
Supplementary Material for “Sharp Statistical Guarantees for
Adversarially Robust Gaussian Classification”

Abstract
This document provides the complete proofs and additional details for the main results stated in the ICML
publication “Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification”.

Notation For positive semi-definite matrix A, we use ‖x‖A :=
√
xTAx. Let Φ(·) the CDF of standard Gaussian

distributionN (0, 1) and Φ̄(x) := 1−Φ(x). The notation f(n, d) = O
(
g(n, d)

)
means that there exist a universal constant

c > 0 that does not depend on the problem parameters such as n, d etc, such that |f(n, d)| ≤ c|g(n, d)|. Similarly, we define
f(n, d) = Ω

(
g(n, d)

)
when there exist constants c1, c2 > 0 such that c1|g(n, d)| ≤ |f(n, d)| ≤ c2|g(n, d)|. Notation

OP ,ΩP are used if the corresponding relations happen with probability converges to 1 as n→∞. We define the `p norm
‖x‖p = (

∑d
i=1 x

p
i )

1/p and the corresponding `p-ball as {x ∈d |‖x‖p ≤ 1}.

A. Proof of Theorem 2.1
For completeness, in this section, we present the proof of Theorem 2.1. This result follows from combining Theorem 1,
Theorem 2 and Lemma 1 in (Bhagoji et al., 2019). The proof is mainly a simplified presentation of their proofs (e.g. without
using the language of optimal transport) which make some of their results explicit to interpret for our case (e.g. they did not
provide the expression for optimal linear classifier, which is useful to our algorithmic results).

To start with, let us define w1 := w0

‖w0‖Σ = Σ−1(µ−zΣ(µ))
‖µ−zΣ(µ)‖Σ−1

be the normalized version of w0 so that ‖w1‖Σ = 1. The
following lemma is implicit in (Bhagoji et al., 2019):

Lemma A.1. Suppose we define
G(z, w) = wT (µ− z),

then (zΣ(µ), w1) is solution of the following minimax optimization problem:

min
‖z‖B≤ε

max
‖w‖Σ≤1

G(z, w). (14)

Proof. We first show that the optimal value of the inner maximization problem can be written as:

max
‖w‖Σ≤1

wT (µ− z) = ‖µ− z‖Σ−1 , (15)

and the maximum is achieved when

w =
Σ−1(µ− z)
‖µ− z‖Σ−1

. (16)

In fact, for any w such that ‖w‖Σ ≤ 1, Cauchy-Schwarz inequality gives

wT (µ− z) = (Σ1/2w)TΣ−1/2(µ− z) ≤ ‖Σ1/2w‖2‖Σ−1/2(µ− z)‖2
= ‖w‖Σ‖µ− z‖Σ−1

≤ ‖µ− z‖Σ−1 .

Furthermore, it is easy to check that the choice w = Σ−1(µ−z)
‖µ−z‖Σ−1

directly yields wT (µ − z) = ‖µ − z‖Σ−1 achieving the
equality. Therefore we have proved (15) and (16).
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Using (15), the minimax problem (14) therefore simplifies to:

min
‖z‖B≤ε

‖µ− z‖Σ−1 .

Recall that we define zΣ(µ) (cf. (4)) as
zΣ(µ) = argmin

‖z‖B≤ε
‖µ− z‖2Σ−1 ,

which is the optimal solution to this outer minimization problem. Combining with the optimality condition for the inner
maximization (16), we conclude that (zΣ(µ), w1) is solution of the minimax problem (14) and complete the proof.

Corollary A.1. The following relation is satisfied for quantities w1 and zΣ(µ):

wT1 µ− ε‖w1‖B∗ = ‖µ− zΣ(µ)‖Σ−1 .

Proof. Since G(z, w) is linear in both z and w and both constraint sets {‖z‖B ≤ ε} and {‖w‖Σ ≤ 1} are convex, the
minimax problem (14) satisfies strong duality by Von Neumann’s Minimax Theorem. In other words, we can switch the
order of the min and max, namely,

min
‖z‖B≤ε

max
‖w‖Σ≤1

G(z, w) = max
‖w‖Σ≤1

min
‖z‖B≤ε

G(z, w),

and (zΣ(µ), w1) is the solution to both sides. By the stationary condition of the minimax problem,

zΣ(µ) = argmin
‖z‖B≤ε

G(z, w1).

