
SUPPLEMENTARY FILE:
The Usual Suspects?

Reassessing Blame for VAE Posterior Collaps

This document contains companion technical material regarding our ICML 2020 sub-
mission. Note that herein all equation numbers referencing back to the main submission
document will be be prefixed with an ‘M’ to avoid confusion, i.e, (M.#) will refer to equa-
tion (#) from the main text. Similar notation differentiates sections, tables, and figures,
e.g., Section M.#, etc.

1. Network Structure, Experimental Settings, and Additional Results

Three different kinds of network structures were used in the experiments: fully connected
networks, convolution networks, and residual networks. For all these structures, we set the
dimension of the latent variable z to 64. We now describe the network details accordingly.

Fully Connected Network: This experiment is only applied on the simple Fashion-
MNIST dataset, which contains 60000 28 × 28 black-and-while images. These images are
first flattened to a 784 dimensional vector. Both the encoder and decoder have multiple
number of 512-dimensional hidden layers, each followed by ReLU activations.

Convolution Network: The original images are either 32× 32× 3 (Cifar10, Cifar100
and SVHN) or 64 × 64 × 3 (CelebA and ImageNet). In the encoder, we use a multiple
number (denoted as t) of 3 × 3 convolution layers for each spatial scale. Each convolution
layer is followed by a ReLU activation. Then we use a 2×2 max pooling to downsample the
feature map to a smaller spatial scale. The number of channels is doubled when the spatial
scale is halved. We use 64 channels when the spatial scale is 32×32. When the spatial scale
reaches 4× 4 (there should be 512 channels in this feature map), we use an average pooling
to transform the feature map to a vector, which is then transformed into the latent variable
using a fully connected layer. In the decoder, the latent variable is first transformed to a
4096-dimensional vector using a fully connected layer and then reshaped to 2 × 2 × 1024.
Again in each spatial scale, we use 1 transpose convolution layer to upscale the feature map
and halve the number of channels followed by t − 1 convolution layers. Each convolution
and transpose convolution layer is followed by a ReLU activation layer. When the spatial
scale reaches that of the original image, we use a convolution layer to transofrm the feature
map to 3 channels.

Residual Network: The network structure of the residual network is similar to that
of a convolution network described above. We simply replace the convolution layer with
a residual block. Inside the residual block, we use different numbers of convolution num-
bers. (The typical number of convolution layers inside a residual block is 2 or 3. In our
experiments, we try 2, 3, 4 and 5.)

1

Training Details: All the experiments with different network structures and datasets
are trained in the same procedure. We use the Adam optimization method and the default
optimizer hyper parameters in Tensorflow. The batch size is 64 and we train the model for
250K iterations. The initial learning rate is 0.0002 and it is halved every 100K iterations.

Additional Results on ImageNet: We also show the reconstruction error for convo-
lution networks with increasing depth trained on ImageNet in Figure 1. The trend is the
same as that in Figure M.1.

1 2 3 4 5
Layer / Spatial Scale

120

160

200

240
M

ea
n

 S
q

u
ar

e
E

rr
o

r
(M

S
E

)

AE
VAE

Figure 1: Reconstruction error for Convolution networks with increasing depth/# of spatial
scales trained on ImageNet.

Additional Results with Error Bars: As suggested by a reviewer, we re-run the
experiments from Figure M.1(top) for 5 trials and plot the mean reconstruction error with
error bars in Figure 2. The basic trend is the same as that in the main paper, further
supporting our conclusions.

Additional FID Score Evaluations: To complement the MSE-based reconstruction
errors from all previous experiments, we compare fully connected networks (i.e., as in Fig-
ure M.1(top)) with different depth using the FID score, a metric that is widely believed
to be at least somewhat reflective of perceptual realism. The FID scores of model recon-

2 4 6 8 10
Depth

3

4

5

6

7

8

9

10

M
ea

n
Sq

ua
re

 E
rro

r

2 4 6 8 10
Depth

6

8

10

12

14

M
ea

n
Sq

ua
re

 E
rro

r

2 4 6 8 10
Depth

5

6

7

8

9

10

11

12

M
ea

n
Sq

ua
re

 E
rro

r

Figure 2: Reconstruction error with error bars corresponding to Figure M.1(top). The
models are AE, VAE and VAE with KL annealing from left to right.

