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Abstract

Learning graph generative models is a challeng-
ing task for deep learning and has wide applica-
bility to a range of domains like chemistry, bi-
ology and social science. However current deep
neural methods suffer from limited scalability:
for a graph with n nodes and m edges, exist-
ing deep neural methods require Ω(n2) complex-
ity by building up the adjacency matrix. On the
other hand, many real world graphs are actually
sparse in the sense that m � n2. Based on this,
we develop a novel autoregressive model, named
BiGG, that utilizes this sparsity to avoid gener-
ating the full adjacency matrix, and importantly
reduces the graph generation time complexity to
O((n+m) log n). Furthermore, during training
this autoregressive model can be parallelized with
O(log n) synchronization stages, which makes
it much more efficient than other autoregressive
models that require Ω(n). Experiments on several
benchmarks show that the proposed approach not
only scales to orders of magnitude larger graphs
than previously possible with deep autoregressive
graph generative models, but also yields better
graph generation quality.

1. Introduction
Representing a distribution over graphs provides a princi-
pled foundation for tackling many important problems in
knowledge graph completion (Xiao et al., 2016), de novo
drug design (Li et al., 2018; Simonovsky & Komodakis,
2018), architecture search (Xie et al., 2019) and program
synthesis (Brockschmidt et al., 2018). The effectiveness of
graph generative modeling usually depends on learning the
distribution given a collection of relevant training graphs.
However, training a generative model over graphs is usually
quite difficult due to their discrete and combinatorial nature.
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Classical generative models of graphs, based on random
graph theory (Erdős & Rényi, 1960; Barabási & Albert,
1999; Watts & Strogatz, 1998), have been long studied but
typically only capture a small set of specific graph proper-
ties, such as degree distribution. Despite their computational
efficiency, these distribution models are usually too inexpres-
sive to yield competitive results in challenging applications.

Recently, deep graph generative models that exploit the
increased capacity of neural networks to learn more expres-
sive graph distributions have been successfully applied to
real-world tasks. Prominent examples include VAE-based
methods (Kipf & Welling, 2016; Simonovsky & Komodakis,
2018), GAN-based methods (Bojchevski et al., 2018), flow
models (Liu et al., 2019; Shi et al., 2020) and autoregressive
models (Li et al., 2018; You et al., 2018; Liao et al., 2019).
Despite the success of these approaches in modeling small
graphs, e.g. molecules with hundreds of nodes, they are not
able to scale to graphs with over 10,000 nodes.

A key shortcoming of current deep graph generative models
is that they attempt to generate a full graph adjacency matrix,
implying a computational cost of Ω(n2) for a graph with n
nodes and m edges. For large graphs, it is impractical to
sustain such a quadratic time and space complexity, which
creates an inherent trade-off between expressiveness and
efficiency. To balance this trade-off, most recent work has
introduced various conditional independence assumptions
(Liao et al., 2019), ranging from the fully auto-regressive
but slow GraphRNN (You et al., 2018), to the fast but fully
factorial GraphVAE (Simonovsky & Komodakis, 2018).

In this paper, we propose an alternative approach that does
not commit to explicit conditional independence assump-
tions, but instead exploits the fact that most interesting real-
world graphs are sparse, in the sense that m � n2. By
leveraging sparsity, we develop a new graph generative
model, BiGG (BIg Graph Generation), that streamlines the
generative process and avoids explicit consideration of ev-
ery entry in an adjacency matrix. The approach is based on
three key elements: (1) an O(log n) process for generating
each edge using a binary tree data structure, inspired by
R-MAT (Chakrabarti et al., 2004); (2) a tree-structured au-
toregressive model for generating the set of edges associated
with each node; and (3) an autoregressive model defined
over the sequence of nodes. By combining these elements,
BiGG can generate a sparse graph inO((n+m) log n) time,
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which is a substantial improvement over Ω(n2).

For training, the design of BiGG also allows every context
embedding in the autoregressive model to be computed in
only O(log n) sequential steps, which enables significant
gains in training speed through parallelization. By compari-
son, the context embedding in GraphRNN requires O(n2)
sequential steps to compute, while GRAN requires O(n)
steps. In addition, we develop a training mechanism that
only requires sublinear memory cost, which in principle
makes it possible to train models of graphs with millions of
nodes on a single GPU.

On several benchmark datasets, including synthetic graphs
and real-world graphs of proteins, 3D mesh and SAT in-
stances, BiGG is able to achieve comparable or superior
sample quality than the previous state-of-the-art, while be-
ing orders of magnitude more scalable.

To summarize the main contributions of this paper:

• We propose an autoregressive generative model, BiGG,
that can generate sparse graphs in O((n+m) log n) time,
successfully modeling graphs with 100k nodes on 1 GPU.

• The training process can be largely parallelized, requiring
only O(log n) steps to synchronize learning updates.

• Memory cost is reduced to O(
√
m log n) for training and

O(log n) for inference.
• BiGG not only scales to orders of magnitude larger graphs

than current deep models, it also yields comparable or
better model quality on several benchmark datasets.

