exp

(
− 2t2∑n

i=1 ||Dif ||2∞

)
.
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B. Application: Drift Change Detection
In this section, we extend our consideration of the change-point problem to the setting where data are not sampled i.i.d.
from fixed pre- and post-change distributions, but instead are sampled from distributions that are changing smoothly over
time. In particular, we consider distributions with drift, where the parameter of the distribution changes linearly with time,
and the rate of linear drift changes at the change-point. Since the samples are not i.i.d., we consider differences between
successive pairs of samples in order to apply the algorithms from the previous sections.

The drift change detection problem is parametrized by error terms et independently sampled from a mean-zero distribution
S , two drift terms ξ0 and ξ1, a drift change-point t∗ ∈ [n], and a mean η associated with t∗. Independent random variables
X = {x1, . . . , xn} are said to be drawn from the drift change detection model if we can write

xt = µt + et,

for µt piecewise linear as follows:

µt =

{
η − (t∗ − t)ξ0 t ≤ t∗

η + (t− t∗)ξ1 t > t∗
.

Our goal is to detect the drift change-point t∗ with the smallest possible error.

In order to apply our algorithms which require i.i.d. samples, we will transform the sample X by considering differences of
consecutive pairs of xi. These differences are i.i.d. with mean ξ0 before t∗, and i.i.d. with mean ξ1 after t∗, and we can now
apply PNCPD to this instance of change-point detection. For ease of presentation, we will assume n is even and t∗ is odd.

Formally, define a new sample Y = {y1, . . . , yn/2} with sample points yt = x2t − x2t−1, for t = 1, . . . n/2. Then we have

yt =

{
ξ0 + e2t − e2t−1, for t = 1, . . . , t

∗−1
2 ,

ξ1 + e2t − e2t−1, for t = t∗+2
2 , . . . , N2 .

Note that random variables (e2t − e2t−1) are independent and identically distributed. Thus the yt are independent,
and they are sampled from a fixed distribution before the change point, and from another distribution after the change-
point. We can then apply the PNCPD algorithm and privately estimate the drift change-point t̂ as twice the output of
PNCPD(

{
y1, . . . , yn/2

}
, ε, γ). This estimation procedure will inherit the privacy and accuracy results of Theorems 2 and

3.1

As a concrete example, consider points sampled from a Gaussian distribution with mean µt = ξ0t + η0 and standard
deviation σ for t ≤ t∗, and from a Gaussian distribution with mean µt = ξ1t+ η1 and standard deviation σ for t > t∗. Then
yt = x2t − x2t−1 will be Gaussian with variance 2σ2 and mean ξ0 before the change-point and ξ1 after it. If any of the
parameters ξ0, ξ1, or σ are unknown, this would require nonparametric change-point estimation.

Corollary 11. For data X = {x1, . . . , xn} drawn according to the drift change model with drift terms ξ0 > ξ1, constraint
γ ∈ (0, 1/2), drift change time t∗ ∈ (dγ2ne . . . d(1−

γ
2 )ne), and privacy parameter ε > 0, there exists an ε-differentially

private nonparametric change point estimator that is (α, β)-accurate for any β > 0 and

α = max

{
C1 ·

(
1

γ4(a− 1/2)2

)c
· log

1

β
,C2 ·

(
1

εγ(a− 1/2)

)c
· log

1

β

}
,

for any constant c > 1 and some constant C1, C2 > 0 depending on c.