2

2 4 6 8 10
Depth

30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

Re
co

ns
tru

ct
io

n
FI

D

AE
VAE
VAE + KL annealing

Figure 3: FID scores of model reconstructions. The trend is similar as when using MSE-
based reconstruction error.

2 4 6 8 10
Depth

4

6

8

10

12

M
ea

n
Sq

ua
re

 E
rro

r

IWAE
VAE + Flow

Figure 4: Reconstruction error for fully connected networks with increasing depth using an
IWAE and a VAE with Sylvestor normalizing flows.

structions are shown in Figure 3. The trend is similar to that of the reconstruction MSE as
expected.

Additional Results with More Flexible Non-Gaussian VAE Variants: We val-
idate that non-Gaussian VAE models will behave similarly to Gaussian baselines as depth
increases, again using the same setup from Figure M.1(top). We try two non-Gaussian
VAE variants: an importance weighted autoencoder (IWAE) [1] and a VAE with Sylvestor
normalizing flows [3]. The reconstruction errors (MSE-based) for both models are shown in
Figure 4. From depth 2 onwards to depth 10, the errors monotonically increase from 4.58
to 12.98 for the IWAE, and from 4.79 to 11.15 for the flow model.

3

2. Proof of Proposition M.1

While the following analysis could in principle be extended to more complex datasets, for
our purposes it is sufficient to consider the following simplified case for ease of exposition.
Specifically, we assume that n > 1, d > κ, set d = 2, n = 2, κ = 1, and x(1) = (1, 1),x(2) =
(−1,−1).

Additionally, we will use the following basic facts about the Gaussian tail. Note that
(2)-(3) below follow from integration by parts; see [2].

Lemma 1 Let ε ∼ N (0, 1), A > 0; φ(x),Φ(x) be the pdf and cdf of the standard normal
distribution, respectively. Then

1− Φ(A) ≤ e−A2/2, (1)

E[ε1{ε>A}] = φ(A), (2)

E[ε21{ε>A}] = 1− Φ(A) +Aφ(A). (3)

2.1 Suboptimality of (M.6)

Under the specificed conditions, the energy from (M.6) has a value of nd. Thus to show
that it is not the global minimum, it suffices to show that the following VAE, parameterized
by δ, has energy → −∞ as δ → 0:

µ(1)z = 1, µ(2)z = −1,

W x = (α+ 1, α+ 1), bx = 0,

σ(1)z = σ(2)z = δ,

γ = EN (ε|0,1)2(1− πα((α+ 1)(1 + δε)))2.

This follows because, given the stated parameters, we have that

L(θ, φ) =

2∑
i=1

(1 + 2 logEN (ε|0,1)2(1− πα((α+ 1)(1 + δε)))2 − 2 log δ + δ2 + 1)

=

2∑
i=1

(Θ(1) + 2 logEN (ε|0,1)(1− πα(α+ 1 + (α+ 1)δε))2 − 2 log δ)

≤(i)4 log δ + Θ(1).

(i) holds when δ < 1
α+1 ; to see this, denote x := α+ 1 + (α+ 1)(δε). Then

EN (ε|0,1)(1− πα(x))2

=Eε[(1− πα(x))21{x≥α}] + Eε[(1− πα(x))21{|x|<α}] + Eε[(1− πα(x))21{x<−α}]

≤Eε[(1− (x− α))2]︸ ︷︷ ︸
(a)

+P(|x| < α)︸ ︷︷ ︸
(b)

+Eε((1− x− α)21{x<−α})︸ ︷︷ ︸
(c)

.

4

In the RHS above (a) = [(α+ 1)δ]2; using (1)-(3) we then have

(b) < P(x < α) = P
(
ε <

−1

(α+ 1)δ

)
≤ exp

(
− 1

2[(α+ 1)δ]2

)
.