Other related work There has been a lot of work
(Chakrabarti et al., 2004; Robins et al., 2007; Leskovec et al.,
2010; Airoldi et al., 2009) on generating graphs with a set
of specific properties like degree distribution, diameter, and
eigenvalues. All these classical models are hand-engineered
to model a particular family of graphs, and thus not general
enough. Besides the general graphs, a lot of work also ex-
ploit domain knowledge for better performance in specific
domains. Examples of this include (Kusner et al., 2017; Dai
et al., 2018; Jin et al., 2018; Liu et al., 2018) for modeling
molecule graphs, and (You et al., 2019) for SAT instances.
See Appendix ?? for more discussions.

2. Model
A graph G = (V,E) is defined by a set of nodes V and set
of edges E ⊆ V × V , where a tuple ei = (u, v) ∈ E is
used to represent an edge between node u and v. We denote
n = |V | and m = |E| as the number of nodes and edges in
G respectively. Note that a given graph may have multiple
equivalent adjacency matrix representations, with different
node orderings. However, given an ordering of the nodes π,
there is a one-to-one mapping between the graph structure
G and the adjacency matrix Aπ ∈ {0, 1}n×n.

Our goal is to learn a generative model, p(G), given a set of
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Figure 1. Recursive generation of the edge e = (u, v) given u.

training graphs Dtrain =
{
G1, G2, . . . , G|Dtrain|

}
. In this

paper, we assume the graphs are not attributed, and focus
on the graph topology only. Such an assumption implies

p (G) = p(V )p(E|V ) = p(|V | = n)
∑
π

p(E, π|n)

= p(|V | = n)
∑
π

p(Aπ), (1)

where p(E, π|n) is the probability of generating the set of
edges E under a particular ordering π, which is equivalent
to the probability of a particular adjacency matrix Aπ . Here,
p(|V | = n) is the distribution of number of nodes in a graph.
In this paper, we use a single canonical ordering π(G) to
model each graph G, as in (Li et al., 2018):

p(G) ' p(|V | = n)p(Aπ(G)), (2)
which is clearly a lower bound on p(G) (Liao et al., 2019).
We estimate p(|V | = n) directly using the empirical distri-
bution over graph size, and only learn an expressive model
for p(A). In the following presentation, we therefore omit
the ordering π and assume a default canonical ordering of
nodes in the graph when appropriate.

As A will be extremely sparse for large sparse graphs (m�
n2), generating only the non-zero entries in A, i.e., the edge
set E, will be much more efficient than the full matrix:

p(A) = p(e1)p(e2|e1) . . . p(em|e1, . . . , em−1), (3)
where each ei = (u, v) include the indices of the two nodes
associated with one edge, resulting in a generation process
of m steps. We order the edges following the node ordering,
hence this process generates all the edges for the first row in
A, before generating the second row, etc. A naive approach
to generating a single edge will be O(n) if we factorize
p(ei) = p(u)p(v|u) and assume both p(u) and p(v|u) to be
simple multinomials over n nodes. This, however, will not
give us any benefit over traditional methods.

2.1. Recursive edge generation

The main scalability bottleneck is the large output space.
One way to reduce the output space size is to use a hierarchi-
cal recursive decomposition, inspired by the classic random
graph model R-MAT (Chakrabarti et al., 2004). In R-MAT,
each edge is put into the adjacency matrix by dividing the
2D matrix into 4 equally sized quadrants, and recursively
descending into one of the quadrants, until reaching a single
entry of the matrix. In this generation process, the complex-
ity of generating each edge is only O(log n).
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We adopt the recursive decomposition design of R-MAT,
and further simplify and neuralize it, to make our model
efficient and expressive. In our model, we generate edges
following the node ordering row by row, so that each edge
only needs to be put into the right place in a single row,
reducing the process to 1D, as illustrated in Figure 1. For
any edge (u, v), the process of picking node v as one of u’s
neighbors starts by dividing the node index interval [1, n] in
half, then recursively descending into one half until reaching
a single entry. Each v corresponds to a unique sequence
of decisions xv1, ..., x

v
d, where xvi ∈ {left, right} is the i-th

decision in the sequence, and d = dlog2 ne is the maximum
number of required decisions to specify v.

The probability of p(v|u) can then be formulated as

p(v|u) =
∏dlog2 ne
i=1 p(xi = xvi ), (4)

where each p(xi = xvi ) is the probability of following the
decision that leads to v at step i.

Let us use Eu = {(u, v) ∈ E} to denote the set of edges
incident to node u, and Nu = {v|(u, v) ∈ Eu}. Generating
only a single edge is similar to hierarchical softmax (Mnih &
Hinton, 2009), and applying the above procedure repeatedly
can generate all of |Nu| edges in O(|Nu| log n) time. But
we can do better than that when generating all these edges.

Further improvement using binary trees. As illustrated
in the left half of Figure 2, the process of jointly generating
all ofEu is equivalent to building up a binary tree Tu, where
each tree node t ∈ Tu corresponds to a graph node index
interval [vl, vr], and for each v ∈ Nu the process starts from
the root [1, n] and ends in a leaf [v, v].

Taking this perspective, we propose a more efficient gen-
eration process for Eu, which generates the tree directly
instead of repeatedly generating each leaf through a path
from the root. We propose a recursive process that builds
up the tree following a depth-first or in-order traversal order,
where we start at the root, and recursively for each tree node
t: (1) decide if t has a left child denoted as lch(t), and (2)
if so recurse into lch(t) and generate the left sub-tree, and
then (3) decide if t has a right child denoted as rch(t), (4) if
so recurse into rch(t) and generate the right sub-tree, and (5)
return to t’s parent. This process is shown in Algorithm 1,
which will be elaborated in next section.

