
1 Supplementary Material

1.1 MCCFR with baseline-corrected values
Pseudocode for MCCFR with baseline-corrected values is given in Algorithm 1. Quantities of the
form σt(h, ·) refer to the vector of all quantities σt(h, a) for a ∈ A(h). The regrets and baseline
values are initialized to 0, and the strategies are initialized arbitrarily (e.g. to uniform random). The
inputs to the UPDATEBASELINE procedure depend on the particular baseline function used; for
example, the learned baselines use the current sampled value ûb(h, a|σt, zt) while the predictive
baseline uses the newly computed strategy σt+1 along with the baseline values of successor states.
This algorithm has the same worst-case iteration complexity as MCCFR without baselines, namely
O(d|Amax|) where d is the tree’s depth and |Amax| = maxh |A(h)|.

Algorithm 1 MCCFR w/ baseline

1: function MCCFR(h)
2: if h ∈ Z then return u(h)
3: σt(h, ·)← t−1

t σ
t−1(h, ·) + 1

tσ
t

4: sample action a ∼ qt(h, ·)
5: ûb((ha)|σt, zt)← MCCFR((ha))
6: ûb(h, a

′|σt, zt)← bt(h, a′) ∀a′ 6= a
7: ûb(h, a|σt, zt)← bt(h, a) + 1

qt(h,a) (ûb((ha)|σt, zt)− bt(h, a))

8: ûb(h|σt, zt)←
∑
a′ σ

t(h, a′)ûb(h, a
′|σt, zt)

9: if P (h) = 1 then

10: rt(I(h), a)← πσ
t

2 (h)

πqt (h)
(ûb(h, ·|σt, zt)− ûb(h|σt, zt))

11: else if P (h) = 2 then

12: rt(I(h), a)← πσ
t

1 (h)

πqt (h)
(−ûb(h, ·|σt, zt) + ûb(h|σt, zt))

13: end if
14: Rt(I(h), ·)← Rt−1(I(h), ·) + rt(I(h), ·)
15: σt+1(h, ·)← REGRETMATCHING(Rt(I(h), ·))
16: bt+1(h, a)← UPDATEBASELINE(·)
17: return ûb(h|σt, zt)
18: end function

1.2 Proof of Theorem 1
This proof is a simplified version of the proof of Lemma 5 in Schmid et al. [4].

We directly analyze the expectation of the baseline-corrected utility:

Ezt
[
ûb(h, a|σt, zt) | zt w h

]
= Pr

[
(ha) v zt | h v zt

](1

qt(h, a)

(
Ezt

[
ûb((ha)|σt, zt) | zt w (ha)

]
− bt(h, a)

)
+ bt(h, a)

)
+ Pr

[
(ha) 6v zt | h v zt

]
(bt(h, a))

= qt(h, a)

(
1

qt(h, a)

(
Ezt

[
ûb((ha)|σt, zt) | zt w (ha)

]
− bt(h, a)

)
+ bt(h, a)

)
+ (1− qt(h, a))(bt(h, a))

= Ezt
[
ûb((ha)|σt, zt) | zt w (ha)

]
We now proceed by induction on the height of (ha) in the tree. If (ha) has height 0, then (ha) ∈ Z

and Ezt [ûb(h, a|σt, zt) | zt w h] = Ezt [ûb((ha)|σt, zt) | zt w (ha)] = u((ha)) by definition.

1

For the inductive step, consider arbitrary h, a such that (ha) has height more than 0. We assume
that Ezt [ûb(h

′, a′|σt, zt) | zt w h′] = u((h′a′)|σt) for all h′, a′ such that (h′a′) has smaller height
than (ha). We then have

Ezt
[
ûb(h, a|σt, zt) | zt w h

]
= Ezt

[
ûb((ha)|σt, zt) | zt w (ha)

]
=

∑
a′∈A((ha))

σt((ha), a′)Ezt
[
ûb((ha), a′|σt, zt) | zt w (ha)

]
=

∑
a′∈A((ha))

σt((ha), a′)u((haa′)|σt) by inductive hypothesis

= u((ha)|σt) by definition

We are able to apply the inductive hypothesis because (haa′) is a suffix of (ha) and thus must have
smaller height. The proof follows by induction.

1.3 Proof of Theorem 2
Before proving Theorem 2, we first examine how the full (trajectory) variance can be decomposed
into contributions from individual actions.