(c) < Eε((2α+ (α+ 1)δε)21{x<α})

=

∫ −1
(α+1)δ

−∞
(2α+ (α+ 1)δε)2

1√
2π
e−ε

2/2dε

<

∫ −1
(α+1)δ

−∞
(4α2 + [(α+ 1)δε]2)

1√
2π
e−ε

2/2dε

<

{
4α2 + ((α+ 1)δ)2

[
1 +

1√
2π

]}
exp

(
− 1

2[(α+ 1)δ]2

)
when δ < 1

α+1 . Thus

lim
δ→0

EN (ε|0,1)(1− πα(x))2

[(α+ 1)δ]2
= 1,

and
lim
δ→0
{logEN (ε|0,1)(1− πα(x))2 − 2 log δ} = 2 log(α+ 1),

or
2 logEε(1− πα(x))2 = 4 log δ + Θ(1),

and we can see (i) holds.

2.2 Local Optimality of (M.6)

We will now show that at (M.6), the Hessian of the energy has structure

(W x) (bx) (σ
(i)
z , µ

(i)
z) (γ)

(W x) 0 0 0 0
(bx) 0 2

γ I 0 0

(σ
(i)
z , µ

(i)
z) 0 0 (p.d.) 0

(γ) 0 0 0 (p.d.)

where p.d. means the corresponding submatrix is positive definite and independent of other
parameters. While the Hessian is 0 in the subspace of W x, we can show that for VAEs
that are only different from (M.6) by W x, the gradient always points back to (M.6). Thus
(M.6) is a strict local minima.

First we compute the Hessian matrix block-wise. We will identify W x ∈ R2×1 with

the vector (Wj)
2
j=1, and use the shorthand notations x(i) = (x

(i)
j)2j=1, bx = (bj)

2
j=1, z

(i) =

µ
(i)
z + σ

(i)
z ε, where ε ∼ N (0, 1) (recall that z(i) is a scalar in this proof).

1. The second-order derivatives involving W x can be expressed as

∂L
∂Wj

=
−2

γ

n∑
i=1

Eε[(π′α(Wjz
(i))z(i)) · (x(i)j − πα(Wjz

(i))− bj)], (4)

5

and therefore all second-order derivatives involving Wj will have the form

Eε[π′α(Wjz
(i))F1 + π′′α(Wjz

(i))F2], (5)

where F1, F2 are some arbitrary functions that are finite at (M.6). Since π′α(0) =
π′′α(0) = Wj = 0, the above always evaluates to 0 at W x = 0.

2. For second-order derivatives involving bx, we have

∂L
∂bx

=
−2

γ
Eε[x(i) − πα(W xz

(i))− bx]

and

∂2L
∂(bx)2

=
2

γ
I,

∂2L
∂γ∂bx

=
2

γ2
∂L
∂bx

= 0, (since W x = 0);

and ∂2L
∂µ

(i)
z ∂bx

and ∂2L
∂µ

(i)
z ∂σ

(i)
z

will also have the form of (5), thus both equal 0 at W x = 0.

3. Next consider second-order derivatives involving µ
(i)
z or σ

(i)
k . Since the KL part of the

energy,
∑n

i=1 KL(qφ(z|x(i))|p(z)), only depends on µ
(i)
z and σ

(i)
k , and have p.d. Hessian

at (M.6) independent of other parameters, it suffices to calculate the derivatives of
the reconstruction error part, denoted as Lrecon. Since

∂Lrecon
∂µ

(i)
z

=
−2

γ

∑
i,j

Eε
[
(x

(i)
j − πα(Wjz

(i))− bj)Wjπ
′
α(Wjz

(i))
]
,

∂Lrecon
∂σ

(i)
z

=
−2

γ

∑
i,j

Eε
[
(x

(i)
j − πα(Wjz

(i))− bj)Wjεπ
′
α(Wjz

(i))
]
,

all second-order derivatives will have the form of (5), and equal 0 at W x = 0.

4. For γ, we can calculate that ∂2L/∂γ2 = 4/γ2 > 0 at (M.6).

Now, consider VAE parameters that are only different from (M.6) in W x. Plugging

bx = x̄, µ
(i)
z = 0, σ

(i)
k = 1 into (4), we have

∂L
∂Wj

=
−2

γ

n∑
i=1

Eε[(π′α(Wjε)ε) · (−πα(Wjε))].

