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Outline
These appendices support the main paper in the following
ways. Appendix A provides proofs and various explana-
tions to the statements provided in Section 3 of the main
text. In particular, in Appendix Section A.5, we provide
mathematical analysis and experimental justification for
the claim regarding the on average decrease of the out-of-
sample error Eunsupout

(
Ûk

)
with the number of features p.

In Appendix B we refer to Section 4 of the paper, prove the
specific projection operators used in our projected gradient
descent algorithms, and provide additional details on the
experiments for the supervised settings. In Appendix C we
elaborate on the semi-supervised subspace fitting method
presented in Section 5 of the main text. Appendix D pro-
vides the details on the range of unsupervised problems with
soft orthonormality constraints.

Note that the indexing of equations and figures in the Appen-
dices below is prefixed with the letter of the corresponding
Appendix. Other references correspond to the main paper.

A. Proofs and Explanations for Section 3
A.1. Explanation for Corollaries 3.1 and 3.2

One should note that any overparameterized subspace esti-
mate Ûk is induced by a rank-deficient sample covariance
matrix Ĉ

(n)
x,S of rank ρ , rank

{
Ĉ

(n)
x,S

}
≤ n − 1. This is

simply because Ĉ
(n)
x,S is formed based on n centered sam-

ples of p-dimensional feature vectors where, as implied
from the definition of overparameterization, p > n. This
is also the case for rank-overparameterized subspace esti-
mates (which are a particular type of overparameterized
subspace estimates). However, the point that Corollary 3.1
emphasizes is that rank-overparameterized subspace esti-
mates are guaranteed to be affected by the rank-deficiency of
Ĉ

(n)
x,S . Accordingly, the construction provided in Corollary

3.2 shows that, due to the insufficient number of nonzero
eigenvalues of Ĉ

(n)
x,S , a rank-overparameterized estimate has

freedom in setting k − ρ out of its k spanning orthonormal
vectors.

A.2. Proof of Proposition 3.1

Since p > n (due to overparameterization), the sam-
ple covariance matrix Ĉ

(n)
x,S has size p × p and rank

ρ , rank
{

Ĉ
(n)
x,S

}
≤ n− 1. Hence, the eigendecomposi-

tion Ĉ
(n)
x,S = Ψ̂SΛ̂Ψ̂∗S corresponds to a p × p unitary

matrix Ψ̂S ,

[
ψ̂

(1)

S , . . . , ψ̂
(p)

S

]
and a diagonal matrix

Λ̂ , diag
{
λ̂(1), . . . , λ̂(p)

}
with only ρ nonzero eigenval-

ues λ̂(h1), . . . , λ̂(hρ), where 1 ≤ h1 < h2 < · · · < hρ ≤ p.

Therefore, the eigenvectors ψ̂
(h1)

S , . . . , ψ̂
(hρ)

S are those as-
sociated with the nonzero eigenvalues. Here Ψ∗ denotes the
conjugate transpose of the matrix Ψ.

The subspace estimate is rank-overparameterized (recall
Definition 3.2), thus, p > n and k ∈ {n, . . . , p}. Then,
Ûk,S is a p× k matrix with k orthonormal columns, where

the first ρ of them satisfy û
(i)
S = ψ̂

(hi)
for i = 1, ..., ρ.

The additional k − ρ columns û
(ρ+1)
S , . . . , û

(k)
S are cho-

sen arbitrarily from the p− ρ columns of Ψ̂S correspond-

ing to zero eigenvalues. Namely, û
(ρ+i)
S = ψ̂

(ri)
for

i = 1, ..., k − ρ and {r1, . . . , rk−ρ} is an arbitrary subset
of {1, . . . , p} \ {h1, . . . , hρ}. This construction satisfies
the orthonormality demand for the k columns of Ûk,S .

Here, the in-sample error of interest is (7), namely,

Eunsupin,S

(
Ûk,S

)
=

Tr
{(

Ip − Ûk,SÛ
∗
k,S

)
Ψ̂SΛ̂Ψ̂∗S

(
Ip − Ûk,SÛ

∗
k,S

)∗}
(A.1)

Note that, by the construction of Ûk,S , the eigendecompo-
sition of the p× p projection operator Ûk,SÛ

∗
k,S satisfies

Ûk,SÛ
∗
k,S = Ψ̂SΛ̂S,ind[k]Ψ̂

∗
S (A.2)

where Ψ̂S is the p × p unitary matrix that di-
agonalizes Ĉ

(n)
x,S , and Λ̂S,ind[k] is a p × p di-

agonal matrix with ones at the coordinates
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{(h1, h1), . . . , (hρ, hρ)} ∪ {(r1, r1), . . . , (rk−ρ, rk−ρ)}
and zeros elsewhere. Therefore,

Eunsupin,S

(
Ûk,S

)
= Tr

{
Ψ̂S

(
Ip − Λ̂S,ind[k]

)
×

Ψ̂∗SΨ̂SΛ̂Ψ̂∗SΨ̂S

(
Ip − Λ̂S,ind[k]

)
Ψ̂∗S

}
= Tr

{(
Ip − Λ̂S,ind[k]

)
Λ̂
(
Ip − Λ̂S,ind[k]

)}
= 0 (A.3)

This proves that a rank-overparameterized subspace esti-
mate formed by the construction in Corollary 3.2 is S-
interpolating.

