A. Proof of Theorem 3

Our strategy is to form a Jordan decomposition of *A* and show that the desired bounds hold for each Jordan block. To this end, we first prove the following lemmas.

Lemma 8. If J is a Jordan block with nonzero eigenvalue, then for any $\epsilon > 0$ there is a complex matrix D such that J + D is diagonalizable in \mathbb{C} and

$$\frac{\|(J+D)^n - J^n\|}{\|J^n\|} \le n\epsilon.$$

Proof. The powers of J look like

$$I^{n} = \begin{bmatrix} \binom{n}{0}\lambda^{n} & \binom{n}{1}\lambda^{n-1} & \binom{n}{2}\lambda^{n-2} & \cdots \\ & \binom{n}{0}\lambda^{n} & \binom{n}{1}\lambda^{n-1} & \cdots \\ & & \binom{n}{0}\lambda^{n} & \cdots \\ & & & \ddots \end{bmatrix}.$$

More concisely,

$$[J^n]_{jk} = \begin{cases} \binom{n}{k-j} \lambda^{n-k+j} & \text{if } 0 \le k-j \le n \\ 0 & \text{otherwise.} \end{cases}$$

We choose *D* to perturb the diagonal elements of *J* towards zero; that is, let *D* be a diagonal matrix whose elements are in $[-\epsilon\lambda, 0)$ and are all different. This shrinks the diagonal elements by a factor no smaller than $(1 - \epsilon)$. So the powers of (J + D) are, for $0 \le k - j \le n$:

$$[(J+D)^n]_{jk} = c_{jk} [J^n]_{jk}$$
$$c_{jk} \ge (1-\epsilon)^{n-k+j}$$

Simplifying the bound on c_{ik} (Kozma, 2019):

$$c_{jk} \ge 1 - (n - k + j)\epsilon \ge 1 - n\epsilon.$$
⁽⁴⁾

The elements of J^n , for $0 \le k - j \le n$, are perturbed by:

$$[(J+D)^n - J^n]_{jk} = (c_{jk} - 1)[J^n]_{jk}$$
$$[(J+D)^n - J^n]_{jk} \le n\epsilon |[J^n]_{jk}|.$$

Since $\|\cdot\|$ is monotonic,

$$\frac{\|(J+D)^n - J^n\|}{\|(J+D)^n - J^n\|} \le n\epsilon.$$

Lemma 9. If J is a Jordan block with zero eigenvalue, then for any $\epsilon > 0, r > 0$, there is a complex matrix D such that J + D is diagonalizable in \mathbb{C} and

$$\|(J+D)^n - J^n\| \le r^n \epsilon.$$

Proof. Since the diagonal elements of J are all zero, we can't perturb them toward zero as in Lemma 8; instead, let

$$\delta = \min\left\{\frac{r}{2}, \left(\frac{r}{2}\right)^d \frac{\epsilon}{d}\right\}$$

and let *D* be a diagonal matrix whose elements are in $(0, \delta]$ and are all different. Then the elements of $((J + D)^n - J^n)$ are, for $0 \le k - j < \min\{n, d\}$:

$$[(J+D)^n - J^n]_{jk} \le \binom{n}{k-j} \delta^{n-k+j}$$

$$< 2^n \delta^{n-k+j}$$

$$\le 2^n \delta^{\min\{0,n-d\}+1},$$

and by monotonicity,

$$||(J+D)^n - J^n|| \le 2^n \delta^{\min\{0,n-d\}+1} d.$$

To simplify this bound, we consider two cases. If $n \le d$,

$$\|(J+D)^n - J^n\| = 2^n \delta d$$

$$\leq 2^n \left(\frac{r}{2}\right)^d \frac{\epsilon}{d} d$$

$$= 2^{n-d} r^d \epsilon$$

$$\leq r^n \epsilon.$$

If n > d,

$$\|(J+D)^{n} - J^{n}\| = 2^{n} \delta^{n-d+1} d$$

$$\leq 2^{n} \delta^{n-d} \left(\frac{r}{2}\right)^{d} \frac{\epsilon}{d} d$$

$$\leq 2^{n} \left(\frac{r}{2}\right)^{n-d} \left(\frac{r}{2}\right)^{d} \frac{\epsilon}{d} d$$

$$= r^{n} \epsilon.$$

Now we can combine the above two lemmas to obtain the desired bounds for a general matrix.