As (π′α(Wjε)ε) · (−πα(Wjε)) ≤ 0 always holds, we can see that the gradient points back
to (M.6). This concludes our proof of (M.6) being a strict local minima. �

6

3. Proof of Proposition (M.2)

We begin by assuming an arbitrarily complex encoder for convenience. This allows us
to remove the encoder-sponsored amortized inference and instead optimize independent

parameters µ
(i)
z and σ

(i)
z separately for each data point. Later we will show that this

capacity assumption can be dropped and the main result still holds.

We next define

mz ,

[(
µ(1)
z

)>
, . . . ,

(
µ(n)
z

)>]>
∈ Rκn and sz ,

[(
σ(1)
z

)>
, . . . ,

(
σ(n)
z

)>]>
∈ Rκn, (6)

which are nothing more than the concatenation of all of the decoder means and variances
from each data point into the respective column vectors. It is also useful to decompose the
assumed non-degenerate decoder parameters via

θ ≡ [ψ,w] , ψ , θ\w, (7)

where w ∈ [0, 1] is a scalar such that µx (z; θ) ≡ µx (wz;ψ). Note that we can always
reparameterize an existing deep architecture to extract such a latent scaling factor which
we can then hypothetically optimize separately while holding the remaining parameters ψ
fixed. Finally, with slight abuse of notation, we may then define the function

f (wmz, wsz) , (8)
n∑
i=1

f
(
µ(i)
z ,σ

(i)
z , [ψ̃, w],x(i)

)
≡

n∑
i=1

E
N
(
z|µ(i)

z ,diag
[
σ(i)
z

]2) [‖x(i) − µx
(
wz; ψ̃

)
‖22
]
.

This is basically just the original function f summed over all training points, with ψ fixed
at the corresponding values extracted from θ̃ while w serves as a free scaling parameter on
the decoder.

Based on the assumption of Lipschitz continuous gradients, we can always create the
upper bound

f (u,v) ≤ f (ũ, ṽ) (9)

+ (u− ũ)> ∇uf (u,v)|u=ũ + L
2 ‖u− ũ‖

2
2 + (v − ṽ)> ∇vf (u,v)|v=ṽ + L

2 ‖v − ṽ‖
2
2 ,

where L is the Lipschitz constant of the gradients and we have adopted u , wmz and
v , wσz to simplify notation. Equality occurs at the evaluation point {u,v} = {ũ, ṽ}.
However, this bound does not account for the fact that we know∇vf (u,v) ≥ 0 (i.e., f (u,v)
is increasing w.r.t. v) and that v ≥ 0. Given these assumptions, we can produce the refined
upper bound

fub (u,v) ≥ f (u,v) , (10)

where fub (u,v) ,

f (ũ, ṽ) + (u− ũ)> ∇uf (u,v)|u=ũ + L
2 ‖u− ũ‖

2
2+

nd∑
j=1

g
(
vj , ṽj , ∇vjf (u,v)

∣∣
vj=ṽj

)
(11)

7

and the function g : R3 → R is defined as

g (v, ṽ, δ) ,


(v − ṽ) δ + L

2 (v − ṽ)22 if v ≥ ṽ − δ
L and {v, ṽ, δ} ≥ 0,

−δ2
2L if v < ṽ − δ

L and {v, ṽ, δ} ≥ 0,

∞ otherwise.

(12)

Given that

ṽ − δ
L = arg min

v

[
(v − ṽ) δ + L

2 (v − ṽ)22

]
and −δ2

2L = min
v

[
(v − ṽ) δ + L

2 (v − ṽ)22

]
, (13)

the function g is basically just setting all values of (v − ṽ) δ + L
2 ‖v − ṽ‖

2
2 with negative

slope to the minimum −δ2
2L . This change is possible while retaining an upper bound because

f (u,v) is non-decreasing in v by stated assumption. Additionally, g is set to infinity for
all v < 0 to enforce non-negatively.

