A. Proof of Theorem 3

Our strategy is to form a Jordan decomposition of A and show that the desired bounds hold for each Jordan block. To this end, we first prove the following lemmas.
Lemma 8. If J is a Jordan block with nonzero eigenvalue, then for any $\epsilon>0$ there is a complex matrix D such that $J+D$ is diagonalizable in \mathbb{C} and

$$
\frac{\left\|(J+D)^{n}-J^{n}\right\|}{\left\|J^{n}\right\|} \leq n \epsilon
$$

Proof. The powers of J look like

$$
J^{n}=\left[\begin{array}{ccc}
\binom{n}{0} \lambda^{n} & \binom{n}{1} \lambda^{n-1} & \binom{n}{2} \lambda^{n-2} \\
& \binom{n}{0} \lambda^{n} & \binom{n}{1} \lambda^{n-1} \\
& & \binom{n}{0} \lambda^{n} \\
& & \\
& & \\
& & \ddots
\end{array}\right] .
$$

More concisely,

$$
\left[J^{n}\right]_{j k}= \begin{cases}\binom{n}{k-j} \lambda^{n-k+j} & \text { if } 0 \leq k-j \leq n \\ 0 & \text { otherwise }\end{cases}
$$

We choose D to perturb the diagonal elements of J towards zero; that is, let D be a diagonal matrix whose elements are in $[-\epsilon \lambda, 0)$ and are all different. This shrinks the diagonal elements by a factor no smaller than $(1-\epsilon)$. So the powers of $(J+D)$ are, for $0 \leq k-j \leq n$:

$$
\begin{aligned}
{\left[(J+D)^{n}\right]_{j k} } & =c_{j k}\left[J^{n}\right]_{j k} \\
c_{j k} & \geq(1-\epsilon)^{n-k+j}
\end{aligned}
$$

Simplifying the bound on $c_{j k}$ (Kozma, 2019):

$$
\begin{equation*}
c_{j k} \geq 1-(n-k+j) \epsilon \geq 1-n \epsilon \tag{4}
\end{equation*}
$$

The elements of J^{n}, for $0 \leq k-j \leq n$, are perturbed by:

$$
\begin{aligned}
{\left[(J+D)^{n}-J^{n}\right]_{j k} } & =\left(c_{j k}-1\right)\left[J^{n}\right]_{j k} \\
\left|\left[(J+D)^{n}-J^{n}\right]_{j k}\right| & \leq n \epsilon\left|\left[J^{n}\right]_{j k}\right|
\end{aligned}
$$

Since $\|\cdot\|$ is monotonic,

$$
\begin{aligned}
\left\|(J+D)^{n}-J^{n}\right\| & \leq n \epsilon\left\|J^{n}\right\| \\
\frac{\left\|(J+D)^{n}-J^{n}\right\|}{\left\|J^{n}\right\|} & \leq n \epsilon .
\end{aligned}
$$

Lemma 9. If J is a Jordan block with zero eigenvalue, then for any $\epsilon>0, r>0$, there is a complex matrix D such that $J+D$ is diagonalizable in \mathbb{C} and

$$
\left\|(J+D)^{n}-J^{n}\right\| \leq r^{n} \epsilon
$$

Proof. Since the diagonal elements of J are all zero, we can't perturb them toward zero as in Lemma 8; instead, let

$$
\delta=\min \left\{\frac{r}{2},\left(\frac{r}{2}\right)^{d} \frac{\epsilon}{d}\right\}
$$

and let D be a diagonal matrix whose elements are in $(0, \delta]$ and are all different. Then the elements of $\left((J+D)^{n}-J^{n}\right)$ are, for $0 \leq k-j<\min \{n, d\}$:

$$
\begin{aligned}
{\left[(J+D)^{n}-J^{n}\right]_{j k} } & \leq\binom{ n}{k-j} \delta^{n-k+j} \\
& <2^{n} \delta^{n-k+j} \\
& \leq 2^{n} \delta^{\min \{0, n-d\}+1}
\end{aligned}
$$

and by monotonicity,

$$
\left\|(J+D)^{n}-J^{n}\right\| \leq 2^{n} \delta^{\min \{0, n-d\}+1} d
$$

To simplify this bound, we consider two cases. If $n \leq d$,

$$
\begin{aligned}
\left\|(J+D)^{n}-J^{n}\right\| & =2^{n} \delta d \\
& \leq 2^{n}\left(\frac{r}{2}\right)^{d} \frac{\epsilon}{d} d \\
& =2^{n-d} r^{d} \epsilon \\
& \leq r^{n} \epsilon
\end{aligned}
$$