Overloading the notation a bit, we use p(lch(t)) to de-
note the probability that tree node t has a left child, when
lch(t) 6= ∅, or does not have a left child, when lch(t) = ∅,
under our model, and similarly define p(rch(t)). Then the
probability of generating Eu or equivalently tree Tu is

p(Eu) = p(Tu) =
∏
t∈Tu

p(lch(t))p(rch(t)). (5)

This new process generates each tree node exactly once,
hence the time complexity is proportional to the tree size
O(|Tu|), and it is clear that |Tu| ≤ |Nu| log n, since |Nu|

Algorithm 1 Generating outgoing edges of node u
1: function recursive(u, t, htopu (t))
2: if is leaf(t) then
3: Return ~1, {edge index that t represents}
4: end if
5: has left ∼ p(lchu(t)|htopu (t)) using Eq. (8)
6: if has left then
7: Create lchu(t) , and let hbotu (lchu(t)),N l,t

u ←
recursive(u, lchu(t), htopu (lchu(t)))

8: else
9: hbotu (lchu(t))← ~0,N l,t

u = ∅
10: end if
11: has right ∼ p(rchu(t)|ĥtopu (rchu(t))) using Eq. (9)
12: if has right then
13: Create rchu(t), and let hbotu (rchu(t)),N r,t

u ←
recursive(u, rchu(t), htopu (rchu(t))))

14: else
15: hbotu ( rchu(t))← ~0,N r,t

u = ∅
16: end if
17: hbotu (t) = TreeCellbot(hbotu (lchu(t)), hbotu (rchu(t)))
18: N t

u = N l,t
u ∪N r,t

u

19: Return hbotu (t), N t
u

20: end function

is the number of leaf nodes in the tree and log n is the max
depth of the tree. The time saving comes from removing
the duplicated effort near the root of the tree. When |Nu| is
large, i.e. as some fraction of n when u is one of the “hub”
nodes in the graph, the tree Tu becomes dense and our new
generation process will be significantly faster, as the time
complexity becomes close to O(n) while generating each
leaf from the root would require Ω(n log n) time.

In the following, we present our approach to make this
model fully autoregressive, i.e. making p(lch(t)) and
p(rch(t)) depend on all the decisions made so far in the
process of generating the graph, and make this model neu-
ralized so that all the probability values in the model come
from expressive deep neural networks.

2.2. Autoregressive conditioning for generating Tu
In this section we consider how to add autoregressive condi-
tioning to p(lch(t)) and p(rch(t)) when generating Tu.

In our generation process, the decision about whether lch(t)
exists for a particular tree node t is made after t, all its
ancestors, and all the left sub-trees of the ancestors are
generated. We can use a top-down context vector htopu (t)
to summarize all these contexts, and modify p(lch(t)) to
p(lch(t)|htopu (t)). Similarly, the decision about rch(t) is
made after generating lch(t) and its dependencies, and t’s
entire left-subtree (see Figure 2 right half for illustration).
We therefore need both the top-down context htopu (t), as
well as the bottom-up context hbotu (lch(t)) that summarizes
the sub-tree rooted at lch(t), if any. The autoregressive
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Figure 2. Autoregressive generation of edge-binary tree of node
u. To generate the red node t, the two embeddings that captures
t’s left subtree (orange region) and nodes with in-order traversal
before t (blue region) respectively are used for conditioning.

model for p(Tu) therefore becomes

p(Tu) =
∏
t∈Tu

p(lch(t)|htopu (t))

p(rch(t)|htopu (t), hbotu (lch(t))), (6)
and we can recursively define

hbotu (t) =TreeCellbot(hbotu (lch(t)), hbotu (rch(t)))

htopu (lch(t)) =LSTMCell(htopu (t), embed(left)) (7)

ĥtopu (rch(t)) =TreeCelltop(hbotu (lch(t)), htopu (lch(t)))

htopu (rch(t)) =LSTMCell(ĥtopu (rch(t)), embed(right)),

where TreeCellbot and TreeCelltop are two TreeLSTM
cells (Tai et al., 2015) that combine information from the
incoming nodes into a single node state, and embed(left)
and embed(right) represents the embedding vector for the
binary values “left” and “right”. We initialize hbotu (∅) = ~0,
and discuss htopu (root) in the next section.

The distributions can then be parameterized as
p(lch(t)|·) = Bernoulli(σ(W>l h

top
u (t) + bl)), (8)

p(rch(t)|·) = Bernoulli(σ(W>r ĥ
top
u (rch(t)) + br)). (9)

2.3. Full autoregressive model

With the efficient recursive edge generation and autoregres-
sive conditioning presented in Section 2.1 and Section 2.2
respectively, we are ready to present the full autoregressive
model for generating the entire adjacency matrix A.