While it may be possible to proceed further using fub, we find it useful to consider a
final modification. Specifically, we define the approximation

fappr (u,v) ≈ fub (ũ, ṽ) , (14)

where fappr (u,v) ,

f (ũ, ṽ) + (u− ũ)> ∇uf (u,v)|u=ũ + L
2 ‖u− ũ‖

2
2 +

nd∑
j=1

gappr
(
vj , ṽj , ∇vjf (u,v)

∣∣
vj=ṽj

)
(15)

and

gappr (v, ṽ, δ) ,


−δ2
2L + δ2

2Lṽ2
v2 if ṽ − δ

L ≥ 0 and {v, ṽ, δ} ≥ 0,(
Lṽ2

2 − δṽ
)

+
(
δ
ṽ −

L
2

)
v2 if ṽ − δ

L < 0 and {v, ṽ, δ} ≥ 0,

∞ otherwise.

(16)

While slightly cumbersome to write out, gappr has a simple interpretation. By construction,
we have that

min
v
gappr (v, ṽ, δ) = gappr (0, ṽ, δ) = min

v
g (v, ṽ, δ) = g (0, ṽ, δ) (17)

and gappr (ṽ, ṽ, δ) = g (ṽ, ṽ, δ) = 0. (18)

At other points, gappr is just a simple quadratic interpolation but without any factor that
is linear in v. And removal of this linear term, while retaining (17) and (17) will be useful
for the analysis that follows below. Note also that although fappr (u,v) is no longer a strict
bound on f (u,v), it will nonetheless still be an upper bound whenever vj ∈ {0, ṽj} for all
j which will ultimately be sufficient for our purposes.

We now consider optimizing the function

happr(mz, sz, w) , 1
γ f

appr (wmz, wsz) +

n∑
i=1

∥∥∥µ(i)
z

∥∥∥2
2

+
∥∥∥σ(i)

z

∥∥∥2
2
− log

∣∣∣∣diag
[
σ(i)
z

]2∣∣∣∣ . (19)

8

If we define L (mz, sz, w) as the VAE cost from (M.3) under the current parameterization,
then by design it follows that

happr(m̃z, s̃z, w̃) = L (m̃z, s̃z, w̃) (20)

and
happr(mz, sz, w) ≥ L (mz, sz, w) (21)

whenever wσj ∈ {0, w̃σ̃j} for all j. Therefore if we find such a solution {m′z, s′z, w′} that
satisfies this condition and has happr(m′z, s

′
z, w

′) < happr(m̃z, s̃z, w̃), it necessitates that
L(m′z, s

′
z, w

′) < L(m̃z, s̃z, w̃) as well. This then ensures that {m̃z, s̃z, w̃} cannot be a local
minimum.

We now examine the function happr more closely. After a few algebraic manipulations
and excluding irrelevant constants, we have that

happr(mz, sz, w) ≡
nd∑
j=1

{
1
γ

[
wmz,j ∇ujf (u,v)

∣∣
uj=w̃m̃z,j

+ L
2

(
w2m2

z,j − 2wmz,jw̃m̃z,j

)
+ cjw

2s2z,j

]
+ m2

z,j + s2z,j − log s2z,j
}
, (22)

where cj is the coefficient on the v2 term from (16). After rearranging terms, optimizing out
mz and sz, and discarding constants, we can then obtain (with slight abuse of notation)
the reduced function

happr(w) ,
nd∑
j=1

yj
γ + βw2

+ log(γ + cjw
2), (23)

where β , L
2 and yj , L

2

∥∥∥w̃m̃z,j − 1
L ∇ujf (u,v)

∣∣
uj=w̃m̃z,j

∥∥∥2
2
. Note that yj must be bounded

since L 6= 01 and w ∈ [0, 1], ∇ujf (u,v)
∣∣
uj=w̃m̃z,j

≤ L, and m̃ are all bounded. The latter

is implicitly bounded because the VAE KL term prevents infinite encoder mean functions.
Furthermore, cj must be strictly greater than zero per the definition of a non-degenerate
decoder; this guarantees that

gappr
(
w̃s̃j , w̃s̃j , ∇vjf (u,v)

∣∣
vj=w̃s̃j

)
> gappr

(
0, w̃s̃j , ∇vjf (u,v)

∣∣
vj=w̃s̃j

)
, (24)

which is only possible with cj > 0. Proceeding further, because

∇w2happr(w) =
nd∑
j=1

(
−βyj

(γ + βw2)2
+

cj
γ + cjw2

)
, (25)

we observe that if γ is increased sufficiently large, the first term will always be smaller than
the second since β and all yj are bounded, and cj > 0 ∀j. So there can never be a point

1. L = 0 would violate the stipulated conditions for a non-degenerate decoder since it would imply that no
signal from z could pass through the decoder. And of course if L = 0, we would already be at a solution
exhibiting posterior collapse.