Lemma 1. For any baseline function bt and any h ∈ H

Varzt
[
ûb(h|σt, zt)|zt w h

]
=
∑

a∈A(h)

(σt(h, a))
2

qt(h, a)
Varzt

[
ûb((ha)|σt, zt)

]
+ Vara

[
σt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)]

Proof. We use the law of total variance, conditioning on which a is sampled at h. This gives us

Varzt
[
ûb(h|σt, zt)|zt w h

]
= Ea

[
Varzt

[
ûb(h|σt, zt)

∣∣zt w (ha)
]]

+ Vara
[
Ezt

[
ûb(h|σt, zt)

∣∣zt w (ha)
]]

(1)

We analyze each of these terms separately.
First, to analyze the left summand in (1), we note that if ha @ zt then by the recursive definition

of baseline-corrected values

ûb(h|σt, zt) =
σt(h, a)

qt(h, a)
ûb((ha)|σt, zt)− σt(h, a)

qt(h, a)
bt(h, a) +

∑
a′∈A(h)

σt(h, a′)bt(h, a′)

Only the first term depends on the sampled trajectory zt, and thus

Ea
[
Varzt

[
ûb(h|σt, zt)

∣∣zt w (ha)
]]

= Ea
[
Varzt

[
σt(h, a)

qt(h, a)
ûb((ha)|σt, zt)

∣∣∣∣zt w (ha)

]]
= Ea

[(
σt(h, a)

qt(h, a)

)2

Varzt
[
ûb((ha)|σt, zt)

∣∣zt w (ha)
]]

=
∑

a∈A(h)

(σt(h, a))
2

qt(h, a)
Varzt

[
ûb((ha)|σt, zt)

∣∣zt w (ha)
]

(2)

2

Next, we analyze the inner expectation of the right summand of (1)

Ezt
[
ûb(h|σt, zt)

∣∣zt w (ha)
]

=
∑
a′

σt(h, a′)bt(h, a′) +
σt(h, a)

qt(h, a)

(
Ezt

[
ûb((ha)|σt, zt)

]
− bt(h, a)

)
=
∑
a′

σt(h, a′)bt(h, a′) +
σt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)
The first term here doesn’t depend on the sampled a, giving us

Vara
[
Ezt

[
ûb(h|σt, zt)

∣∣(ha) v zt
]]

= Vara

[
σt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)]
(3)

Combining (1), (2), and (3) completes the proof.

Lemma 1 decomposes the variance into a part from the immediately sampled action, and a part
from the remainder of the sampled trajectory. We extend this to completely decompose the trajectory
variance.

Lemma 2. For any baseline function bt and any h, a

Varzt
[
ûb(h|σt, zt)|zt w h

]
=
∑
h′wh

(πσ
t

(h, h′))2

πqt(h, h′)
Vara′

[
σt(h′, a′)

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

)]

Proof. We proceed by induction on the height of h in the tree. If h has height 0, then A(h) = ∅,
and Varzt [ûb(h|σt, zt)|zt w h] = 0. Otherwise, we begin from Lemma 1 and apply the inductive
hypothesis for h′ with height less than that of h. This gives

Varzt
[
ûb(h|σt, zt)|zt w h

]
=

∑
a∈A(h)

(σt(h, a))
2

qt(h, a)
Varzt

[
ûb((ha)|σt, zt)

]
+ Vara

[
σt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)]

=
∑

a∈A(h)

(σt(h, a))
2

qt(h, a)

∑
h′w(ha)

(πσ
t

((ha), h′))2

πqt((ha), h′)
Vara′

[
σt(h′, a′)

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

)]

+ Vara

[
σt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)]
=

∑
a∈A(h)

∑
h′w(ha)

(πσ
t

(h, h′))2

πqt(h, h′)
Vara′

[
σt(h′, a′)

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

)]

+ Vara

[
σt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)]
=
∑
h′wh

(πσ
t

(h, h′))2

πqt(h, h′)
Vara′

[
σt(h′, a′)

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

)]
The lemma follows by induction.