By the definition of dual norm, we also have

min
‖z‖B≤ε

G(z, w1) = min
‖z‖B≤ε

wT1 (µ− z) = wT1 µ− ε‖w1‖B∗.

Hence,
‖µ− zΣ(µ)‖Σ−1 = G(zΣ(µ), w1) = min

‖z‖B≤ε
G(z, w1) = wT1 µ− ε‖w1‖B∗.

Thus we completed the proof.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. The proof can be divided into two parts:

1. Show that fw0 has robust risk RB,εµ,Σ(fw0) = Φ̄(‖µ− zΣ(µ)‖Σ−1).

2. Show that no classifier can achieve robust risk smaller than Φ̄(‖µ− zΣ(µ)‖Σ−1).

The first part is a consequence of Corollary A.1. In order to see this, we first note that since w1 is a rescaling of w0, the
induced linear classifiers are the same, hence,

RB,εµ,Σ(fw0
) = RB,εµ,Σ(fw1

).

By Lemma 6.2, the robust risk of fw1 is

RB,εµ,Σ(fw1
) = Φ̄(

wT1 µ− ε‖w1‖B∗
‖w1‖Σ

) = Φ̄(wT1 µ− ε‖w1‖B∗).

By Corollary A.1,
Φ̄(wT1 µ− ε‖w1‖B∗) = Φ̄(‖µ− zΣ(µ)‖Σ−1).

Therefore, we have proved the first part.
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For the second part, we invoke Lemma 6.4. By setting µ′ = µ− zΣ(µ) in Lemma 6.4, we have that for any classifier f ,

RB,εµ,Σ(f) ≥ Rstd
µ−zΣ(µ),Σ(f).

We also know that no classifier can achieve standard risk smaller than the Bayes Risk in Pµ−zΣ(µ),Σ. Recall that for a
conditional Gaussian kmodel Pµ′,Σ, the standard Bayes Risk is Φ̄(‖µ′‖Σ−1). In other words, for any classifier f , we have

Rstd
µ−zΣ(µ),Σ(f) ≥ Φ̄(‖µ− zΣ(µ)‖Σ−1).

Combining the two inequalities, we conclude that

RB,εµ,Σ(f) ≥ Φ̄(‖µ− zΣ(µ)‖Σ−1) (17)

holds for all classifiers f . Therefore, we prove the second part and thus complete the proof.

B. Proof of Proposition 5.1
Proof of Proposition 5.1. Recall that the setting of interest here is Σ = I and ‖ · ‖B corresponds to the `2 norm. In this
setting, we show that zΣ(µ) has a simplified form. In fact, directly invoking

zΣ(µ) = argmin
‖z‖B≤ε

‖µ− z‖2Σ−1 = argmin
‖z‖2≤ε

‖µ− z‖22,

gives zΣ(µ) = min(ε, ‖µ‖2) µ
‖µ‖2 , and

µ− zΣ(µ) = max(0,
‖µ‖2 − ε
‖µ‖2

)µ.

From this expression, we can see that when ε > ‖µ‖2, the Adversarial Signal-to-Noise Ratio of Pµ,Σ is 2‖µ− zΣ(µ)‖2 = 0.
Hence, no classifier can achieve accuracy better than 1

2 . Below we only consider the case when ε < ‖µ‖2.

Recall that we want to compare the minimax rate in adversarial and standard setting. As we showed earlier, the minimax
rates are O(exp(− 1

2‖µ− zΣ(µ)‖22) dn ) and O(exp(− 1
2‖µ‖

2
2) dn ) respectively. The ratio between the two quantities equals to:

exp(− 1
2‖µ− zΣ(µ)‖22) dn

exp(− 1
2‖µ− zΣ(µ)‖22) dn

= exp(
1

2
((‖µ‖2 − ε)2 − ‖µ‖22)) = exp(ε‖µ‖2 −

1

2
ε2). (18)

Since 0 ≤ ε < ‖µ‖2, we have

ε‖µ‖2 −
1

2
ε2 = ε(‖µ‖2 −

1

2
ε) ∈

[
1

2
ε‖µ‖2, ε‖µ‖2

]
.

