A. Proof of Theorem 4

Theorem 4. Suppose that f and \mathcal{D} satisfies (A1), (A2), (A3), and (A4). Further, suppose $\|\nabla f(\vec{w}, \xi)\| \leq \mathfrak{g}$ for all \vec{w} with probability 1, and that $F(\vec{w}) \leq M$ for all \vec{w} for some M. Then Algorithm 2 guarantees:

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\vec{w}_{t}\right)\right\|\right] \leq \tilde{O}\left(\frac{1}{\sqrt{T}}+\frac{\sigma^{4 / 7}}{T^{2 / 7}}\right)
$$

where the \tilde{O} notation hides constants that depend on R, G, and M and a factor of $\log (T)$.
Proof. Notice from the definition of α that we always have

$$
\begin{aligned}
\alpha_{t} & =\frac{1}{C^{2} t^{1 / 7} G_{t-1}^{3 / 7}} \\
& \leq \frac{1}{C^{2} D^{3 / 7}} \\
& \leq 1
\end{aligned}
$$

where we defined $G_{0}=D$. Thus $\alpha_{t} \leq 1$ always.
We begin with the now-familiar definitions:

$$
\begin{aligned}
\epsilon_{t} & =\nabla f\left(\vec{x}_{t}, \xi_{t}\right)-\nabla F\left(\vec{x}_{t}\right) \\
\epsilon_{t}^{\prime} & =\nabla f\left(\vec{x}_{t}, \xi_{t}^{\prime}\right)-\nabla F\left(\vec{x}_{t}\right) \\
\hat{\epsilon}_{t} & =\vec{m}_{t}-\nabla F\left(\vec{w}_{t}\right)
\end{aligned}
$$

Notice that $\mathbb{E}\left[\left\langle\epsilon_{i}, \epsilon_{j}\right\rangle\right]=\sigma^{2} \delta_{i, j}$. Now we write the recursive formulation for $\hat{\epsilon}_{t+1}$:

$$
\begin{aligned}
\vec{m}_{t} & =\left(1-\alpha_{t}\right) \vec{m}_{t-1}+\alpha_{t} \nabla f\left(\vec{x}_{t}, \xi_{t}\right) \\
& =\left(1-\alpha_{t}\right)\left(\nabla F\left(\vec{w}_{t-1}\right)+\hat{\epsilon}_{t-1}\right)+\alpha_{t}\left(\nabla F\left(\vec{w}_{t}\right)+\epsilon_{t}\right) \\
& =\nabla F\left(\vec{w}_{t}\right)+\left(1-\alpha_{t}\right) Z\left(\vec{w}_{t-1}, \vec{w}_{t}\right)+\alpha_{t} Z\left(\vec{x}_{t}, \vec{w}_{t}\right)+\left(1-\alpha_{t}\right) \hat{\epsilon}_{t-1}+\alpha \epsilon_{t} \\
\hat{\epsilon}_{t} & =\left(1-\alpha_{t}\right) Z\left(\vec{w}_{t-1}, \vec{w}_{t}\right)+\alpha_{t} Z\left(\vec{x}_{t}, \vec{w}_{t}\right)+\left(1-\alpha_{t}\right) \hat{\epsilon}_{t-1}+\alpha_{t} \epsilon_{t}
\end{aligned}
$$

Unfortunately, it is no longer clear how to unroll this recurrence to solve for $\hat{\epsilon}_{t}$ in a tractable manner. Instead, we will take a different path, inspired by the potential function analysis of (Cutkosky \& Orabona, 2019). Start with the observations:

$$
\begin{aligned}
\alpha_{t}\left\|Z\left(\vec{x}_{t}, \vec{w}_{t}\right)\right\| & \leq \rho \frac{\left(1-\alpha_{t}\right)^{2} \eta_{t-1}^{2}}{\alpha_{t}}
\end{aligned} \leq \rho \frac{\left(1-\alpha_{t}\right) \eta_{t-1}^{2}}{\alpha_{t}}, \begin{aligned}
& \left(1-\alpha_{t}\right)\left\|Z\left(\vec{w}_{t-1}, \vec{w}_{t}\right)\right\|
\end{aligned}
$$