Proof of Theorem 2. Starting from Lemma 2, we first bound the variance of history values

Varzt
[
ûb(h|σt, zt)|zt w h

]
=
∑
h′wh

(πσ
t

(h, h′))2

πqt(h, h′)
Vara′

[
σt(h′, a′)

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

)]

3

≤
∑
h′wh

(πσ
t

(h, h′))2

πqt(h, h′)
Ea′

[(
σt(h′, a′)

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

))2
]

=
∑
h′wh

(πσ
t

(h, h′))2

πqt(h, h′)

∑
a′∈A(h′)

(σt(h′, a′))
2

qt(h′, a′)

(
u((h′a′)|σt)− bt(h′, a′)

)2
=

∑
h′wh

a′∈A(h′)

(πσ
t

(h, (h′a′)))2

πqt(h, (h′a′))

(
u((h′a′)|σt)− bt(h′, a′)

)2
(4)

We then reformulate the variance of the history action value ûb(h, a|σt, zt) in terms of the
variance of the succeeding history value ûb((ha)|σt, zt). To do this, we apply the law of total
variance conditioning on the random variable 1((ha) v zt) which indicates whether a is sampled at
h.

Varzt
[
ûb(h, a|σt, zt)

∣∣zt w h]
= Varzt

[
1((ha) v zt)
qt(h, a)

(
ûb((ha)|σt, zt)− bt(h, a)

)
+ bt(h, a)

∣∣∣∣zt w h]
= Varzt

[
1((ha) v zt)
qt(h, a)

(
ûb((ha)|σt, zt)− bt(h, a)

)∣∣∣∣zt w h]
= E

[
Varzt

[
1((ha) v zt)
qt(h, a)

(
ûb((ha)|σt, zt)− bt(h, a)

)∣∣∣∣1((ha) v zt)
]]

+ Var

[
Ezt

[
1((ha) v zt)
qt(h, a)

(
ûb((ha)|σt, zt)− bt(h, a)

)∣∣∣∣1((ha) v zt)
]]

= E
[
1((ha) v zt)
(qt(h, a))2

Varzt
[
ûb((ha)|σt, zt)

∣∣1((ha) v zt)
]]

+ Var

[
1((ha) v zt)
qt(h, a)

(
u((ha)|σt)− bt(h, a)

)]
=

1

qt(h, a)
Varzt

[
ûb((ha)|σt, zt)

∣∣zt w (ha)
]

+
1

(qt(h, a))2
(
u((ha)|σt)− bt(h, a)

)2
Var

[
1((ha) v zt)

]
=

1

qt(h, a)
Varzt

[
ûb((ha)|σt, zt)

∣∣zt w (ha)
]

+
1− qt(h, a)

qt(h, a)

(
u((ha)|σt)− bt(h, a)

)2
≤ 1

qt(h, a)

(
Varzt

[
ûb((ha)|σt, zt)

∣∣zt w (ha)
]

+
(
u((ha)|σt)− bt(h, a)

)2)
(5)

Combining (4) and (5), we get

Varzt
[
ûb(h, a|σt, zt)

∣∣zt w h]
≤ 1

qt(h, a)

(∑
h′w(ha)
a′∈A(h′)

(πσ
t

((ha), (h′a′)))2

πqt((ha), (h′a′))

(
u((h′a′)|σt)− bt(h′, a′)

)2

+
(
u((ha)|σt)− bt(h, a)

)2)
=

1

qt(h, a)

∑
(h′a′)w(ha)

(πσ
t

((ha), (h′a′)))2

πqt((ha), (h′a′))

(
u((h′a′)|σt)− bt(h′, a′)

)2
=

∑
(h′a′)w(ha)

(πσ
t

((ha), (h′a′)))2

πqt(h, (h′a′))

(
u((h′a′)|σt)− bt(h′, a′)

)2

4

1.4 Public trees
There are multiple sources of variance when computing the regret at an information set in MCCFR.
One form of variance comes from sampling actions (and recursively, trajectories) from the information
set, rather than walking the full subtree. A second form of variance comes from sampling only one of
the histories in the information set itself. Our baseline framework reduces the first kind of variance,
but does not take the second form of variance into account.

One approach to combating this single-history variance could be to extend the use of the baseline;
analogous to how we created a control variate from using bt(h, a) to evaluate unsampled actions a, we
could also create a control variate that uses bt(h′, a) to evaluate all unsampled h′ ∈ I(h). However,
this requires evaluating alternate histories along every step of the sampled trajectory, meaning that a
single iteration of MCCFR goes from complexity O(d|Amax|) to O(d|Amax||Imax)|.

A second approach, and the one we present in this section, is to change the sampling method used.
Rather than using a baseline to consider each alternate history in the information set, we directly
evaluate all such histories. Intuitively, this can be done by only sampling actions that are publicly
observable, and walking all actions that change the game’s hidden state. This approach was used by
Schmid et al. [4], but was never formalized. We formalize the algorithm here, after presenting some
additional assumptions and definitions.