One can extend the last proof to the general form of rank-
overparameterized subspace estimates, where the additional
arbitrary k − ρ orthonormal vectors can be any (k − ρ)-
dimensional subspace of the (p− ρ)-dimensional null space
of Ĉ

(n)
x,S .

A.3. Proof of Proposition 3.2

Let us denote the eigenvalues of the true covariance ma-
trix, Cx, as λ(1), . . . , λ(d). The covariance matrix of the
p-dimensional feature vectors is denoted as Cx,S , and its
eigendecomposition satisfies Cx,S = ΨSΛSΨ

∗
S where ΨS

is a p× p unitary matrix, and ΛS = diag
{
λ
(1)
S , . . . , λ

(p)
S

}
is a diagonal matrix containing the eigenvalues of Cx,S .
Similar to the construction in (A.2) we have here
Ûk,SÛ

∗
k,S = Ψ̂SΛ̂S,ind[k]Ψ̂

∗
S , where Λ̂S,ind[k] is a diago-

nal matrix with ones at the main-diagonal coordinates cor-
responding to columns of Ψ̂S chosen to define Ûk,S and
zeros elsewhere. Then, the expression for the unsupervised
out-of-sample error is developed as follows.

Eunsupout

(
Ûk

)
= E

∥∥∥(Id − ÛkÛ
∗
k

)
xtest

∥∥∥2
2

= E ‖xtest‖22 − E
∥∥∥ÛkÛ

∗
kxtest

∥∥∥2
2

= Tr {Cx} − E
∥∥∥Ûk,SÛ

∗
k,Sxtest,S

∥∥∥2
2

= Tr {Cx} − Tr
{

Ûk,SÛ
∗
k,SCx,SÛk,SÛ

∗
k,S

}
= Tr {Cx}

− Tr
{

Ψ̂SΛ̂S,ind[k]Ψ̂
∗
SΨSΛSΨ

∗
SΨ̂SΛ̂S,ind[k]Ψ̂

∗
S

}
= Tr {Cx} − Tr

{
Λ̂S,ind[k]Ψ̂

∗
SΨSΛSΨ

∗
SΨ̂S

}
=

d∑
i=1

λ(i) −
∑
i∈S

λ
(i)
S,ind[k]

p∑
j=1

λ
(j)
S

∣∣∣∣〈ψ(j)
S , ψ̂

(i)

S

〉∣∣∣∣2

=

d∑
i=1

λ(i) −
∑

i∈Ŝ(k)
max

p∑
j=1

λ
(j)
S

∣∣∣∣〈ψ(j)
S , ψ̂

(i)

S

〉∣∣∣∣2 (A.4)

where Ŝ(k)max ⊂ {1, . . . , p} is the set of k indices correspond-
ing to the columns of Ψ̂S used for the construction of Ûk,S .
This means that the indices in Ŝ(k)max correspond to the k
maximal eigenvalues of Ĉ

(n)
x,S . If k > ρ, then k − ρ of the

indices in Ŝ(k)max correspond to zero eigenvalues.

A.4. Proof of Proposition 3.3

The error expression provided in Proposition 3.2 has the
property that

Eunsupout

(
Ûk+1

)
=

Eunsupout

(
Ûk

)
−

p∑
j=1

λ
(j)
S

∣∣∣∣〈ψ(j)
S , ψ̂

(iadded)

S

〉∣∣∣∣2 (A.5)

where iadded ∈ {1, . . . , p} \ Ŝ(k)max is the index of the column
of Ψ̂S that is joined to Ûk as the (k + 1)-th column that
yields Ûk+1. Note that λ(j)S ≥ 0 for any j, as these are
eigenvalues of a covariance matrix. Hence,

p∑
j=1

λ
(j)
S

∣∣∣∣〈ψ(j)
S , ψ̂

(iadded)

S

〉∣∣∣∣2 ≥ 0. (A.6)

This implies that Eunsupout

(
Ûk+1

)
≤ Eunsupout

(
Ûk

)
, proving

that the unsupervised out-of-sample error is monotonic de-
creasing in k (for a subspace construction that is sequential
in k as described above).

A.5. On the Monotonic Decrease of Eunsupout

(
Ûk

)
with p

We now justify our statement regarding the monotonic de-
crease of Eunsupout

(
Ûk

)
as the number of features, p, in-

creases (and k is kept fixed).

