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Appendix: An end-to-end Differentially Private Latent Dirichlet Allocation
Using a Spectral Algorithm

A. Differential Privacy Review
Differential privacy was developed in (Dwork et al., 2006) and has been increasingly adopted as the de facto mathematical
definition for privacy in statistical, machine learning and data science applications. We include additional information
in this section that is relevant to this paper, but will defer more exposition to recent book (Dwork et al., 2014a) and the
references therein.
Definition 21 (Utility Loss & Error). Let f : D ! Y be a random algorithm and f

DP(X) be the differentially private
version of f . For some value x 2 D, let y 2 Y be the ground truth value. Then define

��f(x)� f
DP(X)

��
F

as the utility
loss for this input. Additionally, define

��y � f
DP(X)

��
F

as the error for this input.

The gaussian mechanism makes a random algorithm differentially private by adding specifically designed Gaussian noise
to the output.
Proposition 22. [Gaussian mechanism] Let f : D ! Y (Y ⇢ Rk) be a random algorithm with `2 sensitivity �f . Let

g 2 Rk and each coordinate gi be sampled i.i.d. from N (0,�2
f,✏,�), where �f,✏,� = �f ⌧✏,� =

�f

p
2 ln(1.25/�)

✏ . Then the
output fDP = f + g is (✏, �) differentially private if 0 < ✏  1.

The above bound is used for theoretical purposes only, a tighter and more general calibration of the Gaussian mechanism
that does not require ✏  1 is to set

� =
�f

2✏

�p
✏+ log(1/�) +

p
log(1/�)

�
.

Moreover, the optimal calibration (no closed-form formula available) was proposed in (Balle & Wang, 2018) and is avail-
able through, e.g., autodp.calibrator: https://github.com/yuxiangw/autodp.

Differential privacy composes over multiple DP releases.
Proposition 23. [Composition theorem] Let fDP

1 (X), . . . , fDP
n (X) be n differentially private algorithms with privacy

parameters (✏1, �1), . . . , (✏n, �n). Then g
DP(X) = f(fDP

1 (X), . . . , fDP
n (X)) is (✏1+ . . .+ ✏n, �1+ . . .+ �n) differentially

private.

This is what we called a simple composition where epsilon increases linearly. There is also an advanced composition
where privacy loss for accessing for k times obey that

p
k, see, e.g., Section 3.5 of (Dwork et al., 2014a). Increasingly,

the advanced composition and other privacy loss computation has been conducted numerically using modern tools such
as Concentrated Differential privacy (Bun & Steinke, 2016) and Renyi Differential Privacy (or equivalently the moments
accountant) (Mironov, 2017). We used simple composition in our theoretical analysis and for calibrating noise to privacy
so as to be comparable to older literature that does not take advantage of the modern tool (Park et al., 2016; Wang &
Anandkumar, 2016).

B. Latent Dirichlet Allocation
LDA, despite being a bag of words model, allows modeling of the mixed topics in a document to account for the more
general case in which a document belongs to several different latent classes (topics) simultaneously. Latent Dirichlet
Allocations has two major model parameters: topic prior ↵ and topic-word matrix µ. Topic prior ↵ determines the topic
proportions and the topic word matrix controls the word distribution per topic.

Topic Proportions The proportion of words in topics, known as topic proportion (denoted as ✓n for document n),
is drawn from a Dirichlet distribution (topic prior) parameterized by ↵ = (↵1, . . . ,↵k), with density P↵(✓ = ✓n) =

�(↵0)
kQ

i=1
�(↵i)

kQ
i=1

✓
↵k�1
n,i , where ↵0 =

kP
i=1

↵i.

Topic-Word Matrix Under a topic i, tokens in the documents are assumed to be generated in a conditionally independent
manner through µi, i.e., token x1 ⇠ Cat(d, µi) where Cat(d, µi) denotes the categorical distribution. Under different topics,
these conditional distributions µi are linearly independent, 8i 2 [k].

https://github.com/yuxiangw/autodp
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With the definition of the two major parameters, we now describe the generative model of LDA topic model. The process
involves generating topics first, followed by tokens.

Topic Generation LDA remains simple as each token in the corpus belongs to one of the k topics only, although tokens
in the same document could belong to different topics. We denote the topic of token j in document n as zn,j . Therefore,
topics generated are categorical zn,j 2 [k] and distributed according to ✓n, i.e., zn,j ⇠ Cat(k, ✓n) where Cat(k, ✓n) denotes
the categorical distribution.

Word Generation Let x denote the tokens. After determining the topic of the token j, zn,j , token j is generated
conditionally independently through µzn,j , i.e., token ⇠ Cat(d, µzn,j ). In a document n, if the j

0th token xn,j0 is the v-th
word in the dictionary, then xn,j0 = ev where ev is a one-hot encoding, i.e., xn,j0(j) = 0 8j 6= v and xn,j0(j) = 1 if
j = v. Let ln be the length of document n, random realizations of token x, i.e., {xn,j0}lnj0=1, are i.i.d.

Term-Document Matrix The term-document matrix D 2 Nd⇥N
0 . The n

th column in D is denoted by cn, where its jth

component cn(j) = number of times word j in the vocabulary appeared in document n. This means that cn =
Pln

j0=1 xn,j0

where ln is the number of words in document n. Clearly, ln =
Pd

j cn(j) = kcnk1.

C. Method of Moments for Latent Dirichlet Allocation
Empirical Moment Estimators The moments that we obtain are not the population moments but rather empirically
estimated moments from the given data set. We list the forms of first, second, and third order empirical moment estimators
for the single topic case as shown in (Zou et al., 2013). Given a document n, the following quantities are calculated.

˜̃
M

n
1 =

cn

ln
(6)

˜̃
M

n
2 =

1

2
�ln
2

� (cn ⌦ cn � diag(cn)) (7)

˜̃
M

n
3 =

1

6
�ln
3

�
⇣
cn ⌦ cn ⌦ cn + 2

dX

i=1

cn(i)(ei ⌦ ei ⌦ ei)

�
dX

i=1

dX

j=1

cn(i)cn(j)(ei ⌦ ei ⌦ ej + ei ⌦ ej ⌦ ej + ej ⌦ ei ⌦ ej)
⌘

(8)

The empirically estimated moments are the averages of these quantities over the entire data set. Specifically,

Lemma 24. Single Topic Empirical Moment Estimators(Propositions 3 and 4 in (Zou et al., 2013))

Ê[x1] =
1

N

NX

n=1

˜̃
M

n
1 (9)

Ê[x1 ⌦ x2] =
1

N

NX

n=1

˜̃
M

n
2 (10)

Ê[x1 ⌦ x2 ⌦ x3] =
1

N

NX

n=1

˜̃
M

n
3 (11)

(12)
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Further these moments are unbiased, i.e.:

E[Ê[x1]] = E[ 1
N

NX

n=1

˜̃
M

n
1 ] = E[x1] (13)

E[Ê[x1 ⌦ x2]] = E[ 1
N

NX

n=1

˜̃
M

n
2 ] = E[x1 ⌦ x2] (14)

E[Ê[x1 ⌦ x2 ⌦ x3]] = E[ 1
N

NX

n=1

˜̃
M

n
3 ] = E[x1 ⌦ x2 ⌦ x3] (15)

(16)

Note that this lemma implies that: E[ ˜̃Mn
1 ] = E[x1],E[ ˜̃Mn

2 ] = E[x1 ⌦ x2], and that E[ ˜̃Mn
3 ] = E[x1 ⌦ x2 ⌦ x3] for any

sampled document n.