We note that this approach is not restricted solely to offline linear drift detection. The same reduction in the online setting
would allow us to use ONLINEPNCPD to detect drift changes online. Additionally, a similar approach could be used to for
other types of smoothly changing data, as long as the smooth changes exhibited enough structure to allow for reduction to
the i.i.d. setting. For example, if data were sampled of the form xt = f(µt + et) for any one-to-one function f : R→ R,

1This procedure finds a change-point in the sample Y , which corresponds to a pair (x2t−1, x2t) such that one of them is the estimated
change point. Under our assumption that t∗ is odd, we should output t̂ = 2t− 1. If t∗ is even, then the estimated change-point may be
off by one, and yt∗/2 is distributed differently than other data points. However, since the PNCPD algorithm is differentially private, its
performance is guaranteed be in insensitive to a single outlier in the database, so this fact will not affect the result of the algorithm by too
much.
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Figure 3. Empirical accuracy β = Pr[|k̃ − k∗| > α] of PNCPD from Monte Carlo simulations using Gaussian data, where pre-change
data are drawn fromN (0, 1) and post-change data are drawn fromN (µ1, 1). Each simulation involves 103 runs of PNCPD with varying
ε on data generated by 200 i.i.d. samples from appropriate distributions: (a) k∗ = 50, µ1 = 5; (b) k∗ = 100, µ1 = 5; (c) k∗ = 150,
µ1 = 5; (d) k∗ = 50, µ1 = 1; (e) k∗ = 100, µ1 = 1; (f) k∗ = 150, µ1 = 1

we could define yt = f−1(x2t)− f−1(x2t−1), and these yts would again be i.i.d.. This includes random variables of the
form exp(µt + et), log(µt + et), and arbitrary polynomials (µt + et)

k (where even-degree polynomials must be restricted
to, e.g., only have positive range).

C. Empirical results
Recall that our drift change detection model involved data points X = {x1, . . . , xn} defined as xt = µt + et where

µt =

{
η − (t∗ − t)ξ0 t ≤ t∗

η + (t− t∗)ξ1 t > t∗
,

for drift change-point t∗, and et are mean-zero noise terms. In our simulation we use parameters η = 1, ξ0 = 0, ξ1 = 5, and
et ∼i.i.d. N (0, 1). We use n = 200 observations where the true drift change occurs at time t∗ = 100, and repeat the process
103 times. We modify the observations X to create a new sample Y = {y1, . . . , yn/2} as described in Section B, and apply
our PNCPD algorithm to this new sample. Figure 4 plots the empirical accuracy β = Pr[|t̃− k∗| > α] as a function of α
for γ = 0.1 and ε = 0.1, 1, 5,∞, where ε =∞ is our non-private baseline.
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Figure 4. Empirical accuracy β = Pr[|t̃− t∗| > α] of PNCPD for drift detection. The data are generated from the drift change model
with parameters η = 1, ξ0 = 0, ξ1 = 5, and et drawn fromN (0, 1). These data are then modified as described in Section B so that the
PNCPD algorithm can be applied.
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Figure 5. Probability of inaccurate estimation and false alarm (a) and probability of inaccurate report conditioned on raising an alarm
correctly (b) for Monte Carlo simulations. Data drawn from N (5, 1) pre-change and N (0, 1) post-change, with true change-point
k∗ = 5000. Each simulation involves 103 runs of ONLINEPNCPD with γ = 0.1, window size n = 500, threshold T = 0.8, and varying
ε.

D. Technical Proofs
D.1. Proof of Theorem 1

Proof. We will show that for k̂ = argmax V (k) and α as in the theorem statement,

Pr[
∣∣∣k̂ − k∗∣∣∣ > α] ≤

∑
k:|k−k∗|>α

Pr[V (k) > V (k∗)] ≤ β.

To do this, we fix any k ∈ {dγne, . . . , b(1− γ)nc} and show that f(X) = V (k)− V (k∗) is subgaussian. In particular, for
k at least α away from k∗, the expectation of V (k∗)− V (k) is sufficiently large and its discrete derivative is sufficiently
small that the probability of V (k) > V (k∗) can be tightly bounded as a function of α by application of Theorem 10.