The following definitions and notations will be useful in
the current discussion. Consider a set Sp , {s1, ..., sp}
of p < d coordinates 1 ≤ s1 < s2 < · · · < sp ≤ d. In addi-
tion, Sp+1 , Sp ∪ {sp+1} is a set of p+1 coordinates that is
formed by adding a new coordinate sp+1 ∈ {1, . . . , d} \ Sp
to Sp. We also denote here the out-of-sample errors of
interest with explicit indications of the underlying sets of
coordinates: Eunsupout

(
Ûk;Sp

)
and Eunsupout

(
Ûk;Sp+1

)
are

the errors induced by forming subspace estimates based on
Sp and Sp+1, respectively. Now, our goal is to justify the
claim that

Eunsupout

(
Ûk;Sp

)
≥ Eunsupout

(
Ûk;Sp+1

)
. (A.7)
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Using the error expression in (A.4), we translate the inequal-
ity (A.7) into∑

i∈Ŝ(k)
p,max

p∑
j=1

λ
(j)
Sp

∣∣∣∣〈ψ(j)
Sp , ψ̂

(i)

Sp

〉∣∣∣∣2

≤
∑

i∈Ŝ(k)
p+1,max

p+1∑
j=1

λ
(j)
Sp+1

∣∣∣∣〈ψ(j)
Sp+1

, ψ̂
(i)

Sp+1

〉∣∣∣∣2.
(A.8)

Here, the covariance matrix of the p-feature vector induced
by Sp is Cx,Sp , E{xSpxTSp}, and its eigenvalues and

eigenvectors are
{
λ
(j)
Sp

}p
j=1

and
{
ψ

(j)
Sp

}p
j=1

, respectively.

Similarly, the covariance matrix of the (p+ 1)-feature vec-
tor stemming from Sp+1 is Cx,Sp+1

, E{xSp+1
xTSp+1

},

and its eigenvalues and eigenvectors are
{
λ
(j)
Sp+1

}p+1

j=1
and{

ψ
(j)
Sp+1

}p+1

j=1
, respectively. To distinguish between the

various origins of Ŝ(k)max, we define here the notation of
Ŝ(k)p,max as the set of k coordinates utilized based on the p-
dimensional sample covariance matrix. Correspondingly,
the set Ŝ(k)p+1,max includes k coordinates selected based on
the (p+ 1)-dimensional sample covariance matrix.

For a start, note that the sums in (A.8) are over non-negative
elements. Moreover, the inner summation on the right-hand
side of (A.8) is over p + 1 terms, whereas its counterpart
sum on the left-hand side is over p terms. However, the
eigenvalues and eigenvectors in the two sides of (A.8) are
different, as will be explained next.

The p× p covariance matrix Cx,Sp is a principal submatrix
of Cx,Sp+1

, which is the covariance matrix of the (p+ 1)-
feature vector induced by Sp+1. This can be easily ob-
served by defining the p × (p + 1) matrix Q such that
xSp = QxSp+1

; namely, Q deletes the single feature added
to create xSp+1 from xSp . Then,

Cx,Sp = E{
(
QxSp+1

) (
QxSp+1

)T }
= QE{xSp+1

xTSp+1
}QT

= QCx,Sp+1
QT . (A.9)

This shows that the matrix Cx,Sp can be obtained from
Cx,Sp+1

by deletion of the row and column (having the same
index) corresponding to the added feature. Thus, Cx,Sp is
a principal submatrix of Cx,Sp+1 . This relation between
the symmetric matrices Cx,Sp and Cx,Sp+1

, lets us apply
Cauchy’s interlacing theorem for eigenvalues of Hermitian
matrices (Hwang, 2004) to obtain

λ
(sort[p+1])
Sp+1

≤ λ(sort[p])Sp ≤ λ(sort[p])Sp+1
≤ λ(sort[p−1])Sp ≤ . . .

· · · ≤ λ(sort[2])Sp+1
≤ λ(sort[1])Sp ≤ λ(sort[1])Sp+1

(A.10)

where the eigenvalues of each of the matrices are referred
to in a sorted order, namely,

λ
(sort[p+1])
Sp+1

≤ λ(sort[p])Sp+1
≤ · · · ≤ λ(sort[2])Sp+1

≤ λ(sort[1])Sp+1

(A.11)
are the sorted eigenvalues of Cx,Sp+1

, and

λ
(sort[p])
Sp ≤ λ(sort[p−1])Sp ≤ · · · ≤ λ(sort[2])Sp ≤ λ(sort[1])Sp

(A.12)
are the sorted eigenvalues of Cx,Sp .

The interlaced structure of the eigenvalue inequalities in
(A.10) provides an interesting aspect to the analysis of the
desired inequality in (A.8). To see this, we rearrange (A.8)
to rely on the sorted indexing of (A.11)-(A.12) and change
the order of the nested summations, namely, the inequality
under question (A.8) becomes

p∑
j=1

α(j)
p λ

(sort[j])
Sp ≤

p+1∑
j=1

α
(j)
p+1λ

(sort[j])
Sp+1

(A.13)

where

α(j)
p ,

∑
i∈Ŝ(k)

p,max

∣∣∣∣〈ψ(sort[j])
Sp , ψ̂

(i)

Sp

〉∣∣∣∣2
for j = 1, . . . , p, and

α
(j)
p+1 ,

∑
i∈Ŝ(k)

p+1,max

∣∣∣∣〈ψ(sort[j])
Sp+1

, ψ̂
(i)

Sp+1

〉∣∣∣∣2
for j = 1, . . . , p+ 1. (A.14)

The value of α(j)
p reflects the quality of approximating the

true eigenvector ψ(sort[j])
Sp by the set of k sample eigen-

vectors
{
ψ̂

(i)

Sp

}
i∈Ŝ(k)

p,max

. The value of α(j)
p+1 has a similar

meaning (with respect to Sp+1).