The full model will utilize the autoregressive model for Nu
as building blocks. Specifically, we are going to generate
the adjacency matrix A row by row:

p(A) = p({Nu}u∈V ) =
∏
u∈V

p (Nu| {Nu′ : u′ < u}) . (10)

Let g0u = hbotu (t1) be the embedding that summarizes
Tu, suppose we have an efficient mechanism to encode
[g1, g2, . . . , gu] into hrowu , then we can effectively use hrowu−1
to generate Tu and thus the entire process would become
autoregressive. Again, since there are n rows in total, using
a chain structured LSTM would make the history length too
long for large graphs. Therefore, we use an approach in-
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Figure 3. Autoregressive conditioning across rows of adjacency
matrix. Embedding hrow

u−1 summarizes all the rows before u, and
is used for generating Tu next.

spired by the Fenwick tree (Fenwick, 1994) which is a data
structure that maintains the prefix sum efficiently. Given an
array of numbers, the Fenwick tree allows calculating any
prefix sum or updating any single entry in O(logL) for a
sequence of length L. We build such a tree to maintain and
update the prefix embeddings. We denote it as row-binary
forest as such data structure is a forest of binary trees.

Figure 3 demonstrates one solution. Before generating the
edge-binary tree Tu, the embeddings that summarize each
individual edge-binary tree Ru = {Tu′ : u′ < u} will be
organized into the row-binary forest Gu. This forest is or-
ganized into blog(u− 1)c+ 1 levels, with the bottom 0-th
level as edge-binary tree embeddings. Let gij ∈ Gu be the
j-th node in the i-th level, then

gij = TreeCellrow(gi−1j∗2−1, g
i−1
j∗2 ), (11)

where 0 ≤ i ≤ blog(u− 1)c+ 1, 1 ≤ j ≤
⌊
|Ru|
2i

⌋
.

Embedding row-binary forest One way to embed this row-
binary forest is to embed the root of each tree in this forest.
As there will be at most one root in each level (otherwise
the two trees in the same level will be merged into a larger
tree for the next level), the number of tree roots will also be
O(log n) at most. Thus we calculate hrowu as follows:

hrowu = LSTM
([
gib u

2i
c, where u & 2i = 2i

])
. (12)

Here, & is the bit-level ‘and’ operator. Intuitively as in
Fenwick tree, the calculation of any prefix sum of length L
requires the block sums that corresponds to each binary digit
in the binary bits representation of integer L. Recall the
operator htopu (·) defined in Section 2.2, here htopu (root) =
hrowu−1 when u > 1, and equals to zero when u = 1. With
the embedding of Gu at each state served as ‘glue’, we can
connect all the individual row generation modules in an
autoregressive way.

Updating row-binary forest It is also efficient to update
such forest every time a new g0u is obtained after the gener-
ation of Tu. Such an updating procedure is similar to the
Fenwick tree update. As each level of this forest has at
most one root node, merging in the way defined in (11) will



Scalable Deep Generative Modeling for Sparse Graphs

Algorithm 2 Generating graph using BiGG
1: function update forest(u,Gu−1, g0u)
2: Gu = Gu−1 ∪

{
g0u
}

3: for i← 0 to blog(u− 1)c do
4: j ← arg maxj I

[
gij ∈ Gu

]
5: if such j exists and j is an even number then
6: gi+1

j/2 ← TreeCellrow(gij−1, g
i
j)

7: Gu ← Gu ∪ gi+1
j/2

8: end if
9: end for

10: Update hrowu using Eq (12)
11: Return: hrowu ,Gu,Ru−1 ∪

{
g0u
}

12: end function

13: Input: The number of nodes n
14: hrow0 ← ~0,R0 = ∅,G0 = ∅, E = ∅
15: for u← 1 to n do
16: Let t1 be the root of an empty edge-binary tree
17: g0u,Nu ← recursive(u, t1, h

row
u−1)

18: hrowu ,Gu,Ru ← update forest(u,Ru−1,Gu−1, g0u)
19: end for
20: Return: G with V = {1, . . . , n} and E = ∪nu=1Nu

happen at most once per each level, which effectively makes
the updating cost to be O(log n).

Algorithm 2 summarizes the entire procedure for sampling
a graph from our model in a fully autoregressive manner.
Theorem 1 BiGG generates a graph with n node and m
edges in O ((n+m) log n) time. In the extreme case where
m ' n2, the overall complexity becomes O(n2).
Proof The generation of each edge-binary tree in Sec-
tion 2.2 requires time complexity proportional to the num-
ber of nodes in the tree. The Fenwick tree query and
update both take O(log n) time, hence maintaining the
data structure takes O(n log n). The overall complexity
is O (n log n+

∑n
u=1 |Tu|). For a sparse graph |Tu| =

O(|Nu| log n), hence
∑n
u=1 |Tu| =

∑n
u=1 |Nu| log n =

O(m log n). For a complete graph, where m = O(n2),
each Tu will be a full binary tree with n leaves, hence
|Tu| = 2n − 1 and the overall complexity would be
O(n log n+ n2) = O(n2).

3. Optimization
In this section, we propose several ways to scale up the
training of our auto-regressive model. For simplicity, we
focus on how to speed up the training with a single graph.
Training multiple graphs can be easily extended.

3.1. Training with O(log n) synchronizations

A classical autoregressive model like LSTM is fully se-
quential, which allows no concurrency across steps. Thus
training LSTM with a sequence of length L takes Ω(L) of
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Figure 4. Parallelizing computation during training. The four
stages are executed sequentially. In each stage, the embeddings of
nodes with the same color can be computed concurrently.

synchronized computation. In this section, we show how to
exploit the characteristic of BiGG to increase concurrency
during training.

Given a graphG, estimating the likelihood under the current
model can be divided into four steps.