We extend the single topic moment estimators of (Zou et al., 2013) to the LDA case.
Lemma 25. Empirical Moment estimators for LDA

M̂1 =
1
N

NX

n=1

˜̃Mn
1 (17)

M̂2 =
1
N

NX

n=1

"
˜̃Mn
2

#
� a

2
�
N
2

�
"

NX

m,n=1

˜̃Mn
1 ⌦ ˜̃Mm

1 �
NX

n=1

˜̃Mn
1 ⌦ ˜̃Mn

1

#
(18)

M̂3 =

"
1
N

NX

n=1

˜̃Mn
3 +B1 +B2 +B3 + b

#
(19)

where

B1
def
=

b

2
�N
2

�
"⇣ NX

n=1

˜̃
M

n
2

⌘
⌦
⇣ NX

n=1

˜̃
M

n
1

⌘#
, (20)

b
def
= c

"⇣ NX

n=1

˜̃
M

n
1

⌘
⌦
⇣ NX

n=1

˜̃
M

n
1

⌘
⌦
⇣ NX

n=1

˜̃
M

n
1

⌘#
, (21)

B2 and B3 are formed from B1 by permuting, i.e., [B2]ijk = [B1]ikj and [B3]ijk = [B1]kij . Further, a = ↵0
↵0+1 , b =

�↵0
↵0+2 , c =

2↵2
0

(↵0+1)(↵0+2) .

Now we prove that these estimators are unbiased.
Lemma 26 (The LDA Moment Estimators are Unbiased). The estimators defined in definition 25 are unbiased, i.e.,

E[M̂1] = M1 (22)

E[M̂2] = M2 (23)

E[M̂3] = M3 (24)

Proof. First order moment:

E[M̂1] = E[ 1
N

NX

n=1

˜̃
M

n
1 ] =

1

N

NX

n=1

E[ ˜̃Mn
1 ] =

1

N

NX

n=1

E[cn
ln

] (25)

=
1

N

NX

n=1

1

ln
E[cn] =

1

N

NX

n=1

1

ln
E[

lnX

i=1

xn,i] =
1

N

NX

n=1

1

ln

lnX

i=1

E[xn,i] (26)

=
1

N

NX

n=1

1

ln

lnX

i=1

E[x1] =
1

N

NX

n=1

1

ln
lnE[x1] =

1

N
NE[x1] = E[x1] = M1 (27)
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Second order moment: The first term of M̂2 is actually the estimator the single-topic second order moment and
E[ 1N

PN
n=1

˜̃
M

n
2 ]] = E[x1 ⌦ x2] see proposition 3 in (Zou et al., 2013) and its appendix for the proof. Now we have:

E
"

a

2
�N
2

�
"

NX

m,n=1

˜̃
M

n
1 ⌦ ˜̃

M
m
1 �

NX

n=1

˜̃
M

n
1 ⌦ ˜̃

M
n
1

##
(28)

=E
"

a

2
�N
2

�
"

NX

m=1
n=1
m 6=n

˜̃
M

n
1 ⌦ ˜̃

M
m
1 +

NX

n=1

˜̃
M

n
1 ⌦ ˜̃

M
n
1 �

NX

n=1

˜̃
M

n
1 ⌦ ˜̃

M
n
1

##
(29)

=E
"

a

2
�N
2

�
NX

m=1
n=1
m 6=n

˜̃
M

n
1 ⌦ ˜̃

M
m
1

#
(30)

=
a

2
�N
2

�
NX

m=1
n=1
m 6=n

E[ ˜̃Mn
1 ]⌦ E[ ˜̃Mn

1 ] =
a

2
�N
2

�
NX

m=1
n=1
m 6=n

E[x1]⌦ E[x1] (31)

=
a

N(N � 1)
N(N � 1)E[x1]⌦ E[x1] = aE[x1]⌦ E[x1] (32)

Thus, we have that: E[M̂2] = E[x1 ⌦ x2]� ↵0
↵0+2E[x1]⌦ E[x1] = M2.

Third order moment: Similar to the second order moment, the first term of M̂3 is the estimator the single-topic second
order moment and E[ 1N

PN
n=1

˜̃
M

n
3 ]] = E[x1 ⌦ x2 ⌦ x3] as shown in proposition 4 in (Zou et al., 2013) and proved

in its appendix. We need to prove that (1): E[B1] = bE[x1 ⌦ x2 ⌦ E[x3]], note that E[x3] = M1 and (2): E[b] =
cE[x1] ⌦ E[x1] ⌦ E[x1] = cM1 ⌦ M1 ⌦ M1 ⌦ M1. Since B2 and B3 are permuted version of B1 their proofs follow
from the proof of B1.

For B1 we simplify the expression and then show that the expectation of the resultant is equal to the desired moment:

E[B1] =
b

2
�N
2

�E
"⇣ NX

n=1

˜̃
M

n
2

⌘
⌦
⇣ NX

n=1

˜̃
M

n
1

⌘
�

NX

n=1

⇣
˜̃
M

n
2 ⌦ ˜̃

M
n
1

⌘#
(33)

=
b

2
�N
2

�E
"

NX

m=1,n=1
m 6=n

⇣
˜̃
M

n
2 ⌦ ˜̃

M
m
1

⌘
+

NX

n=1

⇣
˜̃
M

n
2 ⌦ ˜̃

M
n
1

⌘
�

NX

n=1

⇣
˜̃
M

n
2 ⌦ ˜̃

M
n
1

⌘#
(34)

=
b

2
�N
2

�E
"

NX

m=1,n=1
m 6=n

⇣
˜̃
M

n
2 ⌦ ˜̃

M
m
1

⌘#
(35)

=
b

2
�N
2

�
NX

m=1,n=1
m 6=n

E
h
˜̃
M

n
2

i
⌦ E

h
˜̃
M

m
1

i
(36)

=
b

2
�N
2

�
NX

m=1,n=1
m 6=n

E[x1 ⌦ x2]⌦ E[x3] (37)

=
b

N(N � 1)
N(N � 1)E[x1 ⌦ x2]⌦ E[x3] (38)

=bE[x1 ⌦ x2]⌦ E[x3] (39)

=bE
⇥
x1 ⌦ x2 ⌦ E[x3]

⇤
(40)
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For b identity 38 is applied, this leads to the following

E[b] = c

6
�N
3

�E
" 

NX

i=1

( ˜̃
M

n
1 )

⌦3

+ 3
N,NX

n=1,m=1
n 6=m

( ˜̃
M

n
1 )

⌦2 ˜̃
M

m
1 +

N,N,NX

n=1,m=1,p=1
n 6=m,m 6=p,p 6=n

˜̃
M

n
1 ⌦ ˜̃

M
m
1 ⌦ ˜̃

M
p
1 (41)

� 3
NX

m=1

⇣ NX

n=1

⇣
˜̃
M

n
1

⌘⌦2

⌦
⇣
˜̃
M

m
1

⌘⌘
+ 2

NX

n=1

⇣
˜̃
M

n
1

⌘⌦3
!#

(42)

=
c

6
�N
3

�E
"

N,N,NX

n=1,m=1,p=1
n 6=m,m 6=p,p 6=n

˜̃
M

n
1 ⌦ ˜̃

M
m
1 ⌦ ˜̃

M
p
1

#
(43)

=
c

N(N � 1)(N � 2)
(N)(N � 1)(N � 2)E[ ˜̃Mn

1 ]⌦ E[ ˜̃Mm
1 ]⌦ E[ ˜̃Mp

1 ] (44)

=cE[x1]⌦ E[x1]⌦ E[x1] (45)

Combing these results and plugging the values for a, b,and c we get:

E[M̂3] =E[x1 ⌦ x2 ⌦ x3]�
↵0

↵0 + 2

 
E[x1 ⌦ x2 ⌦ E[x3]] + E[x1 ⌦ E[x2]⌦ x3] + E[E[x1]⌦ x2 ⌦ x3]

!
(46)

+
2↵2

0

(↵0 + 1)(↵0 + 2)
E[x1]⌦ E[x1]⌦ E[x1] = M3 (47)

D. Lemmas regarding Dirichlet Moments
This section introduces two lemmas regarding the moments of the dirichlet distribution that will be useful for the proof of
Lemma 3.