Define $K_{t}=\frac{1}{\alpha_{t}^{2} \eta_{t-1} G_{t}}$. Then we use $(a+b)^{2} \leq(1+1 / x) a^{2}+(1+x) b^{2}$ for all x and the fact that ϵ_{t} is uncorrelated with anything that does not depend on ξ_{t} to obtain:

$$
\begin{aligned}
\mathbb{E}\left[K_{t}\left\|\hat{\epsilon}_{t}\right\|^{2}\right] & \leq \mathbb{E}\left[K_{t}(1+1 / x) 4 \rho^{2} \frac{\left(1-\alpha_{t}\right)^{2} \eta_{t-1}^{4}}{\alpha_{t}^{2}}+K_{t}(1+x)\left(1-\alpha_{t}\right)^{2}\left\|\epsilon_{t-1}\right\|^{2}+K_{t} \alpha_{t}^{2}\left\|\epsilon_{t}\right\|^{2}\right] \\
& \leq \mathbb{E}\left[K_{t} \rho^{2} \frac{8\left(1-\alpha_{t}\right)^{2} \eta_{t-1}^{4}}{\alpha_{t}^{3}}+K_{t}\left(1-\alpha_{t}\right)\left\|\epsilon_{t-1}\right\|^{2}+K_{t} \alpha_{t}^{2}\left\|\epsilon_{t}\right\|^{2}\right]
\end{aligned}
$$

where in the last inequality we have set $x=\alpha_{t}$. This implies:

$$
\begin{aligned}
& \mathbb{E}\left[K_{t}\left\|\hat{\epsilon}_{t}\right\|^{2}-K_{t-1}\left\|\hat{\epsilon}_{t-1}\right\|^{2}\right] \leq \mathbb{E}\left[K_{t} \rho^{2} \frac{8\left(1-\alpha_{t}\right)^{2} \eta_{t-1}^{4}}{\alpha_{t}^{3}}+\left(K_{t}\left(1-\alpha_{t}\right)-K_{t-1}\right)\left\|\epsilon_{t-1}\right\|^{2}+K_{t} \alpha_{t}^{2}\left\|\epsilon_{t}\right\|^{2}\right] \\
& \leq \mathbb{E}\left[\rho^{2} \frac{8\left(1-\alpha_{t}\right)^{2} \eta_{t-1}^{3}}{\alpha_{t}^{5} G_{t}}+\frac{\left\|\epsilon_{t}\right\|^{2}}{G_{t} \eta_{t-1}}-\left(\frac{1}{\alpha_{t-1}^{2} G_{t-1} \eta_{t-2}}-\frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}+\frac{1}{\alpha_{t} G_{t} \eta_{t-1}}\right)\left\|\epsilon_{t-1}\right\|^{2}\right]
\end{aligned}
$$

Let $\delta_{t}=G_{t}-G_{t-1}$. Then we have $\mathbb{E}\left[\epsilon_{t} / \sqrt{G_{t} \eta_{t-1}}\right]=0=\mathbb{E}\left[\epsilon_{t}^{\prime} / \sqrt{G_{t} \eta_{t-1}}\right]$. Therefore we have

$$
\begin{aligned}
& \mathbb{E}\left[\frac{\left\|\epsilon_{t}\right\|^{2}}{G_{t}}\right] \leq \mathbb{E}\left[\frac{\left\|\nabla f\left(\vec{x}_{t}, \xi_{t}\right)\right\|^{2}}{G_{t}}\right] \\
& \mathbb{E}\left[\frac{\left\|\epsilon_{t}\right\|^{2}}{G_{t}}\right] \leq \mathbb{E}\left[\frac{\left\|\nabla f\left(\vec{x}_{t}, \xi_{t}\right)-\nabla f\left(\vec{x}_{t}, \xi_{t}^{\prime}\right)\right\|^{2}}{G_{t}}\right]
\end{aligned}
$$

so that we have

$$
\mathbb{E}\left[\frac{\left\|\epsilon_{t}\right\|^{2}}{G_{t}}\right] \leq \mathbb{E}\left[\frac{\delta_{t+1}}{G_{t}}\right]
$$

Now, observe that $\delta_{t+1} \leq 2 \mathfrak{g}^{2}$, so that we have

$$
\begin{aligned}
\mathbb{E}\left[\frac{\delta_{t+1}}{G_{t} \eta_{t-1}}\right] & =\mathbb{E}\left[\frac{\delta_{t+1} / \eta_{t-1}}{D+3 \mathfrak{g}^{2}+\sum_{\tau=1}^{t} \delta_{t}}\right] \\
& \leq \mathbb{E}\left[\frac{1}{\eta_{T}} \frac{\delta_{t+1}}{D+2 \mathfrak{g}^{2}+\sum_{\tau=1}^{t+1} \delta_{t}}\right] \\
& \leq \mathbb{E}\left[\frac{1}{\eta_{T}} \frac{\delta_{t+1}}{D+\sum_{\tau=1}^{t+1} \delta_{t}}\right] \\
\sum_{t=2}^{T+1} \mathbb{E}\left[\frac{\left\|\epsilon_{t}\right\|^{2}}{G_{t} \eta_{t-1}}\right] & \leq \mathbb{E}\left[\frac{1}{\eta_{T}} \log \left(\frac{G_{T+1}}{D}\right)\right]
\end{aligned}
$$