Equipped with the above relation, we are in the position of establishing Proposition 5.1.

• When ε ≤ O( 1
‖µ‖2 ), one has

ε‖µ‖2 −
1

2
ε2 ≤ ε‖µ‖2 ≤ O(1),

thereby, the adversarial rate is at most exp(O(1)) = O(1) times slower than the standard rate.

• When ‖µ‖2 ≥ Ω(log d) and ε ≥ Ω( log d
‖µ‖2 ), we conclude

ε‖µ‖2 −
1

2
ε2 ≥ 1

2
ε‖µ‖2 ≥ Ω(log d),

the adversarial rate can be slower than the standard rate by an Ω(exp(log d)) = Ω(poly(d)) factor.

• When ‖µ‖2 ≥ Ω(
√
d) and ε ≥ Ω( d

‖µ‖2 ), it is guaranteed that

ε‖µ‖2 −
1

2
ε2 ≥ 1

2
ε‖µ‖2 ≥ Ω(d),

therefore, the adversarial rate can be slower than the standard rate by an Ω(exp(d)) factor.
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C. Improved analysis when Σ is known
Meticulous readers may find a tiny gap between our bounds: the upper bound in Theorem 3.1 is OP

(
e−

1
8 r

2 · r · dn
)

, while

the lower bound above gives ΩP

(
e−

1
8 r

2 · 1
r ·

d
n

)
. Since the dominant factor is e−

1
8 r

2

and r = Ω(1), this difference is
only in a lower order term. This gap is due to the fact that (Li et al., 2017) assumed the covariance matrix Σ is known to
the learner. In this section, we will prove that under the same assumption, there is a modified version of Algorithm 1 that
achieves the truly optimal rate which matches the lower bound even with lower order term in r.

The only modification we made in Algorithm 1 is to replace the sample covariance matrix by the true covariance Σ. The
modified algorithm is presented below in Algorithm 2.

Algorithm 2 An improved estimator for w0 when Σ is known
Input: Data pairs {(xi, yi)}ni=1.
Output: ŵ.
Step 1: Define µ̂ and Σ̂ as

µ̂ :=
1

n

n∑
i=1

yixi, Σ̂ := Σ.

Step 2: Solve for ẑ in the following
ẑ := zΣ̂(µ̂) = argmin

‖z‖B≤ε
‖µ̂− z‖2

Σ̂−1 .

Step 3: Define ŵ := Σ̂−1(µ̂− ẑ).

Theorem C.1. For the (‖ · ‖B , ε) adversary, suppose the adversarial signal-to-noise ratio AdvSNRB,ε(µ,Σ) = r, then
the excess risk of fŵ defined in Algorithm 2 is upper bounded by

RB,εµ,Σ(fŵ)−RB,εµ,Σ∗ ≤ OP
(
e−

1
8 r

2

· 1

r
· d
n

)
.

This improved rate can be proved by some simple modification to the proof of Theorem 3.1.

Proof. We demonstrate that in this setting, there is a stronger upper bound δn = OP

(
1
r ·

d
n

)
and the rest of proof follows

the same as that of Theorem 3.1. To this end, let us recall that by Lemma 6.3 and one has the decomposition,

‖ŵ‖Σδn = −1

2

(
‖w0‖Σ − ‖ŵ‖Σ

)2︸ ︷︷ ︸
T1

+wT0 (ẑ − zΣ(µ))︸ ︷︷ ︸
T2

−1

2
‖ẑ − zΣ(µ)‖2Σ−1︸ ︷︷ ︸

T3

+
1

2
‖(Σ− Σ̂)ŵ + (µ̂− µ)‖2Σ−1︸ ︷︷ ︸

T4

.

Similar to the proof of Theorem 3.1, we shall establish that

T1 ≤ 0, T2 ≤ 0, T3 ≤ 0, T4 ≤ OP
(
d

n

)
.

Note that the only difference here is that we can now give a tighter upper bound for T4: OP
(
d
n

)
instead of OP

(
r2 d
n

)
.

Since Σ = Σ̂, by Lemma 6.1, we have

T4 =
1

2
‖(Σ− Σ̂)ŵ + (µ̂− µ)‖2Σ−1 =

1

2
‖(µ̂− µ)‖2Σ−1 = OP

(
d

n

)
. (19)

Hence, we have proved that T4 = OP

(
d
n

)
, and

δn = OP

(
1

r
· d
n

)
.