D.1. Dirichlet Moments

Lemma 27. The first, second and third moments of dirichlet distribution are

E[✓] = 1

↵0
↵ (48)

E[✓ ⌦ ✓] =
1

↵0(↵0 + 1)
[↵⌦ ↵+

TX

t=1

↵tet ⌦ et] (49)

E[✓ ⌦ ✓ ⌦ ✓] =
1

↵0(↵0 + 1)(↵0 + 2)
[↵⌦ ↵⌦ ↵+

TX

t=1

↵tet ⌦ et ⌦ ↵

+
TX

t=1

↵t↵⌦ et ⌦ et +
TX

t=1

↵tet ⌦ ↵⌦ et + 2
TX

t=1

↵tet ⌦ et ⌦ et] (50)

D.2. Raw Moments

Lemma 28.

E[x1] = µE[✓] (51)

E[x1 ⌦ x2] = µE[✓ ⌦ ✓]µ> (52)
E[x1 ⌦ x2 ⌦ x3] = E[✓ ⌦ ✓ ⌦ ✓](µ, µ, µ) (53)

Proof. First Order Moments Let us omit n and use x1 to denote a token in any document, and we will use x2 and x3 to
denote other two tokens in the same document. The the expectation of a token is

E[x1] = E[x2] = E[x3] = E[E[x1|✓]] = µE[✓] (54)
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This is called the first order moment.

Second Order Moments The second order moment is defined as

E[x1 ⌦ x2] = E[E[x1 ⌦ x2|✓]] (55)

=
X

i,i0

E[x1 ⌦ x2|zn,j = ei, zn,k = ei0 ]P (zn,j = ei, zn,k = ei0) (56)

=
X

i,i0

E[x1|zn,j = ei]⌦ E[x2|zn,k = ei0 ]P (zn,j = ei, zn,k = ei0) (57)

=
X

i,i0

µei ⌦ (µei0)P (zn,j = ei, zn,k = ei0) (58)

= µ

X

i,i0

ei ⌦ ei0P (zn,j = ei, zn,k = ei0)µ
> (59)

= µE[✓ ⌦ ✓]µ> (60)

Third Order Moments The third order moment is defined as

E[x1 ⌦ x2 ⌦ x3] = E[E[x1 ⌦ x2 ⌦ x3|✓]] = E[✓ ⌦ ✓ ⌦ ✓](µ, µ, µ) (61)

To clarify the notations, x ⌦ y is a length(x)-by-length(y) matrix which has entries [x ⌦ y]i,j = xiyj . And E[✓ ⌦ ✓ ⌦
✓](µ, µ, µ) is a tucker with core tensor E[✓ ⌦ ✓ ⌦ ✓] and projection µ in all three modes.

E. Proof of Lemma 3
The lemma relates the LDA moments to the model parameters ↵ and µ.

Proof. In order to prove this relation, we combine Lemmas 27 and Lemma 28 to prove the forms of M1, M2 and M3 in
Lemma 3 as follows.

M1 = E[x1] = µE[✓] =
kX

i=1

↵i

↵0
µi (62)

M2 = E[x1 ⌦ x2]�
↵0

↵0 + 1
E[x1]⌦ E[x1] (63)

= E[✓ ⌦ ✓](µ, µ)� 1

↵0(↵0 + 1)
M1 ⌦M1 (64)

=
kX

i=1

↵i

↵0(↵0 + 1)
µi ⌦ µi (65)

M3 = E[x1 ⌦ x2 ⌦ x3]�
1

↵0 + 2
(E[x1 ⌦ x2 ⌦ E[x3]] + E[x1 ⌦ E[x2]⌦ x3]

+ E[E[x1]⌦ x2 ⌦ x3]) +
2

↵0(↵0 + 1)(↵0 + 2)
E[x1]⌦ E[x1]⌦ E[x1] (66)

= E[✓ ⌦ ✓ ⌦ ✓](µ, µ, µ) (67)

� 1

↵0 + 2
{E[✓ ⌦ ✓ ⌦ E[✓]]� E[✓ ⌦ E[✓]⌦ ✓]� E[E[✓]⌦ ✓ ⌦ ✓]}(µ, µ, µ) (68)

+
2

↵0(↵0 + 1)(↵0 + 2)
M1 ⌦M1 ⌦M1 (69)

=
kX

i

2↵i

↵0(↵0 + 1)(↵0 + 2)
µi ⌦ µi ⌦ µi (70)
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F. Correctness of Method of Moments for Latent Dirichlet Allocation
Lemma 29 (Correctness of Method of Moments in Learning LDA (Anandkumar et al., 2012)). Applying the method of
moments over a corpus of N documents sampled iid. There exist universal constants C1, C2 � 0 such that if N >

C1((↵0 +1)/p2min�k(µ)2), then kµi � µ̂ik2  C2
(↵0+1)2k3

p2
min�k(µ)

p
N

, where pmin = mini
↵i
↵0

, µ is a matrix of stacked word-topic
vectors, i.e. µ = [µ1| . . . |µk].

G. Sensitivity Proofs
In proving the sensitivities for M̂2 and M̂3 we rely on the fact that frequently in the calculations, we encounter probability
vectors, matrices, and tensors where the elements sum to 1. This is identical to the stating that the l1 norm equals 1. Further,
we note the following Lemma which essentially states that taking the outer product of a vector with a probability vector or
probability matrix does not increase the lq norm of the vector and in fact keeps it the same if q = 1.

Lemma 30 (Multiplying by probabilities does not change the norm). Let vp,Mp be a probability vector, matrix, respec-
tively and let v, u be ordinary vectors, matrices, respectively. Then the following holds:

��uvTp
��
q
 kukq , which is equal if q = 1. (71)

If T = Mp ⌦ u, then kTkq = kMp ⌦ ukq  kukq , which is equal if q = 1. (72)

Proof.

��uvTp
��
q
= (
X

i,j

|uivpj |
q)1/q = (

X

i

|ui|q
X

j

|vpj |
q)1/q = kvkq kukq  kukq . (73)

Where we used the fact that kxk1 � kxkq for any q � 1 and that kvpk1 = 1. Thus the above inequality is tight if q = 1.

kTkq = kMp ⌦ ukq =
⇣X

i,j,k

|Mpi,juk|q
⌘1/q

=
⇣X

k

|uk|q
X

i,j

|Mpi,j |
q
⌘1/q

= kukq kMpkq  kukq . (74)

Where we used the fact that for any matrix M , kMk1 � kMkq for any q � 1 * and that kMpk1 = 1. Thus the above
inequality is tight if q = 1.