where we have used the fact that η_{t} is non-increasing.
Next, we tackle $\rho^{2} \frac{8\left(1-\alpha_{t}\right)^{2} \eta_{t-1}^{3}}{\alpha_{t}^{5} G_{t}}$. We have

$$
\begin{aligned}
\sum_{t=2}^{T+1} \mathbb{E}\left[\frac{\eta_{t-1}^{3}}{\alpha_{t}^{5} G_{t}}\right] & \leq \sum_{t=2}^{T+1} \mathbb{E}\left[\frac{\eta_{t-1}^{4}}{\eta_{T} \alpha_{t}^{5} G_{t-1}}\right] \\
& \leq \sum_{t=2}^{T+1} \mathbb{E}\left[\frac{C^{14}}{t \eta_{T}}\right] \\
& \leq C^{14} \log (T+2) \mathbb{E}\left[\eta_{T}^{-1}\right]
\end{aligned}
$$

Now, finally we turn to bounding $-\left(\frac{1}{\alpha_{t-1}^{2} G_{t-1} \eta_{t-2}}-\frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}+\frac{1}{\alpha_{t} G_{t} \eta_{t-1}}\right)\left\|\epsilon_{t-1}\right\|^{2}$. To do this, we first upper-bound $\frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}-\frac{1}{\alpha_{t-1}^{2} G_{t-1} \eta_{t-2}}$. Note that:

$$
\frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}-\frac{1}{\alpha_{t-1}^{2} G_{t-1} \eta_{t-2}} \leq \frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}-\frac{1}{\alpha_{t-1}^{2} G_{t} \eta_{t-2}}
$$

So now we can upper bound $\frac{1}{\alpha_{t}^{2} \eta_{t-1}}-\frac{1}{\alpha_{t-1}^{2} \eta_{t-2}}$ and divide the bound by G_{t}.

$$
\begin{aligned}
\frac{1}{\alpha_{t}^{2} \eta_{t-1}}-\frac{1}{\alpha_{t-1}^{2} \eta_{t-2}} & =t^{2} \eta_{t-1}^{3} G_{t-1}^{2}-(t-1)^{2} \eta_{t-2}^{3} G_{t-2}^{2} \\
& =C^{3}\left(t^{5 / 7} G_{t-1}^{8 / 7}-(t-1)^{5 / 7} G_{t-2}^{8 / 7}\right) \\
& \leq C^{3} t^{5 / 7}\left(G_{t-1}^{8 / 7}-G_{t-2}^{8 / 7}\right)+C^{3}\left(t^{5 / 7}-(t-1)^{5 / 7}\right) G_{t-1}^{8 / 7}
\end{aligned}
$$

Next, we analyze $G_{t-1}^{8 / 7}-G_{t-2}^{8 / 7}$. Recall our definition $\delta_{t}=G_{t}-G_{t-1}$, and we have $0 \leq \delta_{t} \leq 2 \mathfrak{g}^{2}$ for all t. Then by convexity of the function $x \mapsto x^{8 / 7}$, we have

$$
G_{t-1}^{8 / 7}-G_{t-2}^{8 / 7} \leq \frac{8 \delta_{t-1}}{7} G_{t-1}^{1 / 7} \leq \frac{16 \mathfrak{g}^{2}}{7} G_{t-1}^{1 / 7}
$$

Therefore we have

$$
\begin{aligned}
\frac{1}{\alpha_{t}^{2} \eta_{t-1}}-\frac{1}{\alpha_{t-1}^{2} \eta_{t-2}} & \leq \frac{16 C^{3} \mathfrak{g}^{2}}{7} t^{5 / 7} G_{t-1}^{1 / 7}+C^{3}\left(t^{5 / 7}-(t-1)^{5 / 7}\right) G_{t-1}^{8 / 7} \\
& =\frac{16 C^{3} \mathfrak{g}^{2} t^{1 / 7}}{7 G_{t-1}^{4 / 7}} t^{4 / 7} G_{t-1}^{5 / 7}+C^{3}\left(t^{5 / 7}-(t-1)^{5 / 7}\right) G_{t-1}^{8 / 7}
\end{aligned}
$$