Therefore we have completed the proof.
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D. Proofs of auxiliary lemmas
D.1. Proof of Lemma 6.3
Proof of Lemma 6.3. Recall that our goal is to establish

‖ŵ‖Σδn = ‖ŵ‖Σ‖w0‖Σ −
(
ŵTµ− ε‖ŵ‖B∗

)
= −1

2

(
‖w0‖Σ − ‖ŵ‖Σ

)2︸ ︷︷ ︸
T1

+wT0 (ẑ − zΣ(µ))︸ ︷︷ ︸
T2

−1

2
‖ẑ − zΣ(µ)‖2Σ−1︸ ︷︷ ︸

T3

+
1

2
‖(Σ− Σ̂)ŵ + (µ̂− µ)‖2Σ−1︸ ︷︷ ︸

T4

. (20)

Since ŵ = Σ̂−1(µ̂− zΣ̂(µ̂)), by Theorem 2.1, fŵ is the optimal robust classifier for Pµ̂,Σ̂, therefore, one can observe

ŵT µ̂− ε‖ŵ‖B∗
‖ŵ‖Σ̂

= ‖ŵ‖Σ̂.

Hence, direct calculations yield

‖ŵ‖Σδn = ‖w0‖Σ‖ŵ‖Σ − ‖ŵ‖2Σ̂ − ŵ
T (µ− µ̂)

= ‖w0‖Σ‖ŵ‖Σ − (µ̂− ẑ)T Σ̂−1(µ̂− ẑ) + (µ̂− ẑ)T Σ̂−1(µ̂− µ)

= ‖w0‖Σ‖ŵ‖Σ + ŵT (ẑ − µ).

Now by use of the relation µ = Σw0 + zΣ(µ), we can further obtain

‖ŵ‖Σδn = ‖w0‖Σ‖ŵ‖Σ + ŵT (ẑ − Σw0 − zΣ(µ))

= ‖w0‖Σ‖ŵ‖Σ − ŵTΣw0 + ŵT (ẑ − zΣ(µ))

= −1

2

(
‖w0‖Σ − ‖ŵ‖Σ

)2
+

1

2
‖w0‖2Σ +

1

2
‖ŵ‖2Σ − ŵTΣw0 + ŵT (ẑ − zΣ(µ))

= T1 +
1

2
(ŵ − w0)TΣ(ŵ − w0) + wT0 (ẑ − zΣ(µ)) + (ŵ − w0)T (ẑ − zΣ(µ))

= T1 +
1

2
(ŵ − w0)TΣ(ŵ − w0) + T2 + (ŵ − w0)T (ẑ − zΣ(µ)),

where the last equality invokes the definitions in expression (20). To finish the proof, we make the observation about
Σ(ŵ − w0) in the following

Σ(ŵ − w0) = (Σ− Σ̂)ŵ + (Σ̂ŵ − Σw0)

= (Σ− Σ̂)ŵ︸ ︷︷ ︸
U1

+ (µ̂− µ)︸ ︷︷ ︸
U2

− (ẑ − zΣ(µ))︸ ︷︷ ︸
U3

:= U1 + U2 − U3.

Therefore, putting everything together and rearranging terms, it is guaranteed that

‖ŵ‖Σδn = T1 + T2 +
1

2
(ŵ − w0)TΣ(ŵ − w0) + (ŵ − w0)T (ẑ − zΣ(µ))

= T1 + T2 +
1

2
(Σ(ŵ − w0))TΣ−1(Σ(ŵ − w0)) + (Σ(ŵ − w0))TΣ−1(ẑ − zΣ(µ))

= T1 + T2 +
1

2
(U1 + U2 − U3)TΣ−1(U1 + U2 − U3) + (U1 + U2 − U3)Σ−1U3

= T1 + T2 +
1

2
(U1 + U2 − U3)TΣ−1(U1 + U2 + U3)

= T1 + T2 −
1

2
UT3 Σ−1U3 +

1

2
(U1 + U2)TΣ−1(U1 + U2)

= T1 + T2 + T3 + T4.

Thus we have finished the proof.
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