9

whereby ∇w2happr(w) = 0 when γ = γ′ sufficiently large. Therefore the minimum in this
situation occurs on the boundary where w2 = 0. And finally, if w2 = 0, then the optimal
mz and sz is determined solely by the KL term, and hence they are set according to the
prior. Moreover, the decoder has no signal from the encoder and is therefore optimized

by simply setting µx

(
0; ψ̃

)
to the mean x̄ for all i.2 Additionally, none of this analysis

requires and arbitrarily complex encoder; the exact same results hold as long as the encoder
can output a 0 for means and 1 for the variances.

Note also that if we proceed through the above analysis using w ∈ Rκ as parameterizing
a separate wj scaling factor for each latent dimension j ∈ {1, . . . , κ}, then a smaller γ value
would generally force partial collapse. In other words, we could enforce nonzero gradients of
happr(w) along the indices of each latent dimension separately. This loosely criteria would
then lead to qφ∗(zj |x) = p(zj) along some but not all latent dimensions as stated in the
main text below Proposition M.2. �

4. Representative Stationary Point Exhibiting Posterior Collapse in Deep
VAE Models

Here we provide an example of a stationary point that exhibits posterior collapse with an
arbitrary deep encoder/decoder architecture. This example is representative of many other
possible cases. Assume both encoder and decoder mean functions µx and µz, as well as
the diagonal encoder covariance function Σz = diag[σ2

z], are computed by standard deep
neural networks, with layers composed of linear weights followed by element-wise nonlinear
activations (the decoder covariance satisfies Σx = γI as before). We denote the weight
matrix from the first layer of the decoder mean network as W 1

µx , while w1
µx,·j refers to the

corresponding j-th column. Assuming ρ layers, we denote W ρ
µz and W ρ

σ2
z

as weights from

the last layers of the encoder networks producing µz and logσ2
z respectively, with j-th rows

defined as wρ
µz ,j· and wρ

σ2
z ,j·

. We then characterize the following key stationary point:

Proposition 2 If w1
µx,·j =

(
wρ
µz ,j·

)>
=
(
wρ
σ2
z ,j·

)>
= 0 for any j ∈ {1, 2, . . . , κ}, then the

gradients of (M.3) with respect to w1
µx,·j, w

ρ
µz ,j·, and wρ

σ2
z ,j·

are all equal to zero.

If the stated weights are zero along dimension j, then obviously it must be that qφ(zj |x) =
p(zj), i.e., a collapsed dimension for better or worse. The proof is straightforward; we pro-
vide the details below for completeness.

Proof: First we remind that the variational upper bound is defined in (M.1). We define
L(x; θ, φ) as the loss at a data point x, i.e.

L(x; θ, φ) = −Eqφ(z|x) [log pθ(x|z)] + KL [qφ(z|x)||p(z)] . (26)

2. We are assuming here that the decoder has sufficient capacity to model any constant value, e.g., the
output layer has a bias term.

10

The total loss is the integration of L(x; θ, φ) over x. Further more, we denote Lkl(x; θ) and
Lgen(x; θ, φ) as the KL loss and the generation loss at x respectively, i.e.