1. Computing hbotu (t),∀u ∈ V, t ∈ Tu : as the graph is
given during training, the corresponding edge-binary trees
{Tu} are also known. From Eq (7) we can see that the
embeddings hbotu (t) of all nodes at the same depth of tree
can be computed concurrently without dependence, and
the synchronization only happens between different depths.
Thus O(log n) steps of synchronization is sufficient.
2. Computing gij ∈ Gn: the row-binary forest grows mono-
tonically, thus the forest Gn in the end contains all the em-
beddings needed for computing {hrowu }. Similarly, comput-
ing
{
gij
}

synchronizes O(log n) steps.
3. Computing hrowu ,∀u ∈ V : as each hrowu runs an LSTM
independently, this stage simply runs LSTM on a batch of n
sequences with length O(log n).
4. Computing htopu and likelihood: the last step computes
the likelihood using Eq (8) and (9). This is similar to the
first step, except that the computation happens in a top-down
direction in each Tu.

Figure 4 demonstrates this process. In summary, the four
stages each take O(log n) steps of synchronization. This
allows us to train large graphs much more efficiently than a
simple sequential autoregressive model.

3.2. Model parallelism

It is possible that during training the graph is too large
to fit into memory. Thus to train on large graphs, model
parallelism is more important than data parallelism.

To split the model, as well as intermediate computations,
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into different machines, we divide the adjacency matrix into
multiple consecutive chunks of rows, where each machine
is responsible for one chunk. It is easy to see that by do-
ing so, Stage 1 and Stage 4 mentioned in Section 3.1 can
be executed concurrently on all the machines without any
synchronization, as the edge-binary trees can be processed
independently once the conditioning states like {hrowu } are
made ready by synchronization.

!"#Stage 2: Compute all

GPU 1

GPU 2

GPU 1 -> 2 message

Figure 5. Model parallelism for training single graph. Red circled
nodes are computed on GPU 1 but is required by GPU 2 as well.

Figure 5 illustrates the situation when training a graph with
7 nodes using 2 GPUs. During Stage 1, GPU 1 and 2 work
concurrently to compute

{
g0u
}3
u=1

and
{
g0u
}7
u=4

, respec-
tively. In Stage 2, the embeddings g11 and g03 are needed by
GPU 2 when computing g21 and g12 . We denote such em-
beddings as ‘g-messages’. Note that such ‘g-messages’ will
transit in the opposite direction when doing a backward pass
in the gradient calculation. Passing ‘g-messages’ introduces
serial dependency across GPUs. However as the number of
such embeddings is upper bounded by O(log n) depth of
row-binary forest, the communication cost is manageable.

3.3. Reducing memory consumption

Sublinear memory cost: Another way to handle the mem-
ory issue when training large graphs is to recompute certain
portions of the hidden layers in the neural network when
performing backpropagation, to avoid storing such layers
during the forward pass. Chen et al. (2016) introduces
a computation scheduling mechanism for sequential struc-
tured neural networks that achievesO(

√
L) memory growth

for an L-layer neural network.

We divide rows as in Section 3.2. During the forward pass,
only the ‘g-messages’ between chunks are kept. The only
difference from the previous section is that the edge-binary
tree embeddings are recomputed, due to the single GPU
limitation. The memory cost will be:

O(max
{
k log n,

m

k

}
) (13)

Here O(k log n) accounts for the memory holding the ‘g-
message’, and O(mk ) accounts for the memory of Tu in
each chunk. The optimal k is achieved when k log n = m

k ,

hence k = O(
√

m
logn ) and the corresponding memory cost

is O(
√
m log n). Also note that such sublinear cost requires

only one additional feedforward in Stage 1, so this will not
hurt much of the training speed.

Bits compression: The vector hbotu (t) summarizes the edge-
binary tree structure rooted at node t for u-th row in adja-
cency matrix A, as defined in Eq (7). As node t represents
the interval [vl, vr] of the row, another equivalent way is to
directly use A[u, vl : vr], i.e., the binary vector to represent
hbotu (t). Each hbotu (t′) where t′ = [v′l, v

′
r] ⊂ t = [vl, vr] is

also a binary vector. Thus no neural network computation
is needed in the subtree rooted at node t. Suppose we use
such bits representation for any nodes that have the corre-
sponding interval length no larger than L, then for a full
edge-binary tree Tu (i.e., u connects to every other node in
graph) which has 2n−1 nodes in the tree, the corresponding
storage required for neural part is d2nL − 1e which essen-
tially reduces the memory consumption of neural network
to 1

L of the original cost. Empirically we use L = 256 in
all experiments, which saves 50% of the memory during
training without losing any information in representation.

Note that to represent an interval A[u, vl : vr] of length
b = vr− vl + 1 ≤ L, we use vector v ∈ {−1, 0, 1}L where

v =

−1, . . . ,−1︸ ︷︷ ︸
L−b

, A[u, vl], A[u, vl + 1], . . . , A[u, vr]︸ ︷︷ ︸
b


That is to say, we use ternary bit vector to encode both the
interval length and the binary adjacency information.