First we give a lower bound the difference in expectation of V (k∗) and V (k). Observe that

E[V (k)] =

∑
i≤k,j>k Pr[xi > xj ]

k(n− k)
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=

{ 1
2 (k∗−k)+a(n−k∗)

n−k k ≤ k∗
ak∗+ 1

2 (k−k∗)
k k > k∗

,

achieving its maximum at E[V (k∗)] = a. Therefore, we can bound

E[V (k∗)− V (k)] =

{
(a− 1

2 )k
∗−k
n−k k ≤ k∗

(a− 1
2 )k−k

∗

k k > k∗

≥ (a− 1

2
)
|k∗ − k|

n
. (3)

In the following bounds on the discrete derivative of f(X) = V (k)− V (k∗), we will make use of the fact that f can be
written as:

f(X) =

∑n
j=k+1

∑k
i=1 I(xi > xj)

k(n− k)
−
∑n
j=k∗+1

∑k∗

i=1 I(xi > xj)

k∗(n− k∗)

=

(
1

k(n− k)
− 1

k∗(n− k∗)

) ∑
i∈[1,k]

j∈[k+1,n]

I(xi > xj) +
1

k∗(n− k∗)
·

 ∑
i∈[1,k]

j∈[k+1,n]

I(xi > xj)−
∑

i∈[1,k∗]
j∈[k∗+1,n]

I(xi > xj)


We bound the discrete derivativeDif separately for i ≤ min {k, k∗}, i ∈ (min {k, k∗} ,max {k, k∗}], and i > max {k, k∗}.
When xi changes arbitrarily for i ≤ min {k, k∗}, we note that

∑n
j=k+1 I(xi > xj) can change by at most ±(n− k) and∑k∗

j=k+1 I(xi > xj) can change by at most ±(k∗ − k). These counts are normalized in f , and the normalization ensures

this former count contributes at most |k∗−k|
k∗(n−k∗) + |k∗−k|

kk∗ to the discrete derivative. We bound the discrete derivative for
i ≤ min {k, k∗} as follows:

Dif ≤
∣∣∣∣ 1

k(n− k)
− 1

k∗(n− k∗)

∣∣∣∣ (n− k) +
|k∗ − k|
k∗(n− k∗)

=

∣∣∣∣1k − n− k
k∗(n− k∗)

∣∣∣∣+
|k∗ − k|
k∗(n− k∗)

=

∣∣∣∣−|k − k∗|k∗k
+
|k − k∗|
k∗(n− k∗)

∣∣∣∣+
|k − k∗|
k∗(n− k∗)

≤ |k − k
∗|

γ2n2
+

2 |k − k∗|
γ(1− γ)n2

≤ 3 |k − k∗|
γ2n2

We bound the discrete derivative for i > max {k, k∗} similarly, noting that an arbitrary change in xi changes
∑k
i′=1 I(xi′ >

xi) by at most ±k and
∑k
i′=k∗+1 I(xi′ > xi) by at most ±(k − k∗):

Dif ≤
∣∣∣∣ 1

k(n− k)
− 1

k∗(n− k∗)

∣∣∣∣ · k +
|k∗ − k|
k∗(n− k∗)

=

∣∣∣∣ 1

n− k
− k

k∗(n− k∗)

∣∣∣∣+
|k∗ − k|
k∗(n− k∗)

=

∣∣∣∣− |k − k∗|
(n− k∗)(n− k)

+
|k − k∗|
k∗(n− k∗)

∣∣∣∣+
|k − k∗|
k∗(n− k∗)

≤ |k − k
∗|

γ2n2
+

2 |k − k∗|
γ(1− γ)n2

≤ 3 |k − k∗|
γ2n2
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Finally we bound the discrete derivative for min {k, k∗} < i ≤ max {k, k∗}. To do this, we note that the first summation
in f changes by k if k < k∗ or n− k if k > k∗, and the difference of summations in the second term changes by at most
n− (k + k∗) in either case. Then we achieve our bound as follows:

Dif ≤
∣∣∣∣ 1

k(n− k)
− 1

k∗(n− k∗)

∣∣∣∣ ·max {k, n− k}+
n− (k∗ + k)

k∗(n− k∗)