Proof of Theorem 3. Form the Jordan decomposition $A = PJP^{-1}$, where

$$I = \begin{bmatrix} J_1 & & \\ & J_2 & \\ & & \ddots & \\ & & & J_p \end{bmatrix}$$

and each J_j is a Jordan block. Let $\kappa(P) = ||P|| ||P^{-1}||$ be the Frobenius condition number of *P*.

If *A* is nilpotent, use Lemma 9 on each block J_j to find a D_j so that $||(J_j + D_j)^n - J_j^n|| \le \frac{r^n \epsilon}{\kappa(P)p}$. Combine the D_j

into a single matrix *D*, so that $||(J + D)^n - J^n|| \le \frac{r^n \epsilon}{\kappa(P)}$. Let $E = PDP^{-1}$, and then

$$\|(A+E)^n - A^n\| = \|P((J+D)^n - J^n)P^{-1}\|$$

$$\leq \kappa(P)\|(J+D)^n - J^n\|$$

$$\leq \kappa(P)\frac{r^n\epsilon}{\kappa(P)}$$

$$= r^n\epsilon.$$

If A is not nilpotent, then for each Jordan block J_i :

- If J_j has nonzero eigenvalue, use Lemma 8 to find a D_j such that $||(J_j + D_j)^n J_j^n|| \le \frac{n\epsilon}{\kappa(P)^2} \frac{||J^n||}{2p}$.
- If J_j has zero eigenvalue, use Lemma 9 to find a D_j such that $||(J_j + D_j)^n J_j^n|| \le \frac{n\epsilon}{\kappa(P)^2} \frac{\rho(J)^n}{2p}$.

Combine the D_j into a single matrix D. Then the total absolute error of all the blocks with nonzero eigenvalue is at most $\frac{n\epsilon}{\kappa(P)^2} \frac{\|J^n\|}{2}$. And since $\rho(J)^n \leq \|J^n\|$, the total absolute error of all the blocks with zero eigenvalue is also at most $\frac{n\epsilon}{\kappa(P)^2} \frac{\|J^n\|}{2}$. So the combined total is

$$\|(J+D)^n - J^n\| \le \frac{n\epsilon}{\kappa(P)^2} \|J^n\|$$

Finally, let $E = PDP^{-1}$, and

$$\begin{split} \|(A+E)^n - A^n\| &= \|P((J+D)^n - J^n)P^{-1}\| \\ &\leq \kappa(P)\|((J+D)^n - J^n)\| \\ &\leq \frac{n\epsilon}{\kappa(P)}\|J^n\| \\ &\leq \frac{n\epsilon}{\kappa(P)}\|P^{-1}A^nP\| \\ &\leq n\epsilon\|A^n\| \\ \\ \frac{\|(A+E)^n - A^n\|}{\|A^n\|} &\leq n\epsilon. \end{split}$$

B. Proof of Proposition 5

First, consider the \oplus operation. Let $\mu_1(a)$ (for all *a*) be the transition matrices of M_1 . For any $\epsilon > 0$, let $E_1(a)$ be the perturbations of the $\mu_1(a)$ such that $||E_1(a)|| \le \epsilon/2$ and the $\mu_1(a) + E_1(a)$ (for all *a*) are simultaneously diagonalizable. Similarly for M_2 . Then the matrices $(\mu_1(a) + E_1(a)) \oplus (\mu_2(a) + E_2(a))$ (for all *a*) are simultaneously diagonalizable, and

$$\begin{aligned} \|(\mu_1(a) + E_1(a)) \oplus (\mu_2(a) + E_2(a)) - \mu_1(a) \oplus \mu_2(a)\| \\ &= \|E_1(a) \oplus E_2(a)\| \\ &\leq \|E_1(a)\| + \|E_2(a)\| \\ &\leq \epsilon. \end{aligned}$$

Next, we consider the \sqcup operation. Let d_1 and d_2 be the number of states in M_1 and M_2 , respectively. Let $E_1(a)$ be the perturbations of the $\mu_1(a)$ such that $||E_1(a)|| \le \epsilon/(2d_2)$ and the $\mu_1(a) + E_1(a)$ are simultaneously diagonalizable by some matrix P_1 . Similarly for M_2 .

Then the matrices $(\mu_1(a) + E_1(a)) \sqcup (\mu_2(a) + E_2(a))$ (for all *a*) are simultaneously diagonalizable by $P_1 \otimes P_2$. To see why, let $A_1 = \mu_1(a) + E_1(a)$ and $A_2 = \mu_2(a) + E_2(a)$ and observe that

$$(P_1 \otimes P_2)(A_1 \sqcup A_2)(P_1 \otimes P_2)^{-1} = (P_1 \otimes P_2)(A_1 \otimes I + I \otimes A_2)(P_1^{-1} \otimes P_2^{-1}) = P_1 A_1 P_1^{-1} \otimes I + I \otimes P_2 A_2 P_2^{-1} = P_1 A_1 P_1^{-1} \sqcup P_2 A_2 P_2^{-1},$$

which is diagonal.