Proposition 31. ˜̃
M

n
1 is a probability vector, ˜̃

M
n
2 is a probability matrix, and ˜̃

M
n
3 is a probability tensor.

Proof. The proof is immediate as these moments correspond to join probability estimates (Zou et al., 2013), specifically:

˜̃
M

n
1 (i) = P[x1 = i] (75)

˜̃
M

n
1 (i, j) = P[x1 = i, x2 = j] (76)

˜̃
M

n
1 (i, j, k) = P[x1 = i, x2 = j, x3 = k] (77)

G.1. Proof for Theorem 4 (sensitivity for M̂2)

Let �2 be the l1 sensitivity for M̂2, then �2 is 2
N + ↵0

↵0+1
4
N =O( 1

N ).

*These norms are obtained by extending the vector definition to matrices or simply vectorizing the matrix and then calculating the
norm.
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Proof. Let M̂2 and M̂ 0
2 be two second order LDA moments generated from two neighboring corpora, WLOG assume the

difference is in the n
th record, i.e. D = [c1| . . . |cN�1|cN ] and D

0 = [c1| . . . |cN�1|c0N ] then:

M̂2 � M̂ 0
2 =

1

N
( ˜̃
M

N
2 � ˜̃

M
N
2

0
)� a

2
�N
2

�
 

˜̃
M

N
1 ⌦

✓N�1X

n=1

˜̃
M

n
1

◆
+

✓N�1X

n=1

˜̃
M

n
1

◆
⌦ ˜̃

M
N
1

�
(78)

�

˜̃
M

N
1

0
⌦
✓N�1X

n=1

˜̃
M

n
1

◆
+

✓N�1X

n=1

˜̃
M

n
1

◆
⌦ ˜̃
M

N
1

0
�!

(79)

=
1

N
( ˜̃
M

N
2 � ˜̃

M
N
2

0
)� a

2
�N
2

�
 
( ˜̃
M

N
1 � ˜̃

M
N
1

0
)⌦

✓N�1X

n=1

˜̃
M

n
1

◆
+

✓N�1X

n=1

˜̃
M

n
1

◆
⌦ ( ˜̃

M
N
1 � ˜̃

M
N
1

0
)

!
(80)

=
1

N
( ˜̃
M

N
2 � ˜̃

M
N
2

0
)� a

N

 
( ˜̃
M

N
1 � ˜̃

M
N
1

0
)⌦

✓
1

N � 1

N�1X

n=1

˜̃
M

n
1

◆
+

✓
1

N � 1

N�1X

n=1

˜̃
M

n
1

◆
⌦ ( ˜̃

M
N
1 � ˜̃

M
N
1

0
)

!

(81)

Note that according to proposition (31) ˜̃
M

N
1 and ˜̃

M
N
1

0
are probability vectors and ˜̃

M
N
2 and ˜̃

M
N
2

0
are probability matrices.

Further,
✓

1
N�1

PN�1
n=1

˜̃
M

n
2

◆
is also a probability matrix since it’s the normalized sum of probability matrices. We upper

bound the l1 norm of the expression by applying the triangular inequality and using lemma (30) for the terms involving a
tensor product. This leads to the following:

���M̂2 � M̂ 0
2

���
1
 2

N
+

4a

N
=

2

N
+

↵0

↵0 + 1

4

N
= O(

1

N
) (82)

(83)

a was replaced by its expression as in the above a = ↵0
↵0+1 in the above.

G.2. Proof for Theorem 4 (sensitivity for M̂3)

Let �3 be the l1 sensitivity for M̂3, then �3 is 2
N + 4↵0

↵0+2
1
N + 12↵2

0
(↵0+1)(↵0+2)

(N�1)
N(N�2) = O( 1

N ).

Proof. Following a similar setting as in G.1 we have the two moments M̂3 and M̂
0
3 generated from two neighboring

corpora. First we note that the expression of M̂3 and M̂ 0
3 have the following form: 1

N

PN
n=1

˜̃
M

n
3 +B1 +B2 +B3 + b.

Effectively there are three kinds of terms: (a) 1
N

PN
n=1

˜̃
M , (b) B1, and (c)b. Since B2 and B3are permuted versions of

B1 they have a similar behavior

(a) 1
N

PN
n=1

˜̃
M : The first term difference between M̂3 and M̂ 0

3 would result in 1
N ( ˜̃

M
N
3 � ˜̃

M
N
3

0
).

1

N

����
˜̃
M

N
3 � ˜̃

M
N
3

0
����
1

 1

N

 ��� ˜̃
M

N
3

���
1
+

����
˜̃
M

N
3

0
����
1

!
 2

N
(84)

Note that both ˜̃
M

N
3 and ˜̃

M
N
3

0
are probability tensors.

(b) B1: Based on the minimized expression, the B1 term difference between M̂3 and M̂
0
3 is equal to:

B1 �B0
1 =

b

2
�N
2

�
"
˜̃
M

N
2 ⌦

⇣N�1X

n=1

˜̃
M

n
1

⌘
+
⇣N�1X

n=1

˜̃
M

n
2

⌘
⌦ ˜̃
M

N
1 (85)

� ˜̃
M

N
2

0
⌦
⇣N�1X

n=1

˜̃
M

n
1

⌘
�
⇣N�1X

n=1

˜̃
M

n
2

⌘
⌦ ˜̃
M

N
1

0
#

(86)

=
b

N

"⇣
˜̃
M

N
2 � ˜̃

M
N
2

0⌘
⌦
⇣ 1

N � 1

N�1X

n=1

˜̃
M

n
1

⌘
+
⇣ 1

N � 1

N�1X

n=1

˜̃
M

n
2

⌘
⌦
⇣
˜̃
M

N
1 � ˜̃

M
N
2

⌘0
#

(87)
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Note that 1
N�1

N�1P
n=1

˜̃
M

n
1 and 1

N�1

N�1P
n=1

˜̃
M

n
2 are probability vectors and matrices, respectively. Thus lemma 30 can be used

to upper bound the l1 norm, leading to the following:

kB1 �B0
1k1  |b|

N

�
2 + 2

�
=

4|b|
N

=
4↵0

↵0 + 2

1

N
(88)

(c) b: Based on the minimized expression, the b term difference between M̂3 and M̂
0
3 is equal to:

b� b0 =
c

6
�N
3

�
" 

˜̃
M

N
1 ⌦

� N�1X

m=1,p=1
distinct

˜̃
M

m
1 ⌦ ˜̃

M
p
1

�
+
� N�1X

n=1,p=1
distinct

˜̃
M

n
1 ⌦ ˜̃

M
N
1 ⌦ ˜̃

M
p
1

�
(89)

+
� N�1X

n=1,m=1
distinct

˜̃
M

n
1 ⌦ ˜̃

M
m
1

�
⌦ ˜̃
M

N
1

!
�
 

˜̃
M

N
1

0
⌦
� N�1X

m=1,p=1
distinct

˜̃
M

m
1 ⌦ ˜̃

M
p
1

�
(90)

�
� N�1X

n=1,p=1
distinct

˜̃
M

n
1 ⌦ ˜̃

M
N
1

0
⌦ ˜̃
M

p
1

�
�
� N�1X

n=1,m=1
distinct

˜̃
M

n
1 ⌦ ˜̃

M
m
1

�
⌦ ˜̃
M

N
1

!#
(91)