≤ |k − k
∗|

γ2n2
+

n

γ(1− γ)n2

≤ 2

γ2n

Then since Dif is finite for each i, we have that f is subgaussian with variance proxy as follows:

1

4

n∑
i=1

(Dif)2 ≤ n− |k∗ − k|
4

· 9 |k − k∗|2

γ4n4
+
|k∗ − k|

4

(
|k − k∗|
γ2n2

+
1

γ(1− γ)n

)2

≤ 9 |k − k∗|2

4γ4n3
+
|k∗ − k|
γ4n2

≤ 13 |k∗ − k|
4γ4n2

We can now bound the probability of outputting any particular k = dγne, . . . , b(1 − γ)nc as a function of |k − k∗| by
applying Theorem 10, recalling our bound on E[V (k∗)− V (k)] from Equation (3).

Pr[V (k) > V (k∗)] = Pr [V (k)− V (k∗)− E[V (k)− V (k∗) > E[V (k∗)− V (k)]]

≤ Pr

[
V (k)− V (k∗)− E[V (k)− V (k∗)] > (a− 1

2
)
|k − k∗|

n

]

≤ exp

(
−2γ4

13
(a− 1

2
)2|k − k∗|

)
.

We complete the proof by bounding the probability of any incorrect k̂ such that |k̂ − k∗| > α by β.

Pr[
∣∣∣k̂ − k∗∣∣∣ > α] ≤ 2

n∑
|k−k∗|=α

exp(−2γ4

13
(a− 1

2
)2 |k − k∗|)

≤
2 exp(− 2γ4

13 (a− 1
2 )2α)

1− exp(− 2γ4

13 (a− 1
2 )2)

≤ β

Rearranging shows that our accuracy result will hold for

α ≥ 13

2γ4(a− 1/2)2

(
log

2

β
+ log

1

1− exp(− 2γ4

13 (a− 1
2 )2)

)
.

We achieve our final bound by simplifying the above expression as follows. We observe that γ < 1/2, a < 1 implies
x = 2γ4(a− 1/2)2/13 ≤ 1/416, and for small x we have log(1/(1− exp(−x))) ≤ 2 log(1/x). For any c > 0, we have
log(1/x) ≤ C(1/x)c for any 1/x ≥ 416 and C ≥ (log 416)/(416c), which can be applied to get our final bound.
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D.2. Proof of Theorem 2

Proof. Privacy follows by instantiation of REPORTMAX with queries V (k) for k ∈ {dγne, . . . , b(1− γ)nc}, which have
sensitivity ∆(V ) = 1/(γn), with the observation that noise parameter 2∆(V )/ε suffices for non-monotonic statistics. We
include a proof for completeness.

Fix any two neighboring databases X,X ′ that differ on index t. For any k ∈ {dγne, . . . , b(1− γ)nc}, denote the respective
rank statistics as V (k) and V ′(k). By the definition of V (k), we have

|V (k)− V ′(k)| =


1

k(n−k)

∣∣∣∑n
j=k+1 I(xt > xj)− I(x′t > xj)

∣∣∣ ≤ 1
k if t ≤ k

1
k(n−k)

∣∣∣∑k
i=1 I(xi > xt)− I(xi > x′t)

∣∣∣ ≤ 1
n−k if t > k,

and it follows that ∆(V ) = 1/(γn).

Next, for a given 1 ≤ t ≤ n, fix Z−t, a draw from [Lap(2/γεn)]n−1 used for all the noisy rank statistics values except the
lth one. We will bound from above and below the ratio of the probabilities that the algorithm outputs k̃ = t on inputs X and
X ′. Define the minimum noisy value in order for t to be selected with X:

Z∗t = min{Zt : V (t) + Zt > V (k) + Zk ∀k 6= t}

For all k 6= t we have

V ′(t) + ∆(V ) + Z∗t ≥ V (t) + Z∗t > V (k) + Zk ≥ V ′(k)−∆(V ) + Zk.