We assume that the EFG is timeable [1], which informally means that no player can gain additional
information by tracking how much time elapses while they are not acting. Formally, this means that
we can assign a value time(h) to every h ∈ H such that time(h) = time(h′) for any h′ ∈ IP (h)(h),
and time(h) < time(h′) for any h′ w h. Every game played by humans must be timeable, or else the
human could distinguish histories in the same information set by tracking elapsed time. If a game is
timeable, players always observe the timing when they are acting, so there must be some strategically
identical game where they observe the timing even when not acting. Thus we will assume that our
games satisfy this requirement.

We now introduce the concept of a public state [2], which groups histories based on information
available to all players, or informally, based on whether they distinguishable to an outside observer.
Formally, a public state is a set of histories that is (minimally) closed under the information set
relation for all players. Let S be the set of public states (which partitions H), and S(h) ∈ S be the
public state that h belongs to. By assumption that all players observe the game’s timing, necessarily
time(h) = time(h′) if S(h) = S(h′). In turn, this means that if h v h′, then S(h) 6= S(h′). We also
assume for simplicity that if S(h) = S(h′), then P (h) = P (h′). If necessary, this can be made true
for any timeable game by splitting information sets and adding dummy actions, without strategically
changing the game.

We define T (S) to be the set of successor public states to S: S′ ∈ T (S) if there is some h ∈ S,
a ∈ A(h), and h′ ∈ S′ such that (ha) = h′. The successor relation defines the edges of a public tree,
where the public states are nodes. It should be noted that more than one action can lead to the same
successor public state when some player doesn’t observe the action, and that one action can lead to
more than one successor public state if some previously private information becomes public.

In the statement of Theorem 3, we used sampt(h) to notate whether h was sampled on iteration t.
With the notation introduced here, we can formalize this by defining sampt(h) to occur if and only
if h′ v zt for some h′ ∈ S(h) and some zt ∈ Zt. For clarity, we thus symbolize this relation as
S(h) v Zt.

1.4.1 Public Outcome Sampling

We now define our MCCFR variant, which we call Public Outcome Sampling (POS). Instead of
walking trajectories through the EFG tree by sampling actions, POS walks trajectories through the
public tree by sampling successor public states.

For public state S, let Ii(S) ⊆ Ii be the collection of player i information sets contained within S.
While walking down the tree, POS keeps track of reach probabilities πσ

t

i (Ii) for each Ii ∈ Ii(S) and
each player i at public state S. To recurse, it samples some successor S′ ∈ T (S) using a probability
distribution qt(S) ∈ ∆T (S). It updates the reach probabilities to πσ

t

i (Ii) for each Ii ∈ Ii(S′), using

5

the current strategy σt. Ultimately, the recursion reaches a public state which only contains terminal
nodes (as the end of the game is publicly observable). This public state, which defines the sampled
trajectory in the public tree, we label Zt. The terminal histories are evaluated as u(z) for each z ∈ Zt.

Walking back up the tree, at each recursion step we pass back the utilities ûb(h′|σt, Zt) for each
h′ ∈ S′. From these, we apply a baseline and recursively calculate utilities as

ûb(h, a|σt, Zt) =
1(S((ha)) v Zt)
qt(S(h), S((ha))

(
ûb((ha)|σt, Zt)− bt(h, a)

)
+ bt(h, a) (6)

ûb(h|σt, Zt) =
∑

a∈A(h)

σt(h, a)ûb(h, a|σt, Zt) (7)

for each h ∈ S and a ∈ A(h). We then use these values to calculate regrets rt(I, a) for each
I ∈ Ii(S) and update the saved regrets.

Algorithm 2 gives pseudocode for MCCFR with POS.
Updating a public state S with this algorithm requires walking through all of the possible his-

tories in the public state, as well as all of the actions possible at each history, giving a complexity
O(|S||Amax|), or equivalently O(|Ii(S)||I−i(S)||Amax|). However, the computations for each infor-
mation set I ∈ Ii(S) with acting player i can be done completely independently, allowing for easy
parallelization (e.g. on a GPU) to achieve complexity O(|I−i(S)||Amax|). This approach was taken
with the non-sampling algorithm used in DeepStack [3].