Lkl(x;φ) = KL [qφ(z|x)||p(z)] =
κ∑
i=1

KL [qφ(zj |x)||p(zj)] ,

=
1

2

κ∑
j=1

(
µ2z,j + σ2z,j − log σ2z,j − 1

)
(27)

Lgen(x;φ, θ) = −Eqφ(z|x) [log pθ(x|z)] . (28)

The second equality in (27) holds because the covariance of qφ(z|x) and p(z) are both
diagonal. The last encoder layer and the first decoder layer are denoted as hρe and h1

d. If
wρ
µz ,j· = 0,wρ

σ2
z ,j·

= 0, then we have

µz,j = wρ
µz ,j·h

ρ
e = 0, σ2z,j = exp (wσ2

z ,j·) = 1, q(zj |x) = N (0, 1). (29)

The gradient of µz,j and σz,j from Lkl(x;φ) becomes

∂Lkl(x;φ)

∂µz,j
= µz,j = 0,

∂Lkl(x;φ)

∂σz,j
= 1− σ−1z,j = 0. (30)

So the gradient of wρ
µz ,j· and wρ

σ2
z ,j·

from Lkl is

∂Lkl(x;φ)

∂wρ
µz ,j·

=
∂Lkl(x;φ)

∂µz,j
hρe
> = 0, (31)

∂Lkl(x;φ)

∂wρ
σ2
z ,j·

=
∂Lkl(x;φ)

2σz,j · ∂σz,j
hρe
> = 0. (32)

Now we consider the gradient from Lgen(x; θ, φ). We have

−∂ log pθ(x|z)

∂zj
=
−∂ log pθ(x|z)

∂h1
d

∂h1
d

∂zj
. (33)

Since

h1
d = act

 κ∑
j=1

w1
µx,·jzj

 , (34)

where act(·) is the activation function, we can obtain

∂h1
d

∂zj
= act′

 κ∑
j=1

w1
µx,·jzj

w1
µx,·j = 0. (35)

Plugging this back into (33) gives

−∂ log pθ(x|z)

∂zj
= 0. (36)

11

According to the chain rule, we have

∂Lgen(x; θ, φ)

∂wρ
µz ,j·

= Ez∼qφ(z|x)

[
−∂ log pθ(x|z)

∂zj

∂zj
∂wρ

µz ,j·

]
= 0, (37)

∂Lgen(x; θ, φ)

∂wρ
σ2
z ,j·

= Ez∼qφ(z|x)

[
−∂ log pθ(x|z)

∂zj

∂zj
∂wρ

σ2
z ,j·

]
= 0. (38)

After combining these two equations with (31) and (32) and then integrating over x, we
have

∂L(θ, φ)

∂wρ
µz ,j·

= 0, (39)

∂L(θ, φ)

∂wρ
σ2
z ,j·

= 0. (40)

Then we consider the gradient with respect to w1
µx,·j . Since wµx,·j is part of θ, it

only receives gradient from Lgen(x; θ, φ). So we do not need to consider the KL loss. If
w1
µx,·j = 0, h1

d =
∑κ

j=1w
1
µx,·jzj is not related to zj . So pθ(x|z) = pθ(x|z¬j), where z¬j

represents z without the j-th dimension. The gradient of w1
µx,·j is

∂Lgen(x; θ, φ)

∂w1
µx,·j

= Ez∼q(z|x)

[
−∂ log pθ(x|z)

∂w1
µx,·j

]
= Ez∼q(z|x)

[
−∂ log pθ(x|z)

∂h1
d

zj

]
(41)

= Ez¬j∼q(z¬j|x)

[
Ezj∼N (0,1)

[
−∂ log pθ(x|z¬j)

∂h1
d

zj

]]
= Ez¬i∼q(z¬i|x)

[
−∂ log pθ(x|z¬j)

∂h1
d

Ezj∼N (0,1)[zj]

]
= 0.

The integration over x should also be 0. So we obtain

∂L(θ;φ)

∂w1
µx,·j

= 0. (42)

�

References

[1] Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

[2] E. Orjebin. A recursive formula for the moments of a truncated univariate normal distribution.
2014.

[3] Rianne van den Berg, Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Sylvester
normalizing flows for variational inference. In Uncertainty in Artificial Intelligence, 2018.

12

	Network Structure, Experimental Settings, and Additional Results
	Proof of Proposition M.1
	Suboptimality of (M.6)
	Local Optimality of (M.6)

	Proof of Proposition (M.2)
	Representative Stationary Point Exhibiting Posterior Collapse in Deep VAE Models