3.4. Position encoding:

During generation of {Tu}, each tree node t of the edge-
binary tree knows the span [vl, vr] which corresponds to the
columns it will cover. One way is to augment htopu (t) with
the position encoding as:

ĥtopu (t) = htopu (t) + PE(vr − vl) (14)
where PE is the position encoding using sine and cosine
functions of different frequencies as in Vaswani et al. (2017).
Similarly, the hrowu in Eq (12) can be augmented by PE(n−
u) in a similar way. With such augmentation, the model will
know more context into the future, and thus help improve
the generative quality.

Please refer to our released open source code located
at https://github.com/google-research/
google-research/tree/master/bigg for more
implementation and experimental details.

4. Experiment
4.1. Model Quality Evaluation on Benchmark Datasets

In this part, we compare the quality of our model with
previous work on a set of benchmark datasets. We present
results on median sized general graphs with number of nodes
ranging in 0.1k to 5k in Section 4.1.1, and on large SAT
graphs with up to 20k nodes in Section 4.1.2. In Section 4.3
we perform ablation studies of BiGG with different sparsity
and node orders.

https://github.com/google-research/google-research/tree/master/bigg
https://github.com/google-research/google-research/tree/master/bigg
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4.1.1. GENERAL GRAPHS

The general graph benchmark is obtained from Liao et al.
(2019) and part of it was also used in (You et al., 2018). This
benchmark has four different datasets: (1) Grid, 100 2D grid
graphs; (2) Protein, 918 protein graphs (Dobson & Doig,
2003); (3) Point cloud, 3D point clouds of 41 household
objects (Neumann et al., 2013); (4) Lobster, 100 random
Lobster graphs (Golomb, 1996), which are trees where each
node is at most 2 hops away from a backbone path. Table 1
contains some statistics about each of these datasets. We
use the same protocol as Liao et al. (2019) that splits the
graphs into training and test sets.

Baselines: We compare with deep generative models in-
cluding GraphVAE (Simonovsky & Komodakis, 2018),
GraphRNN, GraphRNN-S (You et al., 2018) and GRAN
(Liao et al., 2019). We also include the Erdős–Rényi random
graph model that only estimates the edge density. Since our
setups are exactly the same, the baseline results are directly
copied from Liao et al. (2019).

Evaluation: We use exactly the same evaluation metric
as Liao et al. (2019), which compares the distance between
the distribution of held-out test graphs and the generated
graphs. We use maximum mean discrepancy (MMD) with
four different test functions, namely the node degree, clus-
tering coefficient, orbit count and the spectra of the graphs
from the eigenvalues of the normalized graph Laplacian.
Besides the four MMD metrics, we also use the error rate
for Lobster dataset. This error rate reflects the fraction of
generated graphs that doesn’t have Lobster graph property.

Results: Table 1 reports the results on all the four datasets.
We can see the proposed BiGG outperforms all other meth-
ods on all the metrics. The gain becomes more significant
on the largest dataset, i.e., the 3D point cloud. While Graph-
VAE and GraphRNN gets out of memory, the orbit metric
of BiGG is 2 magnitudes better than GRAN. This dataset
reflects the scalability issue of existing deep generative mod-
els. Also from the Lobster graphs we can see, although
GRAN scales better than GraphRNN, it yields worse quality
due to its approximation of edge generation with mixture of
conditional independent distributions. Our BiGG improves
the scalability while also maintaining the expressiveness.

4.1.2. SAT GRAPHS

In addition to comparing with general graph generative
models, in this section we compare against several models
that are designated for generating the Boolean Satisfiability
(SAT) instances. A SAT instance can be represented using
bipartite graph, i.e., the literal-clause graph (LCG). For a
SAT instance with nx variables and nc clauses, it creates nx
positive and negative literals, respectively. The canonical
node ordering assigns 1 to 2 ∗ nx for literals and 2 ∗ nx + 1
to 2 ∗ nx + nc for clauses.

The following experiment largely follows G2SAT (You et al.,
2019). We use the train/test split of SAT instances obtained
from G2SAT website. This result in 24 and 8 training/test
SAT instances, respectively. The size of the SAT graphs
ranges from 491 to 21869 nodes. Note that the original paper
reports results using 10 small training instances instead. For
completeness, we also include such results in Appendix ??
together with other baselines from You et al. (2019).

Baseline: We mainly compare the learned model with
G2SAT, a specialized deep graph generative model for bi-
partite SAT graphs. Since BiGG is general purposed, to
guarantee the generated adjacency matrix A is bipartite, we
let our model to generate the upper off-diagonal block of the
adjacency matrix only, i.e.,A[0 : 2∗nx, 2∗nx : 2∗nx+nc].

G2SAT requires additional ‘template graph’ as input when
generating the graph. Such template graph is equivalent
to specify the node degree of literals in LCG. We can also
enforce the degree of each node |Nv| in our model.

Evaluation: Following G2SAT, we report the mean and
standard deviation of statistics with respect to different test
functions. These include the modularity, average clustering
coefficient and the scale-free structure parameters for dif-
ferent graph representations of SAT instances. Please refer
to Newman (2001; 2006); Ansótegui et al. (2009); Clauset
et al. (2009) for more details. In general, the closer the
statistical estimation the better it is.