Hence, Z ′t ≥ Z∗t + 2∆(V ) ensures that the algorithm outputs t on input X ′, and the theorem follows from the following
inequalities for any fixed Z−t, with probabilities over the choice of Zt ∼ Lap (2/(γεn)).

Pr[k̃ = t | X ′, Z−t] ≥ Pr[Z ′i ≥ Z∗i + 2∆(V ) | Z−t] ≥ e−ε Pr[Zt ≥ Z∗i | Z−t] = e−ε Pr[k̃ = t | X,Z−i]

D.3. Proof of Theorem 3

As with our analysis of the non-private estimator, we can take the argmin and get the same error bounds (with a − 1/2
replaced by |a− 1/2|) if Prx∼P0,y∼P1 [x > y] < 1/2.

Proof. We will show that for k̃ = argmax {V (k) + Zk} and α as in the theorem statement,

Pr[
∣∣∣k̃ − k∗∣∣∣ > α] ≤

∑
k:|k−k∗|>α

Pr[V (k) + Zk > V (k∗) + Zk∗ ] ≤ β

by showing that V (k)− V (k∗) is subgaussian as in Theorem 1, and we will additionally show that the Laplace noise does
not introduce too much additional error. For the algorithm to output an incorrect k̃, it must either be the case that the statistic
V (k) is nearly as large as V (k∗) because of the randomness of the data points, or that Zk is much larger than Zk∗ . For each
value of k, we choose a threshold tk increasing in |k − k∗| specifying how much to tolerate bad Laplace noise versus bad
data, and we bound the probability that the algorithm outputs k as follows:

Pr[V (k) + Zk > V (k∗) + Zk∗ ] ≤ Pr[V (k∗)− V (k) < tk] + Pr[Zk − Zk∗ > tk] (4)

Setting tk = (a− 1/2)|k − k∗|/(2n), we can bound the first term as in Theorem 1 using Theorem 10 as follows:

Pr[V (k)− V (k∗) > −tk] = Pr

[
V (k)− V (k∗)− E[V (k)− V (k∗)] >

(
a− 1

2

)
|k − k∗|

2n

]
≤ exp

(
−
γ4
(
a− 1

2

)2 |k − k∗|
26

)
.
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We bound the second term of (4) by analyzing the Laplace noise directly.

Pr[Zk − Zk∗ > tk] ≤ Pr

[
2 |Lap(2/(εγn))| >

(
a− 1

2

)
|k − k∗|

2n

]
≤ exp

(
−
(
a− 1

2

)
εγ|k − k∗|
8

)

We complete the proof by bounding the probability of any incorrect k̃ such that
∣∣∣k̃ − k∗∣∣∣ > α by β.

Pr
[∣∣∣k̃ − k∗∣∣∣ > α

]
≤ 2

n∑
k:|k−k∗|=α

exp

(
−
γ4
(
a− 1

2

)2 |k − k∗|
26

)
+ exp

(
−
(
a− 1

2

)
εγ|k − k∗|
8

)

≤
2 exp

(
−γ

4

26

(
a− 1

2

)2
α
)

1− exp
(
−γ4

26

(
a− 1

2

)2) +
2 exp

(
− εγ8

(
a− 1

2

)
α
)

1− exp
(
− εγ8

(
a− 1

2

))
≤ β

We bound each term above by β/2. Rearranging shows that our accuracy result will hold for

α ≥ max

{
26

γ4 (a− 1/2)
2

(
log

4

β
+ log

1

1− exp
(
−γ4

26

(
a− 1

2

)2)
)
,

8

εγ (a− 1/2)