Note that α(j)
p and α(j)

p+1 are values in the range [0, 1]. How-
ever, since (A.14) depends on the true and sample eigen-
vectors of covariance matrices and their submatrices, its
characterization is very complex. To generally understand
the difficulty in the mathematical analysis of (A.14), one
can examine the study of the eigenvalue-eigenvector rela-
tions provided in (Denton et al., 2019) that, although being
simpler than our case, leads to intricate expressions that are
under current research.

The above analysis leads us to choose an empirical ap-
proach for justifying our statement on the decay of the
out-of-sample error Eunsupout

(
Ûk;Sp

)
with the increase in

the number of features p. The experiment settings, referring
to the data model provided in Section 2 of the main text,
are as follows. The data vectors are of dimension d = 128
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and only n = 70 examples are given. The linear subspace
in the noisy linear data model is of dimension m = 40,
which is also the number of columns of Um. Each of the
experiments below consider one of the following structures
for columns of Um:

• The first m = 40 normalized columns of the d × d
Hadamard matrix (these normalized columns are, by
definition, orthonormnal).

• m = 40 random orthonormal vectors that are a subset
of the left singular vectors of a d× d Gaussian matrix
of i.i.d. components N (0, 1).

These Hadamard and random constructions are global in
the sense that they are defined using all the d coordinates
of the feature space. However, unlike the random form,
the Hadamard form has a deterministic structure. In all the
settings z ∼ N (0, Im), but we consider two different levels
of noise (that is represented by the variable ε in the data
model (1)): σε = 0.1 and σε = 0.5.

For a start, we exemplify the evolution of the eigenvalues{
λ
(sort[j])
Sp

}p
j=1

with p. We consider three different settings

as described in the caption of Fig. A.1. Figures A.1a, A.1d,
A.1g clearly show the monotonic increase explained by the
application of Cauchy’s interlacing theorem in (A.10). The

corresponding behavior of
{
α
(j)
p

}p
j=1

(see Figures A.1b,

A.1e, A.1h) is indeed intricate as mentioned above. Specifi-
cally, Fig. A.1e shows the effect of an increased noise level.
Fig. A.1h demonstrates the consequence of estimating a sub-
space of an incorrect dimension. Despite the complex be-

havior of
{
α
(j)
p

}p
j=1

, Figures A.1c, A.1f, A.1i present that

the resulting out-of-sample errors monotonically decrease
on average (where Sp is uniformly chosen at random) with
the increase in p (see solid blue curves in Figs. A.1c, A.1f,
A.1i). This is explained next.

We now proceed to the empirical results that explain the
decay of the out-of-sample error Eunsupout

(
Ûk;Sp

)
with the

increase in p. Figures A.1c, A.1f present the evolution of the
out-of-sample error for estimated subspaces of dimension
k = m (i.e., the true subspace dimension is known) and
Fig. A.1i corresponds to k = 10 < m (namely, an incorrect
dimension). Each figure contains two curves: the dotted
red curves present the sequence of errors Eunsupout

(
Ûk;Sp

)
induced by a single sequential construction of Sp; the solid
blue curves show the sequence of averages over the errors
Eunsupout

(
Ûk;Sp

)
induced by 500 different (and uniformly

chosen at random) sequential constructions of Sp.

Figures A.1c, A.1f, A.1i show that, on average, adding fea-
tures is beneficial and reduces Eunsupout

(
Ûk;Sp

)
. However,

for a specific and arbitrary order of adding features, there
is no guarantee that each added feature is indeed useful
(for example, see the dotted red curve in Fig. A.1i that
does not exhibit a monotonic decreasing trend). The results
also show that the deviation from monotonicity is larger for
higher noise levels and/or significant differences between
the dimensions of the estimated and true subspaces. Corre-
sponding experiments for the random subspace setting, are
provided in Fig. A.2 and further support the findings of the
Hadamard case discussed above.

The results in Figures A.1c,A.1f,A.1i are only for several
values of k. Therefore, we also present results for the entire
range possible for the dimension of the subspace estimate,
i.e., k = 1, . . . , d. This extensive set of experiments is pro-
vided in Fig. A.3 in a summarized form described as follows.
We again use the notation emphasizing the dependency of
the error on p, namely, Eunsupout

(
Ûk;Sp

)
. For the various

settings, we are interested in assessing the monotonic de-
crease of the error curve of Eunsupout

(
Ûk;Sp

)
over the (dis-

crete) range of p = k, . . . , d. Hence, we evaluate the mono-

tonicity of the discrete sequence
{
Eunsupout

(
Ûk;Sj

)}d
j=k

by computing the relative number of feature additions that
reduced (or kept) the error. Namely, this metric is defined as

η

({
Eunsupout

(
Ûk;Sj

)}d
j=k

)
,∑d

j=k+1 I
{
Eunsupout

(
Ûk;Sj

)
− Eunsupout

(
Ûk;Sj−1

)
≤ 0
}

d− k
(A.15)

where I{·} is an indicator function returning 1 if the con-
dition is applied on is true and 0 otherwise. Essentially,
the metric (A.15) summarizes the monotonicity of an entire
error curve into a single value in the range [0, 1]. An error

curve with η
({
Eunsupout

(
Ûk;Sj

)}d
j=k

)
= 1 is monotonic

decreasing over the entire range of p.