Results: Following You et al. (2019), we compare the statis-
tics of graphs with the training instances in Table 2. To
mimic G2SAT which picks the best action among sampled
options each step, we perform ε-sampling variant (which
is denoted BiGG-ε). Such model has ε probability to sam-
ple from Bernoulli distribution (as in Eq (8) (9)) each step,
and 1 − ε to pick best option otherwise. This is used to
demonstrate the capacity of the model. We can see that the
proposed BiGG can mostly recover the statistics of training
graph instances. This implies that despite being general,
the full autoregressive model is capable of modeling com-
plicated graph generative process. We additionally report
the statistics of generated SAT instances against the test
set in Appendix ??, where G2SAT outperforms BiGG in
4/6 metrics. As G2SAT is specially designed for bipartite
graphs, the inductive bias it introduces allows the extrapo-
lation to large graphs. Our BiGG is general purposed and
has higher capacity, thus also overfit to the small training
set more easily.

4.2. Scalability of BiGG

In this section, we will evaluate the scalability of BiGG
regarding the time complexity, memory consumption and
the quality of generated graphs with respect to the number
of nodes in graphs.
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Datasets Methods

Erdos-Renyi GraphVAE GraphRNN-S GraphRNN GRAN BiGG

Grid Deg. 0.79 7.07e−2 0.13 1.12e−2 8.23e−4 4.12e−4

Clus. 2.00 7.33e−2 3.73e−2 7.73e−5 3.79e−3 7.25e−5

|V |max = 361, |V |avg ≈ 210 Orbit 1.08 0.12 0.18 1.03e−3 1.59e−3 5.10e−4

|E|max = 684, |E|avg ≈ 392 Spec. 0.68 1.44e−2 0.19 1.18e−2 1.62e−2 9.28e−3

Protein Deg. 5.64e−2 0.48 4.02e−2 1.06e−2 1.98e−3 9.51e−4

Clus. 1.00 7.14e−2 4.79e−2 0.14 4.86e−2 2.55e−2

|V |max = 500, |V |avg ≈ 1575 Orbit 1.54 0.74 0.23 0.88 0.13 2.26e−2

|E|max = 258, |E|avg ≈ 646 Spec. 9.13e−2 0.11 0.21 1.88e−2 5.13e−3 4.51e−3

3D Point Cloud Deg. 0.31 OOM OOM OOM 1.75e−2 2.56e−3

Clus. 1.22 OOM OOM OOM 0.51 0.21
|V |max = 5037, |V |avg ≈ 1377 Orbit 1.27 OOM OOM OOM 0.21 7.18e−3

|E|max = 10886, |E|avg ≈ 3074 Spec. 4.26e−2 OOM OOM OOM 7.45e−3 3.40e−3

Lobster Deg. 0.24 2.09e−2 3.48e−3 9.26e−5 3.73e−2 2.94e−5

Clus. 3.82e−2 7.97e−2 4.30e−2 0.00 0.00 0.00
|V |max = 100, |V |avg ≈ 53 Orbit 2.42e−2 1.43e−2 2.48e−4 2.19e−5 7.67e−4 1.51e−5

|E|max = 99, |E|avg ≈ 52
Spec. 0.33 3.94e−2 6.72e−2 1.14e−2 2.71e−2 8.57e−3

Err. 1.00 0.91 1.00 0.00 0.12 0.00

Table 1. Performance on benchmark datasets. The MMD metrics uses test functions from {Deg., Clus., Orbit., Spec.}. For all the metrics,
the smaller the better. Baseline results are obtained from Liao et al. (2019), where OOM indicates the out-of-memory issue.

Method
VIG VCG LCG

Clustering Modularity Variable αv Clause αv Modularity Modularity

Training-24 0.53 ± 0.08 0.61 ± 0.13 5.30 ± 3.79 5.14 ± 3.13 0.76 ± 0.08 0.70 ± 0.07
G2SAT 0.41 ± 0.18 (23%) 0.55 ± 0.18 (10%) 5.30 ± 3.79 (0%) 7.22 ± 6.38 (40%) 0.71 ± 0.12 (7%) 0.68 ± 0.06 (3%)
BiGG-0.1 0.49 ± 0.21 (8%) 0.36 ± 0.21 (41%) 5.30 ± 3.79 (0%) 3.76 ± 1.21 (27%) 0.58 ± 0.16 (24%) 0.58 ± 0.11 (17%)
BiGG-0.01 0.54 ± 0.13(2%) 0.53 ± 0.21 (13%) 5.30 ± 3.79(0%) 4.28 ± 1.50 (17%) 0.71 ± 0.13 (7%) 0.67 ± 0.09 (4%)

Table 2. Training and generated graph statistics with 24 SAT formulas used in You et al. (2019). The neural baselines in Table 1 are not
applicable due to scalability issue. We report mean and std of different test statistics, as well as the gap between true SAT instances.

4.2.1. RUNTIME AND MEMORY COST

Here we empirically verify the time and memory com-
plexity analyzed in Section 2. We run BiGG on grid
graphs with different numbers of nodes n that are cho-
sen from {100, 500, 1k, 5k, 10k, 50k, 100k}. In this case
m = Θ(n). Additionally, we also plot curves from
the theoretical analysis for verification. Specifically, sup-
pose the asymptotic cost function is f(n,m) w.r.t. graph
size, then if there exist constants c1, c2, n′,m′ such that
c1g(n,m) < f(n,m) < c2g(n,m),∀n > n′,m > m′,
then we can claim f(n,m) = Θ(g(n,m)). In Figure 6 to 8,
the two constants c1, c2 are tuned for better visualization.