1.5 Proof of Theorem 3
We begin by proving the equivalence of the two possible definitions for the predictive baseline. This
lemma is independent of sampling scheme.

Lemma 3. Let h, a be such that (ha) v zt, and define bt+1 according to the predictive baseline
update (equation (7) in the main paper). Then we have that

bt+1(h, a) = ûb((ha)|σt+1, zt).

Proof. We prove this by induction on the tree. Our base case is that (ha) = zt, in which case by
definition bt+1(h, a) = u(zt) = ûb((ha)|σt+1, zt).

For the inductive step, assume that the statement holds for all (h′a′) A (ha) such that (h′a′) v zt.
Consider some arbitrary (h′a′) A (ha). If (h′a′) v zt, then the inductive hypothesis holds and we
have

ûb(h
′, a′|σt+1, zt) =

1((h′a′) v zt)
qt(h′, a′)

(
ûb((h

′a′)|σt+1, zt)− bt+1(h′, a′)
)

+ bt+1(h′, a′)

=
1((h′a′) v zt)
qt(h′, a′)

(
bt+1(h′, a′)− bt+1(h′, a′)

)
+ bt+1(h′, a′)

= bt+1(h′, a′)

On the other hand, if (h′a′) 6v zt, then

ûb(h
′, a′|σt+1, zt) =

1((h′a′) v zt)
qt(h′, a′)

(
ûb((h

′a′)|σt+1, zt)− bt+1(h′, a′)
)

+ bt+1(h′, a′)

=
0

qt(h′, a′)

(
ûb((h

′a′)|σt+1, zt)− bt+1(h′, a′)
)

+ bt+1(h′, a′)

= bt+1(h′, a′)

6

Thus, either way ûb(h′, a′|σt+1, zt) = bt+1(h′, a′) for any (h′a′) A (ha), which gives us

bt+1(h, a) =
∑

a′∈A((h,a))

σt+1((ha), a′)bt+1((ha), a′)

=
∑

a′∈A((h,a))

σt+1((ha), a′)ûb((ha), a′|σt+1, zt)

= ûb((ha)|σt+1, zt)

Next, we show that the recursive definition of the predictive baseline is maintained as an invariant
under POS.

Lemma 4. After t iterations of POS updates, for any non-terminal h, a the predictive baseline
satisfies

bt+1(h, a) =
∑
a′

σt+1((ha), a′)bt+1((ha), a′) (8)

Proof. If (ha) is sampled on iteration t, then the statement holds trivially from the predictive baseline
definition. We thus assume that S((ha)) 6v Zt, and proceed by induction on time.

For our base case, t = 0, we have that b1(h, a) = 0 for all h, a.
For the inductive step, we assume that the lemma holds for time t, and we show that it then

follows for time t + 1. Because we assume S((ha)) 6v Zt, we have that bt+1(h, a) = bt(h, a) by
definition of the predictive baseline. In addition, we must have that S((haa′)) 6v Zt for all a′ because
S((ha)) v S((haa′)), so bt+1((ha), a′) = bt((ha), a′). Thus

bt+1(h, a) = bt(h, a) by predictive baseline definition

=
∑

a′∈A((ha)

σt((ha), a′)bt((ha), a′) by inductive hypothesis

=
∑

a′∈A((ha)

σt((ha), a′)bt+1((ha), a′)

This completes the inductive step and the lemma follows.

We now introduce the following definition that tracks sampled values of terminal histories:

ũt(z) =

{
u(z) if z ∈ Zτ for any τ < t

0 otherwise
(9)

We show that the invariant maintained under POS is an expectation over these values.

Lemma 5. After t iterations of POS updates, for all h, a the predictive baseline satisfies

bt+1(h, a) =
∑

z∈Z[(ha)]

πσ
t+1

((ha), z)ũt+1(z) (10)

Proof. We proceed by induction on the tree. For base case, we have (ha) = z for some z ∈ Z. If z
has been sampled, then bt+1(h, a) = u(z) = ũt+1(z) by definition of the predictive baseline. If it
hasn’t been sampled, then bt+1(h, a) = 0 = ũt+1(z).