If $n>d$,

$$
\begin{aligned}
\left\|(J+D)^{n}-J^{n}\right\| & =2^{n} \delta^{n-d+1} d \\
& \leq 2^{n} \delta^{n-d}\left(\frac{r}{2}\right)^{d} \frac{\epsilon}{d} d \\
& \leq 2^{n}\left(\frac{r}{2}\right)^{n-d}\left(\frac{r}{2}\right)^{d} \frac{\epsilon}{d} d \\
& =r^{n} \epsilon .
\end{aligned}
$$

Now we can combine the above two lemmas to obtain the desired bounds for a general matrix.

Proof of Theorem 3. Form the Jordan decomposition $A=$ $P J P^{-1}$, where

$$
J=\left[\begin{array}{llll}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{p}
\end{array}\right]
$$

and each J_{j} is a Jordan block. Let $\kappa(P)=\|P\|\left\|P^{-1}\right\|$ be the Frobenius condition number of P.

If A is nilpotent, use Lemma 9 on each block J_{j} to find a D_{j} so that $\left\|\left(J_{j}+D_{j}\right)^{n}-J_{j}^{n}\right\| \leq \frac{r^{n} \epsilon}{\kappa(P) p}$. Combine the D_{j}
into a single matrix D, so that $\left\|(J+D)^{n}-J^{n}\right\| \leq \frac{r^{n} \epsilon}{\kappa(P)}$. Let $E=P D P^{-1}$, and then

$$
\begin{aligned}
\left\|(A+E)^{n}-A^{n}\right\| & =\left\|P\left((J+D)^{n}-J^{n}\right) P^{-1}\right\| \\
& \leq \kappa(P)\left\|(J+D)^{n}-J^{n}\right\| \\
& \leq \kappa(P) \frac{r^{n} \epsilon}{\kappa(P)} \\
& =r^{n} \epsilon .
\end{aligned}
$$

If A is not nilpotent, then for each Jordan block J_{j} :

- If J_{j} has nonzero eigenvalue, use Lemma 8 to find a D_{j} such that $\left\|\left(J_{j}+D_{j}\right)^{n}-J_{j}^{n}\right\| \leq \frac{n \epsilon}{\kappa(P)^{2}} \frac{\left\|J^{n}\right\|}{2 p}$.
- If J_{j} has zero eigenvalue, use Lemma 9 to find a D_{j} such that $\left\|\left(J_{j}+D_{j}\right)^{n}-J_{j}^{n}\right\| \leq \frac{n \epsilon}{\kappa(P)^{2}} \frac{\rho(J)^{n}}{2 p}$.

Combine the D_{j} into a single matrix D. Then the total absolute error of all the blocks with nonzero eigenvalue is at most $\frac{n \epsilon}{\kappa(P)^{2}} \frac{\left\|J^{n}\right\|}{2}$. And since $\rho(J)^{n} \leq\left\|J^{n}\right\|$, the total absolute error of all the blocks with zero eigenvalue is also at most $\frac{n \epsilon}{\kappa(P)^{2}} \frac{\left\|J^{n}\right\|}{2}$. So the combined total is

$$
\left\|(J+D)^{n}-J^{n}\right\| \leq \frac{n \epsilon}{\kappa(P)^{2}}\left\|J^{n}\right\|
$$