=
c(N � 1)

N(N � 2)

"
� ˜̃
M

N
1 � ˜̃

M
N
1

0�
⌦
� 1

(N � 1)2

N�1X

m=1,p=1
distinct

˜̃
M

m
1 ⌦ ˜̃

M
p
1

�
(92)

+
� 1

(N � 1)2

N�1X

n=1,p=1
distinct

˜̃
M

n
1 ⌦

� ˜̃
M

N
1 � ˜̃

M
N
1

0�
⌦ ˜̃

M
p
1

�
(93)

+
� 1

(N � 1)2

N�1X

n=1,m=1
distinct

˜̃
M

n
1 ⌦ ˜̃

M
m
1

�
⌦
� ˜̃
M

N
1 � ˜̃

M
N
1

0�
#

(94)

Similarly, we have probability tensors so we use lemma 30 to bound the l1 norm. This results in:

kb� b0k1  c(N � 1)

N(N � 2)
(2 + 2 + 2) =

6c(N � 1)

N(N � 2)
=

12↵2
0

(↵0 + 1)(↵0 + 2)

(N � 1)

N(N � 2)
(95)

Combing the results from (a), (b) and (c), we have the following bound:

�3  2

N
+

4↵0

↵0 + 2

1

N
+

12↵2
0

(↵0 + 1)(↵0 + 2)

(N � 1)

N(N � 2)
= O(

1

N
) (96)

G.3. Proof for Theorem 5 (sensitivity for M̂3(Ŵ , Ŵ , Ŵ ) )

As explained before, the whitened tensor is denoted as bT for simplicity. Therefore we denote the sensitivity of
M̂3(Ŵ , Ŵ , Ŵ ) as �bT (D). Theorem 5 states that �bT (D) = O( k3/2

N�k(M̂2)3/2
).

We need the following Lemma to prove Theorem 5.

Lemma 32.
���Ŵ 0 � Ŵ

���
F


p
2k�2

�k(M̂2)
p

�k(M̂2)��2

Proof. We follow an analysis similar to (Anandkumar et al., 2012). Note that the whitening matrix Ŵ is defined such that:

Ŵ
T
M̂2,kŴ = I. (97)
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Analogously for the neighboring corpus,
Ŵ 0T M̂ 0

2,kŴ
0 = I. (98)

Let EM2 denote the perturbation introduced to M̂2 by changing a single record. Because the spectral gap of the perturbation
introduced by modifying a single record is small according to the condition, applying the original whitening matrix to the
neighboring data base moment M̂ 0

2 would lead to a rank k matrix of size k⇥k. Therefore, ŴT
M̂ 0

2,kŴ is a rank k matrix
of size k ⇥ k, which can be factorized as:

Ŵ
T
M̂ 0

2,kŴ = ADA
T (99)

where A are the singular vectors of Ŵ
T
M̂ 0

2,kŴ , and D is a diagonal matrix of the corresponding singular values of
Ŵ

T
M̂ 0

2,kŴ . This also leads to Ŵ 0 = ŴAD
�1
2 A

T . Using this, we observe:
���Ŵ 0 � Ŵ

��� =
���Ŵ 0 � Ŵ 0AD

1
2A

T
��� =

���Ŵ 0(I �AD
1
2A

T )
��� 

���Ŵ 0
���
���I �AD

1
2A

T
��� (100)

Now we bound
���I �AD

1
2A

T
���:

���I �AD
1
2A

T
��� =

���AT
A� Ŵ 0AD

1
2A

T
��� =

���I �D
1
2

��� (101)


���(I �D

1
2 )(I +D

1
2 )
���  k(I �D)k (102)

=
��I �ADA

T
�� =

���ŴT
M̂2,kŴ � Ŵ 0T M̂ 0

2,kŴ
0
��� (103)


���Ŵ

���
2 ���M̂2,k � M̂ 0

2,k

��� 
���Ŵ

���
2
kEM2k (104)

We know that
���Ŵ

���
2
 1

�k(M̂2)
(105)

���Ŵ 0
���  1q

�k(M̂ 0
2)

 1q
�k(M̂2)� kEM2k2

 1q
�k(M̂2)��2

(106)

Weyl’s theorem was used in the last bound in Equation (106). Bounding the Frobenius norm, would result in the following:

���Ŵ 0 � Ŵ

���
F


p
2k
���Ŵ 0 � Ŵ

��� 
p
2k kEM2k

�k(M̂2)
q
�k(M̂2)� kEM2k


p
2k�2

�k(M̂2)
q

�k(M̂2)��2

, (107)

where we have used the fact that the l1 norm upper bounds the spectral norm of a matrix, since it upper bounds the
Frobenius.

Now we are ready to prove Theorem 5.

Proof. M̂ 0
3 = M̂3 + E3.

���M̂3(Ŵ , Ŵ , Ŵ )� M̂ 0
3(Ŵ 0, Ŵ 0, Ŵ 0)

���
F
= kM̂3(Ŵ , Ŵ , Ŵ )� M̂

LDA
3 (Ŵ 0, Ŵ 0, Ŵ 0)� E3(Ŵ 0, Ŵ 0, Ŵ 0)kF (108)


���M̂LDA

3 ( ˆW �W 0, ˆW �W 0, ˆW �W 0)
���
F
+
���E3(Ŵ 0, Ŵ 0, Ŵ 0)

���
F

(109)


���M̂3

���
F

���Ŵ � Ŵ 0
���
3

F
+ k�3kF

���Ŵ 0
���
3

F
(110)

We have used the fact that the Frobenius norm of the difference between the tensors is bounded above by the l1 norm of
the difference �3. To bound the l1 norm of M̂3 we use an analysis similar to calculating �3. Again we note that the l1

norm upper bounds the Frobenius norm:
���M̂3

���
F

���M̂2

���
1
= 1 +

6↵0

↵0 + 2

N

N � 1
+

6↵2
0

(↵0 + 1)(↵0 + 2)

N
3

N(N � 1)(N � 2)
(111)
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Combining all the expressions we get:

�bT (D) =
���M̂3(Ŵ , Ŵ , Ŵ )� M̂ 0

3(Ŵ 0, Ŵ 0, Ŵ 0)
���
F

(112)

 (1 +
6↵0

↵0 + 2

N

N � 1
+

6↵2
0

(↵0 + 1)(↵0 + 2)

N
3

N(N � 1)(N � 2)
)

⇥ (2k)3/2(�2)3

�k(M̂2)3(�k(M̂2)��2)3/2
+

�3k
3/2

(�k(M̂2)��2)3/2
(113)

= O(
k
3/2

N�k(M̂2)3/2
) (114)

We see that if N is larger than d
3/2, then N�k(M̂2)3/2 � 1 as �i(M̂2) is in the order of 1/d.

G.4. Proof for Theorem 6 (sensitivity of the output of tensor decomposition µ̄i, ↵̄i )

Let µ̄1, . . . , µ̄k and ↵̄1, . . . , ↵̄k be the results of tensor decomposition before unwhitening. The sensitivity of µ̄i, denoted
as �µ̄(D), and the sensitivity of ↵̄i, denoted as �↵̄(D), are both upper bounded by �µ̄(D)  O( k2

�sN(�k(M̂2))3/2
), where

�s = mini2[k]
�i��i+1

4 , �i is the i
th eigenvalue of M̂3(Ŵ , Ŵ , Ŵ ).