Figure 6 reports the time needed to sample a single graph
from the learned model. We can see the computation cost
aligns well with the ideal curve of O((n+m) log n).

To evaluate the training time cost, we report the time needed
for each round of model update, which consists of forward,
backward pass of neural network, together with the update
of parameters. As analyzed in Section 3.1, if there is a

device with infinite FLOPS, then the time cost would be
O(log n). We can see from Figure 7 that this analysis is
consistent when graph size is less than 5,000. However as
graph gets larger, the computation time grows linearly on a
single GPU due to the limit of FLOPS and RAM.

Finally Figure 8 shows the peak memory cost during training
on a single graph. We select the optimal number of chunks
k∗ = O(

√
m

logn ) as suggested in Section 3.3, and thus the

peak memory grows as O(
√
m log n). We can see such

sublinear growth of memory can scale beyond sparse graphs
with 100k of nodes.

4.2.2. QUALITY W.R.T GRAPH SIZE

In addition to the time and memory cost, we are also inter-
ested in the generated graph quality as it gets larger. To do
so, we follow the experiment protocols in Section 4.1.1 on
a set of grid graph datasets. The datasets have the average
number of nodes ranging in {0.5k, 1k, 5k, 10k, 50k, 100k}.
We train on 80 of the instances, and evaluate results on
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Figure 6. Inference time per graph.
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Figure 7. Training time per update.
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Figure 8. Training memory cost.

0.5k 1k 5k 10k 50k 100k

Erdős–Rényi 0.84 0.86 0.91 0.93 0.95 0.95
GRAN 2.95e−3 1.18e−2 0.39 1.06 N/A N/A
BiGG 3.47e−4 7.94e−5 1.57e−6 6.39e−6 6.06e−4 2.54e−2

Table 3. MMD using orbit test function on grid graphs with differ-
ent average number of nodes. N/A denotes runtime error during
training, due to RAM or file I/O limitations.

20 held-out instances. As calculating spectra is no longer
feasible for large graphs, we report MMD with orbit test
function in Table 3. For neural generative models we com-
pare against GRAN as it is the most scalable one currently.
GRAN fails on training graphs beyond 50k nodes as runtime
error occurs due to RAM or file I/O limitations. We can see
the proposed BiGG still preserves high quality up to grid
graphs with 100k nodes. With the latest advances of GPUs,
we believe BiGG would scale further due to its superior
asymptomatic complexity over existing methods.

4.3. Ablation study

In this section, we take a deeper look at the performance
of BiGG with different node ordering in Section 4.3.1. We
also show the effect of edge density to the generative perfor-
mance in Section 4.3.2.

4.3.1. BIGG WITH DIFFERENT NODE ORDERING

In the previous sections we use DFS or BFS orders. We find
these two orders give consistently good performance over a
variety of datasets. For the completeness, we also present
results with other node orderings.

We use different orders presented in GRAN’s Github im-
plementation. We use the protein dataset with spectral-
MMD as evaluation metric. See Table 4 for the experimental
results. In summary: 1) BFS/DFS give our model consis-
tently good performance over all tasks, as it reduces the
tree-width for BiGG (similar to Fig5 in GraphRNN) and
we suggest to use BFS or DFS by default; 2) BiGG is also
flexible enough to take any order, which allows for future
research on deciding the best ordering.

Determining the optimal ordering is NP-hard, and learning
a good ordering is also difficult, as shown in the prior works.
In this paper, we choose a single canonical ordering among

DFS BFS Default Kcore Acc Desc
3.64e−3 3.89e−3 4.81e−3 2.60e−2 3.93e−3 4.54e−3

Table 4. BiGG with nodes ordered by DFS, BFS, default, k-core
ordering, degree accent ordering and degree descent ordering re-
spectively on protein data. We report spectral-MMD metric here.

graphs, as Li et al. (2018) shows that canonical ordering
mostly outperforms variable orders in their Table 2, 3, while
Liao et al. (2019) uses single DFS ordering (see their Sec
4.4 or github) for all experiments.

4.3.2. PERFORMANCE ON RANDOM GRAPHS WITH
DECREASING SPARSITY

We here present experiments on Erdos-Renyi graphs with
on average 500 nodes and different densities. We report
spectral MMD metrics for GRAN, GT and BiGG, where
GT is the ground truth Erdos-Renyi model for the data.

1% 2% 5% 10%
GRAN 3.50e−1 1.23e−1 7.81e−2 1.31e−2

GT 9.97e−4 4.55 e−4 2.82e−4 1.94e−4

BiGG 9.47e−4 5.08e−4 3.18e−4 8.38e−4

Table 5. Graph generation quality with decreasing sparsity. We use
spectral-MMD as evaluation metric against held-out test graphs.

Our main focus is on sparse graphs that are more common
in the real world, and for which our approach can gain
significant speed ups over the alternatives. Nevertheless,
as shown in Table 5, we can see that BiGG is consistently
doing much better than GRAN while being close to the
ground truth across different edge densities.

5. Conclusion
We presented BiGG, a scalable autoregressive generative
model for general graphs. It takes O((n+m) log n) com-
plexity for sparse graphs, which substantially improves pre-
vious Ω(n2) algorithms. We also proposed both time and
memory efficient parallel training method that enables com-
parable or better quality on benchmark and large random
graphs. Future work include scaling up it further while also
modeling attributed graphs.
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