Now use $G_{t-1} \geq \mathfrak{g}^{2} t^{1 / 4}$,

$$
\begin{aligned}
& \leq \frac{16 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7}+C^{3}\left(t^{5 / 7}-(t-1)^{5 / 7}\right) G_{t-1}^{8 / 7} \\
& \leq \frac{16 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7}+\frac{5 C^{3}}{7(t-1)^{2 / 7}} G_{t-1}^{8 / 7}
\end{aligned}
$$

Use $G_{t-1} \leq D+3 \mathfrak{g}^{2}(t-1)$,

$$
\begin{aligned}
& \leq \frac{16 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7}+\frac{5 C^{3}\left(D+3 \mathfrak{g}^{2}(t-1)\right)^{3 / 7}}{7(t-1)^{2 / 7}} G_{t-1}^{5 / 7} \\
& \leq \frac{21 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7}+\frac{5 C^{3} D^{3 / 7}}{7(t-1)^{2 / 7}} G_{t-1}^{5 / 7}
\end{aligned}
$$

Use the definition of D,

$$
\leq \frac{21 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7}+\frac{5 C}{7(t-1)^{2 / 7}} G_{t-1}^{5 / 7}
$$

Use $C \geq 1 / \mathfrak{g}^{3 / 7}$,

$$
\leq \frac{26 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7}
$$

Now observe that

$$
\frac{26 C^{3} \mathfrak{g}^{6 / 7}}{7} t^{4 / 7} G_{t-1}^{5 / 7} \leq \frac{26 C^{2} \mathfrak{g}^{6 / 7}}{7 \alpha_{t} \eta_{t-1}}
$$

So putting all this together, we have

$$
-\left(\frac{1}{\alpha_{t-1}^{2} G_{t-1} \eta_{t-2}}-\frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}+\frac{1}{\alpha_{t} G_{t} \eta_{t-1}}\right) \leq-\left(\frac{1}{\alpha_{t} G_{t} \eta_{t-1}}-\frac{26 C^{2} \mathfrak{g}^{6 / 7}}{7 \alpha_{t} G_{t} \eta_{t-1}}\right)
$$

Then since we set C so that $\frac{26 C^{2} \mathfrak{g}^{6 / 7}}{7}=1 / 2$, we obtain:

$$
-\left(\frac{1}{\alpha_{t-1}^{2} G_{t-1} \eta_{t-2}}-\frac{1}{\alpha_{t}^{2} G_{t} \eta_{t-1}}+\frac{1}{\alpha_{t} G_{t} \eta_{t-1}}\right) \leq-\frac{1}{2 \alpha_{t} G_{t} \eta_{t-1}}
$$

Putting all this together, we have shown:

$$
\sum_{t=1}^{T} \mathbb{E}\left[K_{t+1}\left\|\hat{\epsilon}_{t+1}\right\|^{2}-K_{t}\left\|\hat{\epsilon}_{t}\right\|^{2}\right] \leq \mathbb{E}\left[\frac{\log (T+2)}{\eta_{T}}+\frac{1}{\eta_{T}} \log \left(\frac{G_{T+1}}{D}\right)-\sum_{t=1}^{T} \frac{\left\|\hat{\epsilon}_{t}\right\|^{2}}{2 \alpha_{t+1} G_{t+1} \eta_{t}}\right]
$$

Now, define the potential $\Phi_{t}=\frac{3 F\left(\vec{w}_{t+1}\right)}{\eta_{t}}+K_{t+1}\left\|\hat{\epsilon}_{t+1}\right\|^{2}$. Then, by Lemma 2, we obtain:

$$
\begin{aligned}
\Phi_{t}- & \Phi_{t-1} \leq-\left\|\nabla F\left(\vec{w}_{t}\right)\right\|+8\left\|\hat{\epsilon}_{t}\right\|+\frac{3 L \eta_{t}}{2} \\
& +3 F\left(\vec{w}_{t}\right)\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)+K_{t+1}\left\|\hat{\epsilon}_{t+1}\right\|^{2}-K_{t}\left\|\hat{\epsilon}_{t}\right\|^{2}
\end{aligned}
$$