(
log

4

β
+ log

1

1− exp
(
− εγ8

(
a− 1

2

)))}.
We achieve our final bound by simplifying the above expression as follows. For the first term, we observe that γ < 1/2, a < 1
implies x = γ4(a − 1/2)2/26 ≤ 1/1664, and for small x we have log(1/(1 − exp(−x))) ≤ 2 log(1/x). For any c > 0,
we have log(1/x) ≤ C(1/x)c for any 1/x ≥ 1664 and C ≥ (log 1664)/(1664c), which can be applied to get our final
bound. For the second term, we observe that x = εγ(a− 1

2 )/8 ≤ ε/32. When ε is small and the corresponding x ≤ 4/5,
we have log(1/(1 − exp(−x))) ≤ 2 log(1/x), and for any c > 0, we have log(1/x) ≤ C(1/x)c for any 1/x ≥ 5/4 and
C ≥ (log 4/5)/((4/5)c). When ε is large and the corresponding x > 4/5, we have log(1/(1− exp(−x))) ≤ log 2, which
can be incorporated into the constant in our final bound.

D.4. Proof of Theorem 4

Proof. By Theorem 8, ABOVETHRESHOLD is ε-differentially private, and by Theorem 2, the statistics V (k) and U(k)
have sensitivity 2/n. Also by Theorem 2, PNCPD is ε-differentially private. Thus the algorithm ONLINEPNCPD is
simply ABOVETHRESHOLD instantiated with privacy parameter ε/2, composed with PNCPD also instantiated with privacy
parameter ε/2. By Basic Composition (Theorem 6), ONLINEPNCPD(X,n, ε, γ) is ε-differentially private.

D.5. Proof of Theorem 5

Proof. First, we find an interval [TL, TU ] for the threshold T that ensures that the algorithm neither calls PNCPD before the
true change-point has occurred nor fails to call PNCPD on the window containing k∗ somewhere in the middle (1− 2γ)n
data points.

For now we will ignore the error from ABOVETHRESHOLD, and use T ′L, T
′
U to denote the desired thresholds ignoring this

additional source of noise. For ease of notation and reindexing, we define U(k) = V (k) when V (k) is computed over
database X =

{
xk−n/2+1, . . . xk+n/2

}
for the Mann-Whitney test statistic V (·) as defined in Equation (1).

Thus we aim to find a range [T ′L, T
′
U ] such that

Pr[U(k) > T ′L|Xk−n/2+1, . . . Xk+n/2 ∼ P0] ≤ β

8(k∗ − n/2)
, (5)
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Pr[U(k) < T ′U |Xk−n/2+1, . . . Xk ∼ P0, Xk+1, . . . Xk+n/2 ∼ P1] ≤ β

8
. (6)

Condition (5) means that after taking a union bound over all the windows that do not contain k∗, the probability that
ABOVETHRESHOLD raises the alarm on the window that does not contain the true change point k∗ does not exceed β/8. Con-
dition (6) means that on the window containing the true change-point k∗ in the center of the window, ABOVETHRESHOLD
will fail to raise the alarm with probability at most β/8.

It will be helpful to have high probability bounds that the test statistics U(k) are close to their means. Using McDiarmid’s
Inequality (Theorem 10) we can obtain that for any k > n

Pr[U(k)− E[U(k)] > t] ≤ exp(−t2n/2), (7)

Pr[U(k)− E[U(k)] < −t] ≤ exp(−t2n/2) (8)

Using these bounds, we will first find T ′L. Note that Condition (5) on T ′L considers the setting where all points in the current
window are drawn from P0. Under this condition, E[U(k)] = 1/2. Then by plugging in t = T ′L − 1/2 into Inequality (7),
we get the following expression:

Pr
[
U(k) ≥ T ′L|Xk−n/2+1, . . . Xk+n/2 ∼ P0

]
≤ exp

(
−n

2

(
T ′L −

1

2

)2
)

Setting the right hand side of this to less than or equal to β
8(k∗−n/2) and solving for T ′L gives the following lower bound,

which satisfies Condition (5):

T ′L =
1

2
+

√
2

n
log

(
8(k∗ − n/2)

β

)
.