Proof. The proof follows from the result of the simultaneous tensor power method (Theorem 1 in (Wang & Lu, 2017)).
Replacing the original eigenvectors with those resulting from database D leads to tensor M̂3(Ŵ , Ŵ , Ŵ ), then the tensor
resulting from corpus D0 with one record changed yields M̂ 0

3(Ŵ 0, Ŵ 0, Ŵ 0) where the spectral norm of the error is upper
bounded by ✏, if �bT (D) is sufficiently small �bT (D)  �s✏

2
p
k

. Therefore we get
��µ̄i � µ̄0

i

��
2
 2

p
k� bT (D)
�s

and |↵̄i�↵̄0
i| 

2
p
k� bT (D)
�s

.

G.5. Proof for Theorem 7 (sensitivity of the final output µi,↵i)

We now prove the sensitivity of the final output µi,↵i: �µ(D) = O( k2
p

�1(M̂2)

�sN�3/2
k (M̂2)

).

Proof. We point out a number of things. Tensor decomposition outputs are: µ̄i, ↵̄i, i 2 [k], where, ↵̄i =
2
p

(↵0+1)↵0

(↵0+2)
p
↵i

.
In order to recover the desired word topic vector µ, we have to “unwhiten” to get the µi and ↵i before whitening, i.e.
µi =

1p
↵r

i

(WT )†µ̄i, where 1p
↵r

i

= (↵0+2)

2
p

(↵0+1)↵0

↵̄i. The sensitivity would be:

max
D,D0

kµi � µ0ik  max
D,D0

(������
1p
↵r
i

(WT )†µ̄i �
1q
↵
r,0

i

(WT,0)†µ̄0
i

������
2

)
(115)

 max
D,D0

(
1p
↵r
i

��(WT )†
�� kµ̄i � µ̄

0
ik+

1p
↵r
i

��W † � (W 0)†
��+

��(W 0)†
�� | 1p

↵r
i

� 1p
↵r
i,0
|
)

(116)

We note the following:

(i) maxD,D0 | 1p
↵r

i

� 1p
↵r

i,0
| = maxD,D0 | (↵0+2)

2
p

(↵0+1)↵0

↵̄i � (↵0+2)

2
p

(↵0+1)↵0

↵̄
0
i|  (↵0+2)

2
p

(↵0+1)↵0

maxD,D0 |↵̄i � ↵̄
0
i| 

(↵0+2)

2
p

(↵0+1)↵0

2
p
k� bT (D)
�s

, where the above follows from the simultaneous power iteration method.

(ii) maxi2[k]
1p
↵r

i

 (↵0+2)

2
p

(↵0+1)↵0

maxi2[k] ↵̄i =
(↵0+2)

2
p

(↵0+1)↵0

�1(bT )

(iii) max
��((W 0)T )†

�� 
q
�1(M̂ 0

2) 
q
�1(M̂2) +�2

(iv) Following an analysis similar to that in 32, we obtain
��W † � (W 0)†

�� 
p

�1(M̂2)

�k(M̂2)
�2.
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Combining all of this together leads to the following

max
D,D0

kµi � µ0ik  (↵0 + 2)

2
p
(↵0 + 1)↵0

�1(bT )
q
�1(M̂2)

2
p
k�bT (D)

�s
+

(↵0 + 2)

2
p
(↵0 + 1)↵0

�1(bT )

q
�1(M̂2)

�k(M̂2)
�2

+
(↵0 + 2)

2
p
(↵0 + 1)↵0

q
�1(M̂2) +�2

2
p
k�bT (D)

�s
(117)

= O(
k
2
q
�1(M̂2)

�sN�
3/2
k (M̂2)

) (118)

G.6. Proof for Lemma 8

Let L̃S denote the local sensitivity. We prove a slightly more general version where the construction of L̃S is (✏1, �1)-DP,
and it is a valid upper bound with probability � 1� �3.

Lemma 33. Let LS be the `p local sensitivity of a function f on a fixed data set. Let L̃S obeys (✏1, �1)-DP and that
P[LS � L̃S]  �3 (where the probability is only over the randomness in releasing L̃S). Then the algorithm releases
f(DATA) + Z(✏, �, L̃S) that is (✏1 + ✏2, �1 + �2 + �3)-DP, where Z(✏2, �2, L̃S) is any way of calibrating the noise for
privacy which takes the local sensitivity as if it is a global sensitivity.

Proof. Let x, x
0 be two adjacent data sets and the overall output be O := f(DATA) + Z(✏2, �2, L̃S). Let S1 ⇢

Range(f), S2 ⇢ R+ be any measurable sets.

Let E be the measurable set of L̃S that represents the event that L̃S � LS.

P[(O, L̃S) 2 S1 ⇥ S2|x] (119)

=P[(O, L̃S) 2 S1 ⇥ (S2 \ E)|x] + P[(O, L̃S) 2 S1 ⇥ S2 \ E
c|x] (120)

P[(O, L̃S) 2 S1 ⇥ (S2 \ E)|x] + �3 (121)

e
✏1+✏2P[(O, L̃S) 2 S1 ⇥ (S2 \ E)|x0] + �1 + �2 + �3 (122)

e
✏1+✏2P[(O, L̃S) 2 S1 ⇥ S2|x0] + �1 + �2 + �3 (123)

The fourth line holds due to the fact that under event the E, L̃S is always a valid upper bound of the local sensitivity,
therefore, conditioning on the �-field induced by E\S2 for any S2, O is an (✏2, �2)-DP release. By the simple composition
Theorem of (✏, �)-DP (Dwork et al., 2014a)[Theorem B.1,], by taking the measurable set of interest to be S1 ⇥ (S2 \ E),
we have that

P[(O, L̃S) 2 S1 ⇥ (S2 \ E)|x]  e
✏1+✏2P[(O, L̃S) 2 S1 ⇥ (S2 \ E)|x0] + �1 + �2

which wraps up the proof.

The proof of Lemma 8 is a corollary which takes �1 = 0.

G.7. Proof for Sensitivity of singular values �k(M̂2) (Lemma 9)

Proof. We first prove that the global sensitivity of �k(M̂2) is 1/n. By Weyl’s lemma (Stewart, 1998)[Theorem 1], for any
matrix X , any i, the singular value |�i(X)� �i(X +E)|  kEk2. In our case, E is coming from adding or removing one
data point and we know that kEk2  kEkF  kEk1,1  2/n, hence the bound.

Now we prove that the global sensitivity of �s = mini2[k]
�i(bT )��i+1(bT )

4 . For any tensor bT , we consider a polyadic form or
the so called tensor decomposition form, and denote the singular values as the amplitude of the components in the polyadic
form. As shown in Section G.2, |�i(bT )��i(bT +E)|  kEk  1, where E comes from adding or removing one data point.
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H. Utility Proofs
Before starting the utility proofs, we point out a number of things. Tensor decomposition outputs:µ̄i, ↵̄i, i 2 [k].

Where, ↵̄i =
2
p

(↵0+1)↵0

(↵0+2)
p
↵i

. In order to recover the desired word topic vector µ, we have to ’reverse whiten’, i.e.