In Fig. A.3 we exhibit the values of the monotonicity met-
ric for a variety of settings, including subspaces in the
Hadamard and random forms (note that the horizontal axes
represent the dimension of the subspace estimate). Each
subfigure includes two curves: the dotted red curves present
the monotonicity metric values induced by individual se-
quential constructions of Sp; the solid blue curves show the
monotonicity metric values obtained for curves of errors
averaged over 500 experiments differing in their sequential
constructions of Sp. Clearly, specific orders of adding fea-
tures do not necessarily yield error curves that are purely
monotonically decreasing. However, the averaged error
curves are monotonic decreasing over the entire range of
p (and this is the case for any k; see blue-colored curves
in Fig. A.3). We take the results of these and numerous
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similar simulations with other parameter settings as strong
experimental evidence that, on average, Eunsupout

(
Ûk;Sp

)
decays with the increase in p.

B. Proofs and Additional Details for Section 4
B.1. On the Singular Values of Rectangular, Tall

Matrices with Orthonormal Columns

A tall, rectangular matrix W ∈ Rp×m (where p ≥ m) has
orthonormal columns if and only if all of its singular values
equal 1. This is proved next.

Consider a real matrix W ∈ Rp×m (where p ≥ m) with
orthonormal columns. Then, the corresponding SVD is
W = ΩΣΘT , where Ω and Θ are p× p and m×m real
orthonormal matrices, respectively, and Σ is a p×m real
diagonal matrix with m singular values {σi (W)}mi=1 on its
main diagonal. Since W has orthonormal columns, we can
write WTW = Im. Using the SVD form we get that

Im =
(
ΩΣΘT

)T
ΩΣΘT = ΘΣTΣΘT (B.1)

and this can be translated into

Im = ΣTΣ. (B.2)

Since singular values are, by definition, non-negative
real values, then Eq. (B.2) implies that σi (W) = 1 for
i = 1, . . . ,m. This proves the left-to-right direction of the
statement.

The second direction is proved as follows. Consider a
real matrix W ∈ Rp×m (where p ≥ m) with SVD
W = ΩΣΘT , where Ω and Θ are p × p and m × m
real orthonormal matrices, respectively, and Σ is a p×m
real diagonal matrix with m singular values σi (W) = 1
for i = 1, . . . ,m on its main diagonal. This means that
ΣTΣ = Im. Then,

WTW =
(
ΩΣΘT

)T
ΩΣΘT

= ΘΣTΣΘT = ΘΘT = Im
(B.3)

implying that the columns of W are orthonormal. This
completes the proof of the entire statement.

B.2. The Hard Orthonormality-Constraints Projection
Operator Thard

The operator projecting onto the hard orthonormality con-
straints was defined in Section 4.1 as follows. Consider
a matrix W(in) ∈ Rp×m (where p ≥ m), with the SVD
W(in) = ΩΣ(in)ΘT , where Ω and Θ are p × p and
m×m real orthonormal matrices, respectively, and Σ(in)

is a p × m real diagonal matrix with m singular values{
σi
(
W(in)

)}m
i=1

on its main diagonal. Then, projecting

W(in) onto the hard-orthonormality constraint via

W(out) = argmin
W∈Rp×m: WTW=Im

∥∥∥W −W(in)
∥∥∥2
F

(B.4)

induces the mapping W(out) , Thard
(
W(in)

)
, where

W(out) = ΩΣ(out)ΘT and the singular values along
the main diagonal of Σ(out) are σi

(
W(out)

)
= 1 for

i = 1, . . . ,m. A relevant proof is available in (Kahan, 2011)
and also in a more general form in (Keller, 1975).

B.3. The Soft Orthonormality-Constraints Projection
Operator Tα

The projection of a given matrix W(in) ∈ Rp×m (where
p ≥ m) was defined in the main paper (see Eq. (16)) as
follows. Consider the SVD W(in) = ΩΣ(in)ΘT , where
Ω and Θ are p× p and m×m real orthonormal matrices,
respectively, and Σ(in) is a p×m real diagonal matrix with
m singular values

{
σi
(
W(in)

)}m
i=1

on its main diagonal.
Then, the projection of W(in) on the soft-orthonormality
constraints is defined in its basic form as

W(out) = argmin
W∈Rp×m

∥∥∥W −W(in)
∥∥∥2
F

(B.5)

subject to |σ2
i (W)− 1| ≤ α for i = 1, ...,m

is equivalent to the thresholding mapping
W(out) , Tα

(
W(in)

)
where W(out) = ΩΣ(out)ΘT

and the singular values along the main diagonal of Σ(out)

are

σi

(
W(out)

)
= (B.6)

σi
(
W(in)

)
, if σi

(
W(in)

)
∈
[
τ lowα , τhighα

]
τ lowα , if σi

(
W(in)

)
< τ lowα

τhighα , if σi
(
W(in)

)
> τhighα

for i = 1, ...,m, where the threshold levels are defined by
τ lowα ,

√
max {0, 1− α} and τhighα ,

√
1 + α. Also re-

call that singular values are non-negative by their definition.