Finally, let $E=P D P^{-1}$, and

$$
\begin{aligned}
\left\|(A+E)^{n}-A^{n}\right\| & =\left\|P\left((J+D)^{n}-J^{n}\right) P^{-1}\right\| \\
& \leq \kappa(P)\left\|\left((J+D)^{n}-J^{n}\right)\right\| \\
& \leq \frac{n \epsilon}{\kappa(P)}\left\|J^{n}\right\| \\
& \leq \frac{n \epsilon}{\kappa(P)}\left\|P^{-1} A^{n} P\right\| \\
& \leq n \epsilon\left\|A^{n}\right\| \\
\frac{\left\|(A+E)^{n}-A^{n}\right\|}{\left\|A^{n}\right\|} & \leq n \epsilon .
\end{aligned}
$$

B. Proof of Proposition 5

First, consider the \oplus operation. Let $\mu_{1}(a)$ (for all a) be the transition matrices of M_{1}. For any $\epsilon>0$, let $E_{1}(a)$ be the perturbations of the $\mu_{1}(a)$ such that $\left\|E_{1}(a)\right\| \leq \epsilon / 2$ and the $\mu_{1}(a)+E_{1}(a)$ (for all a) are simultaneously diagonalizable. Similarly for M_{2}. Then the matrices $\left(\mu_{1}(a)+E_{1}(a)\right) \oplus$ $\left(\mu_{2}(a)+E_{2}(a)\right)($ for all $a)$ are simultaneously diagonalizable, and

$$
\begin{aligned}
& \left\|\left(\mu_{1}(a)+E_{1}(a)\right) \oplus\left(\mu_{2}(a)+E_{2}(a)\right)-\mu_{1}(a) \oplus \mu_{2}(a)\right\| \\
& \quad=\left\|E_{1}(a) \oplus E_{2}(a)\right\| \\
& \quad \leq\left\|E_{1}(a)\right\|+\left\|E_{2}(a)\right\| \\
& \quad \leq \epsilon
\end{aligned}
$$

Next, we consider the $ш$ operation. Let d_{1} and d_{2} be the number of states in M_{1} and M_{2}, respectively. Let $E_{1}(a)$ be the perturbations of the $\mu_{1}(a)$ such that $\left\|E_{1}(a)\right\| \leq \epsilon /\left(2 d_{2}\right)$ and the $\mu_{1}(a)+E_{1}(a)$ are simultaneously diagonalizable by some matrix P_{1}. Similarly for M_{2}.
Then the matrices $\left(\mu_{1}(a)+E_{1}(a)\right) ш\left(\mu_{2}(a)+E_{2}(a)\right)$ (for all a) are simultaneously diagonalizable by $P_{1} \otimes P_{2}$. To see why, let $A_{1}=\mu_{1}(a)+E_{1}(a)$ and $A_{2}=\mu_{2}(a)+E_{2}(a)$ and observe that

$$
\begin{aligned}
& \left(P_{1} \otimes P_{2}\right)\left(A_{1} ш A_{2}\right)\left(P_{1} \otimes P_{2}\right)^{-1} \\
& \quad=\left(P_{1} \otimes P_{2}\right)\left(A_{1} \otimes I+I \otimes A_{2}\right)\left(P_{1}^{-1} \otimes P_{2}^{-1}\right) \\
& \quad=P_{1} A_{1} P_{1}^{-1} \otimes I+I \otimes P_{2} A_{2} P_{2}^{-1} \\
& \quad=P_{1} A_{1} P_{1}^{-1} ш P_{2} A_{2} P_{2}^{-1},
\end{aligned}
$$

which is diagonal.
To show that $\left(\mu_{1}(a)+E_{1}(a)\right) 山\left(\mu_{2}(a)+E_{2}(a)\right)$ is close to ($\mu_{1}(a) \amalg \mu_{2}(a)$, observe that