7

For the inductive step, we assume the lemma holds for all (h′a′) A (ha). Then we have that

bt+1(h, a)

=
∑

a′∈A((ha))

σt+1((ha), a′)bt+1((ha), a′) by Lemma 4

=
∑

a′∈A((ha))

σt+1((ha), a′)
∑

z∈Z[(haa′)]

πσ
t+1

((haa′), z)ũt+1(z) by inductive hypothesis

=
∑

a′∈A((ha))

∑
z∈Z[(haa′)]

πσ
t+1

((ha), z)ũt+1(z)

=
∑

z∈Z[(ha)]

πσ
t+1

((ha), z)ũt+1(z)

To prove Theorem 3, we note that if Z[h] ⊆
⋃
τ<t Z

τ , then by definition ũt(z) = u(z) for any
z ∈ Z[h]. Thus we have

bt(h, a) =
∑

z∈Z[(ha)]

πσ
t

((ha), z)ũt(z) by Lemma 5

=
∑

z∈Z[(ha)]

πσ
t

((ha), z)u(z)

= u((ha)|σt) by definition

1.6 Baselines in Monte Carlo continual resolving
Figure 1 is an expanded version of Figure 5 from the main paper, showing results for MCCR with
additional baseline functions.

References
[1] Sune K. Jakobsen, Troels B. Sørensen, and Vincent Conitzer. Timeability of extensive-form games. In

Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, 2016.

[2] Michael Johanson, Kevin Waugh, Michael Bowling, , and Martin Zinkevich. Accelerating best response
calculation in large extensive games. In Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence, 2011.

[3] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor Davis, Kevin
Waugh, Michael Johanson, and Michael H. Bowling. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356 6337:508–513, 2017.

[4] Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and Michael Bowling. Variance
reduction in monte carlo counterfactual regret minimization (VR-MCCFR) for extensive form games using
baselines. In Proceedings of the The Thirty-Third AAAI Conference on Artificial Intelligence, 2019.

8

10
0

10
1

10
2

10
3

10
4

maximum evaluations

10
−2

10
−1

10
0

ex
pl

oi
ta

bi
lit

y
(c

hi
ps

/g
am

e)

MCCFR w/ no baseline
MCCFR w/ history baseline
MCCFR w/ infoset baseline
MCCFR w/ predictive baseline
CFR
CFR+

Figure 1: Exploitability of continual resolving strategies based on the maximum number of evaluations allowed
per resolve.

9

Algorithm 2 MCCFR w/ POS and baseline

1: function POS-MCCFR(S)
2: if S ⊆ Z then return {u(h) | ∀h ∈ S}
3: for I ∈ IP (S)(S) do
4: σt(I, ·)← t−1

t σ
t−1(I, ·) + 1

tσ
t

5: end for
6: sample successor S′ ∼ qt(S, ·)
7: {ûb(h′|σt, Zt) | ∀h′ ∈ S′} ← POS-MCCFR(S′)
8: for I ∈ IP (S) do
9: for h ∈ I do

10: for a ∈ A(h) do
11: if (ha) ∈ S′ then
12: ûb(h, a|σt, Zt)← bt(h, a) + 1

qt(S,S′) (ûb((ha)|σt, Zt)− bt(h, a))

13: else
14: ûb(h, a|σt, Zt)← bt(h, a)
15: end if
16: end for
17: ûb(h|σt, Zt)←

∑
a′ σ

t(h, a′)ûb(h, a
′|σt, Zt)

18: end for
19: if P (h) = 1 then
20: rt(I, a)← 1

πqt (S)

∑
h∈I π

σt

2 (h) (ûb(h, ·|σt, Zt)− ûb(h|σt, Zt))
21: else if P (h) = 2 then
22: rt(I, a)← 1

πqt (S)

∑
h∈I π

σt

1 (h) (−ûb(h, ·|σt, Zt) + ûb(h|σt, Zt))
23: end if
24: Rt(I, ·)← Rt−1(I, ·) + rt(I, ·)
25: end for
26: for I ∈ IP (S)(S) do
27: σt+1(I, ·)← REGRETMATCHING(Rt(I, ·))
28: end for
29: for I ∈ IP (S) do
30: for h ∈ I do
31: for a ∈ A(h) do
32: if (ha) ∈ S′ then
33: bt+1(h, a)← UPDATEBASELINE(·)
34: end if
35: end for
36: end for
37: end for
38: return {ûb(h|σt, Zt) | ∀h ∈ S}
39: end function

10

	Supplementary Material
	MCCFR with baseline-corrected values
	Proof of Theorem 1
	Proof of Theorem 2
	Public trees
	Public Outcome Sampling

	Proof of Theorem 3
	Baselines in Monte Carlo continual resolving