The relation between (B.6) and (B.5) is based on the exten-
sion of the case of strict orthonormality constraints that was
explained above and proved in (Kahan, 2011).

B.4. The Algorithm for Supervised Subspace Fitting
with Soft Orthonormality Constraints

We present here the explicit form of the method proposed
in Section 4.3 for supervised subspace fitting with soft or-
thonormality constraints, i.e., the numerical procedure to
address the problem in (15). We utilize the projected gra-
dient descent technique to obtain the procedure outlined in
Algorithm B.1.

Similar to Algorithm 1, we initialize the iterative process by
setting W(i=0) by projecting the closed-form solution of the
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Algorithm B.1 Supervised Subspace Fitting via Projected
Gradient Descent: Soft Orthonormality Constraints

Input: a dataset Dsup
S =

{(
x
(`)
S , z

(`)
)}n

`=1
, a coordi-

nate subset S, and a threshold level α ≥ 0

Initialize W(t=0) = Tα

((
ZX+
S
)T)

, t = 0

repeat
t← t+ 1

Y(t) = W(t−1) − µXS

((
W(t−1))T XS − Z

)T
W(t) = Tα

(
Y(t)

)
until stopping criterion is satisfied
Set Ûm,S = W(t)

Create Ûm based on Ûm,S and zeros at rows correspond-
ing to Sc
Output: Ûm

unconstrained supervised problem onto the orthonormality
constraint of interest (here using the operator Tα). The
gradient step size µ is updated in each iteration based on a
simple line search mechanism that scales the former step
size by finding the best within a set of update factors. This
line search approach was also used in the implementation
of Algorithm 1.

One can also implement the proposed Algorithms without
the line search mechanism and instead set a fixed gradient
step size based on the worst case gradient direction induced
by the quadratic cost functions examined in this paper.

B.5. Additional Details on the Experiments in Section 4
(Supervised Settings)

In Section 4 of the main paper we present fully-supervised
subspace fitting problems that are categorized into three
types: strict orthonormally constrained (Section 4.1), uncon-
strained (essentially, a regression problem form, see Section
4.2), and soft orthonotmally constrained (Section 4.3). The
empirical measurements of the out-of-sample errors of the
various supervised settings are provided together in Fig. 3b
(in the main text). We here elaborate on the settings of the
experiments presented in Fig. 3.

Since the problems are supervised, then the dimension m
of the true subspace is known. Accordingly, the results are
only for estimation of m-dimensional representations. As
usual, the data model is based on (1). Here the dimension of
the entire space is d = 64, the true subspace dimension is
m = 20, the number of examples is n = 32, and the noise
in the model corresponds to σε = 0.5. Each of the curves
in Fig. 3b presents the values Eunsupout

(
Ûk;Sp

)
versus p,

which is the number of features used for the actual learning.
The increase in p refers to a sequential extension of Sp to
include additional coordinates of features to be utilized.

The results in Fig. 3b present smooth curves by conduct-
ing the corresponding experiments 10 times with different
sequential constructions of Sp and then averaging the in-
duced errors. We present in Fig. B.1 the corresponding
non-smooth curves by conducting these experiments for a
specific (but arbitrary) order of adding features (i.e., without
averaging over multiple experiments).

Clearly, for the less orthonormally constrained settings (see
the upper curves in Fig. 3b), the shape of the error curves
resemble the double descent behavior, where the peak of
each of these curves is obtained for p = n−1 (the minus 1 is
due to the centering of the n examples given). Importantly,
after reaching the peak values, the out-of-sample errors
start to decrease as the number of features increases and
eventually achieving significantly lower error values than
in the underparameterized range (i.e., for p < n− 1). This
exemplifies the benefits of overparameterization in subspace
fitting problems that are fully supervised and may have soft
orthonormality constraints.

The settings that are nearly or (completely) orthonormally
constrained (see the lower curves in Fig. 3b) present trends
of decrease over the entire range of p. This may resemble
the results presented above for unsupervised and strictly
constrained subspace fitting. While these errors do not
follow the double descent trend, they do exhibit the benefits
of overparameterization even when the problem includes
strict (or nearly strict) orthonormality constraints.

C. Additional Details for Section 5: The
Algorithm for Semi-Supervised Subspace
Fitting

Section 5 established an approach for semi-supervised sub-
space fitting with a flexible level of orthonormality con-
straints. The basic optimization problem is presented in (18)
and does not have a closed-form solution. The following ex-
tends the details provided in the main text about the numeri-
cal procedure for addressing (18) using the projected gradi-
ent descent technique. Recall that in this semi-supervised
setting there are two datasets in use: a supervised set of

examples D̃sup
S =

{(
x
(`)
S , z

(`)
)}nsup

`=1
, and an unsupervised

set of examples D̃unsup
S =

{
x
(`)
S

}n
`=nsup+1

.