µi = 1p
↵r

i

(WT )†µ̄i, where 1p
↵r

i

= (↵0+2)

2
p

(↵0+1)↵0

↵̄i. We need to establish the distance between the non-differentially

private output and the differentially private output, i.e.
��µi � µ

DP
i

��. This can be upper bounded similar to G.5 by the
following:
��µi � µ

DP
i

��  1p
↵r
i

��(WT )†
�� ��µ̄i � µ̄

DP
i

��+ 1p
↵r
i

��W † � (WDP )†
��+

��(WDP )†
�� | 1p

↵r
i

� 1p
↵r
i,DP

| (124)

For this we frequently need to bound the following:
��µ̄i � µ̄

DP
i

��,
��W † � (WDP )†

��,
��(WDP )†

��, | 1p
↵r

i

� 1p
↵r

i,DP

|, and

|↵̄i � ↵̄
DP
i |.

We point out the following facts before preceding.
Fact 34. | 1p

↵r
i

� 1p
↵r

i,DP

|  | (↵0+2)

2
p

(↵0+1)↵0

↵̄i � (↵0+2)

2
p

(↵0+1)↵0

↵̄
DP
i |  (↵0+2)

2
p

(↵0+1)↵0

|↵̄i � ↵̄
DP
i |.

Fact 35.
��(WT )†

�� 
q
�1(M̂2).

Fact 36. 1p
↵r

i

= (↵0+2)

2
p

(↵0+1)↵0

↵̄i  (↵0+2)

2
p

(↵0+1)↵0

�1(bT ).

H.1. Perturbation on M̂2 , M̂3 Config. 1 (e3, e4, e8): Proof for Theorem 10

Similar to the perturbation on (e6, e8). We have that

��W † � (WDP )†
�� 

q
�1(M̂2) kE8,Gk

�k(M̂2)
(125)

��(WDP )†
�� 

q
�1(M̂2) + kE8,Gk (126)

Now the perturbed tensor can be represented as M̂DP
3 = M̂3 + E3,G, where E3,G is symmetric Gaussian noise that has

been added to the original tensor. Similar to the sensitivity analysis for the whitened tensor, we have that the error � can
be bounded as follows:

k�k2 =
���M̂3(Ŵ , Ŵ , Ŵ )� M̂

DP
3 (WDP

,W
DP

,W
DP )

���
2

(127)


���M̂3

���
��W �W

DP
��3 + kE3,Gk

��WDP
�� (128)

Following an analysis similar to bounding
��W † � (WDP )†

��, we get that
��W † � (WDP )†

��  kE8,Gk

�k(M̂2)

q
�k(M̂2)

2

. Accord-

ing to 43 we have that with high probability kE3,Gk = O(
p
d�3⌧✏3,�3). We note the following

��µ̄i � µ̄
DP
i

��
2
 2

p
kk�k
�s

using the simultaneous power iteration of (Wang & Lu, 2017). Similarly we have |↵̄i � ↵̄
DP
i |  2

p
kk�k
�s

and that

| 1p
↵r

i

� 1p
↵r

i,DP

|  (↵0+2)

2
p

(↵0+1)↵0

2
p
kk�k
�s

. This leads to
��µi � µ

DP
i

��
2

 (↵0+2)

2
p

(↵0+1)↵0

�1(bT )
q

�1(M̂2)
2
p
kk�k
�s

+

(↵0+2)

2
p

(↵0+1)↵0

�1(bT )
p

�1(M̂2)

�k(M̂2)
kE8,Gk+

q
�1(M̂2) + kE8,Gk (↵0+2)

2
p

(↵0+1)↵0

2
p
kk�k
�s

.

Based on the bound on k�k we have with high probability
��µi � µ

DP
i

��
2

= O(
p

�1(M̂2)k
�s

((
p
d

N�k(M̂2)3/2
⌧✏4,�4)

3 +
p
d

N�k(M̂2)3/2
⌧✏3,�3) +

p
�1(M̂2)d

�k(M̂2)N
⌧✏8,�8 +

q
�1(M̂2) +

p
d

N ⌧✏8,�8

p
k

�s

h
(

p
d

N�k(M̂2)
⌧✏4,�4)

3 +
p
d

N�k(M̂2)3/2
⌧✏3,�3

i
).

H.2. Perturbation on bT and M̂2 Config. 2(e6, e8): Proof for Theorem 12

This configuration has two properties: the noise level introduced is low because the whitening step reduces the tensor
dimension from M̂3 2 Rd⇥d⇥d to bT = M̂3(Ŵ , Ŵ , Ŵ ) 2 Rk⇥k⇥k. However, even though the dimension of the tensor is
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reduced, unless the whitening tensor (resulting from eigendecomposition over M̂2) is stable, the sensitivity of the whitened
tensor is not necessarily low.

Note that the sensitivity of M̂2 falls with 1
N (Theorem 4). Therefore, we expect the sensitivity of M̂3(Ŵ , Ŵ , Ŵ ) to drop

with an increasing number of records. As Theorem 5 states, �bT (D) = O( k3/2

N�3/2
k (M̂2)

), if �2  �k(M̂2) � �k+1(M̂2).

Thus, given the spectral gap requirement, the sensitivity of the whitened tensor is �bT (D).

M̂2 is used to generate both the whitening and unwhitening matrix, and unlike input perturbation, the sensitivity over M̂2

and M̂3 falls as the dataset size increases (Theorem 4). However, an issue with this configuration is that adding noise
to M̂3 leads to higher noise build up prior to the tensor decomposition. Note that by (43) w.h.p the norm of the error is
O(

p
d�), with � being the variance of the noise (this bound would be

p
k� if the noise is added to a symmetric tensor of

size k). Tensor decomposition methods, in particular (Wang & Lu, 2017) require the spectral norm of the perturbation to
the tensor to be lower than a certain threshold. Following arguments similar to (Wang & Anandkumar, 2016), the spectral
norm of the error is O(

p
d

N✏3
) and should be below

p
k

�s�k(bT )
. Thus ✏3 should satisfy ✏3 = ⌦(

p
kd

�s�k(bT )N
) to establish utility

guarantees for tensor decomposition. Following similar arguments, this time using the bound on the spectral norm of
the noisy matrices, to guarantee utility, the differentially private whitening W and pseudo-inverse W

† should be close to
their non-differentially private values, which requires both ✏4 and ✏8 to be ⌦(

p
d

(�k(M̂2)��k+1(M̂2)N)
). Although, the privacy

parameters have a lower bound of
p
d, the bound also falls with 1

N .

The spectral norm of the noise added to M̂2 can be bounded by 42 to be O(
p
d

N ⌧✏8,�8) with high probability. Now, if we

have N = ⌦(
p
d⌧✏8,�8

�k(M̂2)��k+1(M̂2)
), then with w.h.p we have that kE8,Gk  �k(M̂2)��k+1(M̂2)

2 , where kE8,Gk is the spectral

norm of the Gaussian matrix. This condition enables us to bound
��W † � (WDP )†

��, in a manner similar to establishing
the bounds between kW �W

0k in 32. Following a similar analysis, given that

W
T (M̂2)kW = I, (129)

W
T,DP (M̂2 + E8,G)kW

DP = I, (130)

W
T (M̂2 + E8,G)kW = ADA

T
, (131)

we have that
��W † � (WDP )†

�� 
��W †

�� kI �Dk. We know that
��W †

��  1p
�k(M̂2)

and kI �Dk can be bounded as

follows:

kI �Dk 
��I �ADA

T
�� 

���WT (M̂2)kW �W
T (M̂2 + E8,G)kW

��� (132)

 kWk2
���(M̂2)k � (M̂2 + E8,G)k

���  kWk2 kE8,Gk  kE8,Gk
�k(M̂2)

(133)

This leads to
��W † � (WDP )†

�� 
p

�1(M̂2)kE8,Gk
�k(M̂2)

.