So summing over t and taking expectations yields:

$$
\begin{aligned}
\mathbb{E}\left[\Phi_{T}-\Phi_{0}\right] \leq \mathbb{E}[& \sum_{t=1}^{T} \frac{3 L \eta_{t}}{2}-\left\|\nabla F\left(\vec{w}_{t}\right)\right\|+\frac{3 M}{\eta_{T}}+\sum_{t=1}^{T} 8\left\|\hat{\epsilon}_{t}\right\|-\frac{\left\|\hat{\epsilon}_{t}\right\|^{2}}{2 \alpha_{t+1} G_{t+1} \eta_{t}} \\
& \left.+\frac{1}{\eta_{T}} \log \left(\frac{G_{T+1}}{D}\right)+\frac{\log (T+2)}{\eta_{T}}\right]
\end{aligned}
$$

Now, we examine the term $\sum_{t=1}^{T} 8\left\|\hat{\epsilon}_{t}\right\|-\frac{\left\|\hat{\epsilon}_{t}\right\|^{2}}{2 \alpha_{t+1} G_{t+1} \eta_{t}}$. By Cauchy-Schwarz we have:

$$
\sum_{t=1}^{T} 8\left\|\hat{\epsilon}_{t}\right\| \leq 8 \sqrt{\sum_{t=1}^{T} \frac{\left\|\hat{\epsilon}_{t}\right\|^{2}}{2 \alpha_{t+1} G_{t+1} \eta_{t}} \sum_{t=1}^{T} 2 \alpha_{t+1} G_{t+1} \eta_{t}}
$$

Therefore

$$
\begin{aligned}
& \sum_{t=1}^{T} 8\left\|\hat{\epsilon}_{t}\right\|-\frac{\left\|\hat{\epsilon}_{t}\right\|^{2}}{2 \alpha_{t+1} G_{t+1} \eta_{t}} \leq \sup _{M} 8 \sqrt{M \sum_{t=1}^{T} 2 \alpha_{t+1} G_{t+1} \eta_{t}}-M \\
& \quad \leq 32 \sum_{t=1}^{T} \alpha_{t+1} G_{t+1} \eta_{t} \\
& \quad=32 \sum_{t=1}^{T} \frac{1}{(t+1) \eta_{t}} \\
& \quad \leq 32 \sum_{t=1}^{T} \frac{1}{(t+1) \eta_{T}} \\
& \quad \leq \frac{32(\log (T+1))}{\eta_{T}}
\end{aligned}
$$

Finally, observe that since $G_{t} \geq \mathfrak{g}^{2} t^{1 / 4}$, we have $\eta_{t} \leq \frac{C}{\sqrt{T}}$. Therefore $\sum_{t=1}^{T} \eta_{t} \leq 2 C \sqrt{T}$. Putting all this together again, we have

$$
\sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\vec{w}_{t}\right)\right\|\right] \leq \Phi_{0}+3 L C \sqrt{T}+\mathbb{E}\left[\eta_{T}^{-1}\right]\left[3 M+\log \left(2 \mathfrak{g}^{2}(T+1) / D\right)+\log (T+2)+32(\log (T+1))\right]
$$

Observe that we have $\Phi_{0} \leq \frac{3 M}{\eta_{0}}+K_{1} \mathfrak{g}^{2}$.
Let us define $Z=3 M+\log \left(2 \mathfrak{g}^{2}(T+1) / D\right)+\log (T+2)+32(\log (T)+1)$. Then we have

$$
\sum_{t=1}^{T} \mathbb{E}\left[\left\|\nabla F\left(\vec{w}_{t}\right)\right\|\right] \leq \Phi_{1}+3 L C \sqrt{T}+\mathbb{E}\left[\eta_{T}^{-1}\right] Z
$$

Now we look carefully at the definition of G_{t} and η_{t}. By Jensen inequality, we have

$$
\begin{aligned}
\mathbb{E}\left[\eta_{T}^{-1}\right] & =\frac{1}{C}(T+1)^{3 / 7} \mathbb{E}\left[\left(D+2 \mathfrak{g}^{2}+\mathfrak{g} T^{1 / 4}+\sum_{t=1}^{T}\left\|\nabla f\left(\vec{x}_{t}, \xi_{t}\right)-\nabla f\left(\vec{x}_{t}, \xi_{t}^{\prime}\right)\right\|^{2}\right)^{2 / 7}\right] \\
& \leq \frac{(T+1)^{3 / 7}\left(D+2 \mathfrak{g}^{2}+\mathfrak{g} T^{1 / 4}+4 T \sigma^{2}\right)^{2 / 7}}{C} \\
& =O\left(\sqrt{T}+\sigma^{4 / 7} T^{5 / 7}\right)
\end{aligned}
$$

The Theorem statement now follows.