The proposed method is presented in Algorithm C.1. In
contrast to Algorithms 1 and B.1 that address fully su-
pervised settings, in the semi-supervised case the evolv-
ing solution is initialized to a random matrix, which con-
tains i.i.d. Gaussian components with zero mean and vari-
ance 1/p, that is projected onto the relevant orthonormality
constraint (via the operator Tα that for α = 0 is equiv-
alent to Thard). The data from the unsupervised exam-
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Algorithm C.1 Semi-Supervised Subspace Fitting via Pro-
jected Gradient Descent (Soft Orthonormality Constraints)

Input: datasets D̃sup
S =

{(
x
(`)
S , z

(`)
)}nsup

`=1
and

D̃unsup
S =

{
x
(`)
S

}n
`=nsup+1

, a coordinate subset S , and a

threshold level α ≥ 0
Initialize W(t=0) = Tα (H) where H is a p×m random
Gaussian matrix of i.i.d. components N (0, 1/p), t = 0
repeat
t← t+ 1
Y(t) = W(t−1) − µ ·Gsemisup

(
W(t−1))

W(t) = Tα
(
Y(t)

)
until stopping criterion is satisfied
Set Ûm,S = W(t)

Create Ûm based on Ûm,S and zeros at rows correspond-
ing to Sc
Output: Ûm

ples, Xunsup
S ,

[
x
(nsup+1)
S , . . . ,xnS

]
, is used in conjunc-

tion with the supervised examples in the gradient descent
steps throughout the iterations of the algorithm.

Since (18) extends (15) only with respect to the optimization
cost, then Algorithm C.1 simply extends Algorithm B.1 by
updating the gradient used in the descent stage of the tth

iteration with

Gsemisup
(
W(t)

)
, Xsup

S

((
W(t)

)T
Xsup
S − Zsup

)T
− 2Xunsup

S (Xunsup
S )

T
W(t)

+ Xunsup
S (Xunsup

S )
T

W(t)
(
W(t)

)T
W(t)

+ W(t)
(
W(t)

)T
Xunsup
S (Xunsup

S )
T

W(t) (C.1)

that was obtained by differentiation of
the semi-supervised cost function of (18),∥∥Zsup −WTXsup

S
∥∥2
F
+
∥∥(Ip −WWT

)
Xunsup
S

∥∥2
F

,
with respect to W.

The gradient step size µ is updated in each iteration based
on a simple line search approach that was described above
for Algorithm B.1.

The error curves in Figures 4a and 4b are smooth due to
averaging over 25 experiments with different sequential
orders of adding coordinates to S. In Figures C.1a and
C.1b we provide the corresponding error curves obtained
from a single experiment (i.e., for a single order of adding
coordinates to S).

D. Unsupervised Subspace Fitting with Soft
Orthonormality Constraints

In Section 3.1 we defined the unsupervised form of the linear
subspace fitting problem that included a strict orthonormal-
ity constraint and solved it via PCA. Now, we can define the
corresponding range of unsupervised problems with flexible
levels of orthonormality constraints, namely,

Ûm,S = argmin
W∈Rp×m

∥∥(Ip −WWT
)
XS
∥∥2
F

subject to |σ2
i (W)− 1| ≤ α for i = 1, ...,m, (D.1)

where we assume that m is known, XS ,
[
x
(1)
S , . . . ,x

(n)
S

]
is the data matrix corresponding to the (unsupervised)
dataset that was considered in Section 3, and α determines
the orthonormality constraint level. The optimization cost
in (D.1) reflects the unsupervised aspect of the problem. We
address (D.1) using the projected gradient descent method
and get the process described in Algorithm D.1. As be-
fore, the soft orthonormality constraints induce a projection
stage that uses the the soft-threshold projection Tα from
(B.6). Importantly, unlike (B.6) we set the lower threshold
to τ lowα ,

√
max {10−16, 1− α} that avoids clipping of

singular values to zero, and the upper threshold remains
the same, i.e., τhighα ,

√
1 + α. Avoiding clipping the sin-

gular values to zero is important for maintaining the full
rank of the evolving solution matrix throughout the (pro-
jected) gradient descent process. Unlike the supervised and
semi-supervised settings, we empirically found that avoid-
ing clipping singular values to zero is a crucial aspect in the
unsupervised problems when optimized via projected gradi-
ent descent. The gradient descent step (in the tth iteration)
is based on the gradient of the unsupervised cost of (D.1),
i.e.,

Gunsup
(
W(t)

)
, −2XSXT

SW(t)

+ XSX
T
SW(t)

(
W(t)

)T
W(t)

+ W(t)
(
W(t)

)T
XSX

T
SW(t). (D.2)

Note that due to the unsupervised form of the problem we
cannot initialize the process using the unconstrained linear
regression solution (as we did in the Algorithms developed
above for the fully supervised settings with soft orthonormal-
ity constraints). Therefore, the initialization in Algorithm
D.1 sets W(i=0) to a p × m matrix with i.i.d. Gaussian
entries N (0, 1/p).