$$
\begin{aligned}
& \left(\mu_{1}(a)+E_{1}(a)\right) 山\left(\mu_{2}(a)+E_{2}(a)\right) \\
& \quad=\left(\mu_{1}(a)+E_{1}(a)\right) \otimes I+I \otimes\left(\mu_{2}(a)+E_{2}(a)\right) \\
& \quad=\mu_{1}(a) \otimes I+E_{1}(a) \otimes I+I \otimes \mu_{2}(a)+I \otimes E_{2}(a) \\
& \quad=\left(\mu_{1}(a) \amalg \mu_{2}(a)\right)+\left(E_{1}(a) \amalg E_{2}(a)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \|\left(\mu_{1}(a)+E_{1}(a)\right) \text { Ш }\left(\mu_{2}(a)+E_{2}(a)\right)-\mu_{1}(a) \text { ш } \mu_{2}(a) \| \\
& \quad=\left\|E_{1}(a) \amalg E_{2}(a)\right\| \\
& \quad=\left\|E_{1}(a) \otimes I+I \otimes E_{2}(a)\right\| \\
& \quad \leq\left\|E_{1}(a) \otimes I\right\|+\left\|I \otimes E_{2}(a)\right\| \\
& \quad \leq\left\|E_{1}(a)\right\| d_{2}+d_{1}\left\|E_{2}(a)\right\| \\
& \quad \leq \epsilon .
\end{aligned}
$$

C. Proof of Proposition 7

Because any set of commuting matrices can be simultaneously triangularized by a change of basis, assume without loss of generality that M 's transition matrices are upper triangular, that is, there are no transitions from state q to state r where $q>r$.

Let $M=(Q, \Sigma, \lambda, \mu, \rho)$, and arbitrarily number the symbols of Σ as a_{1}, \ldots, a_{m}. Note that M assigns the same weight to multiset w as it does to the sorted symbols of w. That is, we can compute the weight of w by summing over sequences of states q_{0}, \ldots, q_{m} such that q_{0} is an initial state, q_{m} is a final state, and M can get from state q_{i-1} to q_{i} while reading a_{i}^{k}, where k is the number of occurrences of a_{i} in w.
For all $a \in \Sigma, q, r \in Q$, define $M_{q, a, r}$ to be the automaton that assigns to a^{k} the same weight that M would going from
state q to state r while reading a^{k}. That is,

$$
\begin{aligned}
M_{q, a, r} & =\left(\lambda_{q, a, r}, \mu_{q, a, r}, \rho_{q, a, r}\right) \\
{\left[\lambda_{q, a, r}\right]_{q} } & =1 \\
\mu_{q, a, r}(a) & =\mu(a) \\
{\left[\rho_{q, a, r}\right]_{r} } & =1
\end{aligned}
$$

and all other weights are zero.
Then we can build a multiset automaton equivalent to M by combining the $M_{q, a, r}$ using the union and shuffle operations:

$$
M^{\prime}=\bigoplus_{\substack{q_{0}, \ldots, q_{m} \in Q \\ q_{0} \leq \cdots \leq q_{m}}} \lambda_{q_{0}} M_{q_{0}, a_{1}, q_{1}} ш \cdots ш M_{q_{m-1}, a_{m}, q_{m}} \rho_{q_{m}}
$$

(where multiplying an automaton by a scalar means scaling its initial or final weight vector by that scalar). The $M_{q, a, r}$ are unary, so by Proposition 5, the transition matrices of M^{\prime} are ASD. Since $M_{q, a, r}$ has $r-q+1$ states, the number of states in M^{\prime} is

$$
\left|Q^{\prime}\right|=\sum_{q_{0} \leq \cdots \leq q_{m}} \prod_{i=1}^{m}\left(q_{i}-q_{i-1}+1\right)
$$

which we can find a closed-form expression for using generating functions. If $p(z)$ is a polynomial, let $\left[z^{i}\right](p(z))$ stand for "the coefficient of z^{i} in p." Then

$$
\begin{aligned}
\left|Q^{\prime}\right| & =\left[z^{d-1}\right]\left(\sum_{i=0}^{\infty} z^{i}\right)\left(\sum_{i=0}^{\infty}(i+1) z^{i}\right)^{m}\left(\sum_{i=0}^{\infty} z^{i}\right) \\
& =\left[z^{d-1}\right]\left(\frac{1}{1-z}\right)\left(\frac{1}{1-z}\right)^{2 m}\left(\frac{1}{1-z}\right) \\
& =\left[z^{d-1}\right]\left(\frac{1}{1-z}\right)^{2 m+2} \\
& =\binom{2 m+d}{d-1} .
\end{aligned}
$$