To show that $(\mu_1(a) + E_1(a)) \sqcup (\mu_2(a) + E_2(a))$ is close to $(\mu_1(a) \sqcup \mu_2(a))$, observe that

$$(\mu_1(a) + E_1(a)) \sqcup (\mu_2(a) + E_2(a))$$

= $(\mu_1(a) + E_1(a)) \otimes I + I \otimes (\mu_2(a) + E_2(a))$
= $\mu_1(a) \otimes I + E_1(a) \otimes I + I \otimes \mu_2(a) + I \otimes E_2(a)$
= $(\mu_1(a) \sqcup \mu_2(a)) + (E_1(a) \sqcup E_2(a)).$

Therefore,

$$\begin{aligned} \|(\mu_1(a) + E_1(a)) \sqcup (\mu_2(a) + E_2(a)) - \mu_1(a) \sqcup \mu_2(a)\| \\ &= \|E_1(a) \sqcup E_2(a)\| \\ &= \|E_1(a) \otimes I + I \otimes E_2(a)\| \\ &\leq \|E_1(a) \otimes I\| + \|I \otimes E_2(a)\| \\ &\leq \|E_1(a)\|d_2 + d_1\|E_2(a)\| \\ &\leq \epsilon. \end{aligned}$$

C. Proof of Proposition 7

Because any set of commuting matrices can be simultaneously triangularized by a change of basis, assume without loss of generality that M's transition matrices are upper triangular, that is, there are no transitions from state q to state r where q > r.

Let $M = (Q, \Sigma, \lambda, \mu, \rho)$, and arbitrarily number the symbols of Σ as a_1, \ldots, a_m . Note that M assigns the same weight to multiset w as it does to the sorted symbols of w. That is, we can compute the weight of w by summing over sequences of states q_0, \ldots, q_m such that q_0 is an initial state, q_m is a final state, and M can get from state q_{i-1} to q_i while reading a_i^k , where k is the number of occurrences of a_i in w.

For all $a \in \Sigma$, $q, r \in Q$, define $M_{q,a,r}$ to be the automaton that assigns to a^k the same weight that M would going from

state q to state r while reading a^k . That is,

$$\begin{split} M_{q,a,r} &= (\lambda_{q,a,r}, \mu_{q,a,r}, \rho_{q,a,r})\\ [\lambda_{q,a,r}]_q &= 1\\ \mu_{q,a,r}(a) &= \mu(a)\\ [\rho_{q,a,r}]_r &= 1 \end{split}$$

and all other weights are zero.

Then we can build a multiset automaton equivalent to M by combining the $M_{q,a,r}$ using the union and shuffle operations:

$$M' = \bigoplus_{\substack{q_0, \dots, q_m \in Q \\ q_0 \leq \dots \leq q_m}} \lambda_{q_0} M_{q_0, a_1, q_1} \sqcup \dots \sqcup M_{q_{m-1}, a_m, q_m} \rho_{q_m}$$

(where multiplying an automaton by a scalar means scaling its initial or final weight vector by that scalar). The $M_{q,a,r}$ are unary, so by Proposition 5, the transition matrices of M'are ASD. Since $M_{q,a,r}$ has r - q + 1 states, the number of states in M' is

$$|Q'| = \sum_{q_0 \le \dots \le q_m} \prod_{i=1}^m (q_i - q_{i-1} + 1)$$

which we can find a closed-form expression for using generating functions. If p(z) is a polynomial, let $[z^i](p(z))$ stand for "the coefficient of z^i in p." Then

$$\begin{aligned} |\mathcal{Q}'| &= \left[z^{d-1}\right] \left(\sum_{i=0}^{\infty} z^i\right) \left(\sum_{i=0}^{\infty} (i+1)z^i\right)^m \left(\sum_{i=0}^{\infty} z^i\right) \\ &= \left[z^{d-1}\right] \left(\frac{1}{1-z}\right) \left(\frac{1}{1-z}\right)^{2m} \left(\frac{1}{1-z}\right) \\ &= \left[z^{d-1}\right] \left(\frac{1}{1-z}\right)^{2m+2} \\ &= \binom{2m+d}{d-1}. \end{aligned}$$