The empirical results obtained using Algorithm D.1 for a
range of α values from zero (strictly constrained) to infin-
ity (unconstrained) showed that all the respective solutions
accurately follow the PCA solution obtained for the unsuper-
vised problem with a strict orthonormality constraint (i.e.,
the solution obtained in Section 3 for k = m).
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Algorithm D.1 Unsupervised Subspace Fitting via Pro-
jected Gradient Descent (Soft Orthonormality Constraints)

Input: a dataset DS =
{

x
(`)
S

}n
`=1

, a coordinate subset
S, m, and a threshold level α ≥ 0
Initialize W(t=0) = Tα (H) where H is a p×m random
Gaussian matrix of i.i.d. components N (0, 1/p), t = 0
repeat
t← t+ 1
Y(t) = W(t−1) − µ ·Gunsup

(
W(t−1))

W(t) = Tα
(
Y(t)

)
until stopping criterion is satisfied
Set Ûm,S = W(t)

Create Ûm based on Ûm,S and zeros at rows correspond-
ing to Sc
Output: Ûm
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Figure A.1. Empirical demonstration of the evolution of the components in (A.13) and the corresponding out-of-sample error
Eunsup
out

(
Ûk;Sp

)
, and their evolution with the increase in the number of features p. Each line of subfigures corresponds to a dif-

ferent experimental setting, yet, for all of them the true subspace is of the Hadamard form, d = 128, m = 40, and n = 70. The first line
of subfigures considers k = m = 40 and a noise level of σε = 0.1. The second line of subfigures corresponds to k = m = 40 and a noise
level of σε = 0.5. The third line of subfigures corresponds to k = 10 and a noise level of σε = 0.1. (a), (d) and (g) present the sorted
eigenvalues λ(sort[j])

Sp of the true covariance matrices corresponding to p-feature vectors (each of the curves corresponds to another value

of j). (b), (e) and (h) show the (sorted) coefficients α(j)
p defined in (A.14). (c), (f) and (i) exhibit the out-of-sample error Eunsup

out

(
Ûk;Sp

)
for a single instance of sequential increase of Sp (dotted red line) and for average over 500 different orders of sequentially increasing Sp
(solid blue line).
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Figure A.2. Empirical demonstration of the evolution of the components in (A.13) and the corresponding out-of-sample error
Eunsup
out

(
Ûk;Sp

)
, and their evolution with the increase in the number of features p. Each line of subfigures corresponds to a dif-

ferent experimental setting, yet, for all of them the true subspace is of the random form, d = 128, m = 40, and n = 70. The first line of
subfigures considers k = m = 40 and a noise level of σε = 0.1. The second line of subfigures corresponds to k = m = 40 and a noise
level of σε = 0.5. The third line of subfigures corresponds to k = 10 and a noise level of σε = 0.1. (a), (d) and (g) present the sorted
eigenvalues λ(sort[j])

Sp of the true covariance matrices corresponding to p-feature vectors (each of the curves corresponds to another value

of j). (b), (e) and (h) show the (sorted) coefficients α(j)
p defined in (A.14). (c), (f) and (i) exhibit the out-of-sample error Eunsup

out

(
Ûk;Sp

)
for a single instance of sequential increase of Sp (dotted red line) and for average over 500 different orders of sequentially increasing Sp
(solid blue line).
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Figure A.3. Empirical evaluation of the monotonicity metric, defined in (A.15), versus the estimated subspace dimension. All the evaluated
settings correspond to d = 128, m = 40, and n = 70. The results in (a) and (b) are for the Hadamard case with noise levels σε = 0.1
and σε = 0.5, respectively. The results in (c) and (d) are for the Random subspace construction with noise levels σε = 0.1 and σε = 0.5,
respectively. The dotted red curves obtained for a single instance of sequential increase of Sp, and the solid blue curves are monotonicity
evaluations based on the average out-of-sample errors obtained from 500 different orders of sequentially increasing Sp.
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Figure B.1. The (a) in-sample errors Esup
in

(
Ûm

)
and (b) out-of-sample errors Esup

out

(
Ûm

)
of fully-supervised learning versus the

number of parameters p. The errors correspond to a single sequential construction of Sp. Here d = 64, m = 20, n = 32, and σε = 0.5.
Each curve presents the results for a different level α of orthonormality constraints. The results here correspond to problems located along
the yellow-colored border line in Fig. 1.
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Figure C.1. The out-of-sample errors, Esup
out

(
Ûm

)
versus the number of parameters p. The errors correspond to a single experiment

with a single sequential order of adding coordinates to S. Here d = 64, m = 20 and n = 32. (a) Unconstrained settings (α → ∞):
Each curve presents the results for a different supervision level, nsup ∈ {0, 4, 8, 12, 16, 20, 24, 28, n = 32}. (b) Problems residing at the
supervision-orthonormality plane along the diagonal trajectory connecting the standard subspace fitting and the pure regression. Each
curve presents the results for a different pair of supervision and orthonormality constraint levels that jointly increase. For better visibility,
the curves corresponding to nsup ∈ {0, 4, 8, 12} are gray dotted-lines.