Next we find the upper bound TU . Note that Condition (6) on T ′U considers the setting where the first n/2 points in the
window are drawn from P0 and the remaining n/2 points are drawn from P1. Under this condition, E[U(k)] = a. Then
plugging t = a− T ′U in Inequality (8) and using Condition (6), we get the following bound:

Pr[U(k) ≤ T ′U |X, . . . Xn/2 ∼ P0, Xn/2+1, . . . Xn ∼ P1] ≤ exp
(
−(a− T ′U )2n/2

)
≤ β

8
.

Solving this for T ′U gives the following Inequality which satisfies Condition (6):

T ′U ≤ a−

√
2

n
log

(
8

β

)
.

We now return to account for the error from ABOVETHRESHOLD. To ensure that this error does not cause a window to be
called before the true change-point and also does not skip the window with the true change-point, we require the following
conditions to both hold with probability β

4

For T ≥ TL, Uk < T − α′ when k < k∗

For T ≤ TU , Uk∗ > T + α′

Thus we obtain that the new interval for T is [TL, TU ], where TL = T ′L + α′, and TU = T ′U − α′. If both those conditions
hold then for α′ = 32 log(8(k∗−n/2)/β)

nε , ABOVETHRESHOLD will identify the window which contains the true change point
with probability (1− β/4) by Theorem 9. Taking a union bound over the failure probabilities of Conditions (5) and (6), and
the statement above, we can see that ONLINEPNCPD will call PNCPD on the right window except with small probability
β/2.

Finally, we can use the accuracy guarantees of PNCPD to show that conditioned on raising an alarm in the correct
window, we are likely to output an estimate k̂ that is close to the true change-point k∗. Slightly more careful accounting
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is needed here, because conditioning on raising an alarm and calling PNCPD, the data points in the chosen window
are no longer distributed according to the change-point model. Let W (k) denote the event that ONLINEPNCPD calls
PNCPD(

{
xk−n/2+1+γn, . . . xk+n/2+γn

}
, ε/2, γ) on the window centered at k. Then

Pr
[∣∣∣k̃ − k∗∣∣∣ > α

]
=
∑
k>n/2

Pr
[
W (k) ∩ {|k̃ − k∗| > α}

]
≤

∑
k/∈(k∗−n/2,k∗]

Pr [W (k)] +
∑

k∈(k∗−n/2,k∗]

Pr
[
W (k) ∩

{∣∣∣k̃ − k∗∣∣∣ > α
}]

≤ β

2
+
n

2
Pr [PNCPD fails] < β

To achieve the inequality above, the probability of PNCPD fails to report the change point within the α-window around k∗

has to be bounded by β/n. Thus by Theorem 3 we set the error to be,

α = max

{
C1 ·

(
1

γ4 (a− 1/2)
2

)c
· log

n

β
,C2 ·

(
1

εγ (a− 1/2)

)c
· log

n

β

}
,

for any constant c > 1 and some constant C1, C2 > 0 depending on c.

We have proved the theorem, but we should also show that the window [TL, TU ] is non-empty, and there exists a good range
in which to choose the threshold T . The condition that TL < TU is equivalent to,

a− 1

2
>

√
2

n
log

(
8(k∗ − n/2)

β

)
+

√
2

n
log

(
8

β

)
+

64 log(8(k∗ − n/2)/β)

nε
. (9)

We can simplify Inequality (9) as,√
2

n
log

(
8(k∗ − n/2)

β

)
+

√
2

n
log

(
8

β

)
+

64 log(8(k∗ − n/2)/β)

nε

<

√
2

n
log

(
8k∗

β

)
+

√
2

n
log

(
8

β

)
+

64 log(8k∗/β)

nε
< a− 1

2
.

Finally, solving the right hand side for n, we find the following bound on n that satisfies Inequality (9).

n >
1

(a− 1/2)2

(√
2 log

(
8k∗

β

)
+

√
2 log

(
8

β

)
+

64

ε
log

(
8k∗

β

))2

.