Moreover, it is immediate by Weyl’s theorem that
��(WDP )†

�� 
q

�1(M̂2 + E8,G) 
q
�1(M̂2) + kE8,Gk.

Finally, by the results of simultaneous power iteration (with an argument similar to Theorem 6), if N is sufficiently large,
we have that

��µ̄i � µ̄
DP
i

��  2
p
kkE6,Gk
�s

where E6,G is the Gaussian tensor added to the whitened tensor �bT (D). An

identical bound is established for the eigenvalues, i.e. |↵̄i � ↵̄
DP
i |  2

p
kkE6,Gk
�s

.

Now we can state the utility:

��µi � µ
DP
i

��  (↵0 + 2)

2
p
(↵0 + 1)↵0

�1(bT )
q
�1(M̂2)

2
p
k kE6,Gk
�s

+
(↵0 + 2)

2
p

(↵0 + 1)↵0

�1(bT )

q
�1(M̂2)

�k(M̂2)
kE8,Gk

+
(↵0 + 2)

2
p
(↵0 + 1)↵0

q
�1(M̂2) + kE8,Gk

2
p
k kE6,Gk
�s

(134)
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We note that w.h.p we have the following bounds on spectral norms of noisy Gaussian matrix and noisy Gaussian tensor.
In particular, kE6,Gk = O( k2

N �̃3/2
k

⌧✏6,�6) and kE8,Gk = O(
p
d

N ⌧✏8,�8). This leads to the following utility

��µi � µ
DP
i

�� = O(

q
�1(M̂2)k2.5

�sN �̃
3/2
k

⌧✏6,�6 +

q
�1(M̂2)d

�k(M̂2)N
⌧✏8,�8 +

s

�1(M̂2) +

p
d

N
⌧✏8,�8

k
2.5

⌧✏6,�6

�sN �̃
3/2
k

). (135)

H.3. Perturbation on the output of tensor decomposition µ̄i,↵̄i and M̂2 Config. 3 (e7, e8): Proof for Theorem 14

This configuration shares edge 8 with the previous. This enables us to borrow the same bounds for the pseudo-inverse W †.
Specifically, we have:

��W † � (WDP )†
�� 

q
�1(M̂2) kE8,Gk

�k(M̂2)
(136)

��(WDP )†
�� 

q
�1(M̂2) + kE8,Gk (137)

In this method, noise is added directly to the eigenvectors and eigenvalues resulting from the tensor decomposition. There-
fore, we have:

µ̄
DP
i = µ̄i + Y, Y ⇠ N (0,�2

✏,�Ik) (138)

↵̄
DP
i = ↵̄i + ni, ni ⇠ N (0,�2

✏,�) (139)

where �✏,� =
p
2k� bT (D)

�s
⌧✏7,�7 with ⌧✏7,�7 =

p
2ln(1.25/�7)

✏7
. This leads to the following bound:

��µi � µ
DP
i

��  (↵0 + 2)

2
p
(↵0 + 1)↵0

�1(bT )
q
�1(M̂2) kY k+ (↵0 + 2)

2
p
(↵0 + 1)↵0

�1(bT )

q
�1(M̂2)

�k(M̂2)
kE8,Gk

+
(↵0 + 2)

2
p
(↵0 + 1)↵0

q
�1(M̂2) + kE8,Gk|ni| (140)

As before w.h.p kE6,Gk = O(
p
d

N ⌧✏6,�6).The following bounds hold on kY k and |ni|, because they are a Gaussian vector
and variable. In particular, w.h.p. kY k = O( k5/2

N �̃3/2
k �̃s

⌧✏7,�7) and |ni| = O( k2

N �̃3/2
k �̃s

⌧✏7,�7). This leads to the following

utility: O(
p

�1(M̂2)k2.5

�̃sN �̃3/2
k

⌧✏7,�7 +
p

�1(M̂2)d

�k(M̂2)N
⌧✏8,�8 +

q
�1(M̂2) +

p
d

N ⌧✏8,�8
k2⌧✏7,�7

�̃sN �̃3/2
k

).

H.4. Perturbation on the final output µi, ↵i Config. 4 (e9): Proof for Theorem 16

In this configuration, we add noise proportional to the output’s sensitive

µ
DP
i = µi + Z, where Z ⇠ N (0,�2

✏,�Ik) (141)

where �✏,� = �µ(D)⌧✏9,�9 , with ⌧✏9,�9 =
p

2ln(1.25/�9)

✏9
. Similar to the previous analysis, since Z is Gaussian, then w.h.p.

kZk = O(
p

d�1(M̂2)k
2

N �̃s�̃
3/2
k

). We have the utility O(
p

�1(M̂2)dk
2

N �̃s�̃
3/2
k

⌧✏9,�9).

I. Some Useful Identities and Theorems
Identity 37 (Square of Sum).

⇣ NX

i=1

ai

⌘2
=

NX

i=1

a
2
i +

N,NX

i=1,j=1
i 6=j

aiaj (142)
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Identity 38 (Cube of Sum).

⇣ NX

i=1

ai

⌘3
=

NX

i=1

a
3
i + 3

N,NX

i=1,j=1
i 6=j

a
2
i aj +

N,N,NX

i=1,j=1,k=1
i 6=j,j 6=k,k 6=i

ajajak (143)

Theorem 39 (Weyl’s theorem; Theorem 4.11, p. 204 in (Stewart, 1990)). . Let A,E be given m⇥n matrices with m � n,
then

max
i2[n]

|�i(A)� �i(A+ E)|  kEk2 (144)

Theorem 40 (Bound on the norm of a Gaussian Random Variable). Let Z be a Gaussian N (0,�). Then P[|Z|  t] �
1� 2e

�t2

2�2 for all t > 0’ or alternatively, P[|Z| > �
p
2 log(1/�)]  � for all 0 < �  1.

Theorem 41 (Bound on the norm of a Gaussian Vector). Let Y ⇠ N (0,�Ik), then P[kY k22 � �
2(k+2

p
kt+2t)]  e

�t.

Proof. The proof is immediate from Theorem 2.1 in (Hsu et al., 2012) with A = I, µ = 0.

Theorem 42 (Bound on the spectral norm of a Gaussian Matrix (Tao, 2012)). Let E 2 Rd⇥d be a symmetric Gaussian
matrix with elements sampled iid from N (0,�), then P[kEk2 = O(

p
d�)] � 1� negl(d).

Theorem 43 (Bound on the spectral norm of a Gaussian Tensor (Tomioka & Suzuki, 2014)). Let E be a K
th order tensor

with each Ei1,...,iK be sampled i.i.d. from a Gaussian N (0,�), then P[kEk2 
q

8�2(
PK

i=1 di) ln(2K/K0) + ln(2/�)] �
1� �, where K0 = ln(3/2). Note by extension the bound also holds if the tensor is symmetric as well.

Lemma 44 (Laplace tail bound). Let Z be drawn from a Laplace distribution with density 1
2be

� |z|
b , then P(Z � t) = 1

2e
� t

b

for all t > 0, or equivalently Z  b log(1/(2�)) with probability at least 1� � for all 0 < �  1.


