
Appendices to “Spectral Frank-Wolfe Algorithm: Strict Complementarity and
Linear Convergence”

A. Uniqueness assumption
Here we discuss how to adapt our results to multiple solution setting. First of all, if there are multiple solution, th
complementarity condition means that there is a primal optimal solution X? such that

rank(X?) + rank(Z?) = n.

Thus we should set r? to be the maximal rank among all primal solutions. Denote the set of primal optimal solu
Problem (1) as X?. Quadratic growth in this situation is understood as

f(X)− f(X?) ≥ γ inf ‖X −X?‖F =: dist(X,X?),
X?∈X?

for any X � 0 and tr(X) = 1. Now due to strict complementarity, we still have r? = k? (dual solution Z? is un
shown in the next section). Theorem 3 can be now be proved in the exactly same way by considering the nearest X?

Xt without the uniqueness assumption. To prove Theorem 6, the argument follows exactly as the main proof by cons
the nearest{X? ∈ X? to X , and} replacing Lemma 6 by Lemma 7. In this case, the parameter γ of quadratic gr

λ
γ = min n−r? (Z?)

2 ˜σ (A)
, αµ

2

where µ := sup{a ≥ 0 | a · dist(X,X?) ≤ ‖Ã(X) − b‖2
4+8 max 8 for all X ∈ Cr?(Z?)}

2µ

indeed positive using Lemma 7.

e strict
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B. Lemmas for Section 2
Lemma 1. The dual solution (Z?, s?) of Problem (1) is unique even if the primal solution is not unique.

Proof. We first show that for any primal solution X?, its gradient ∇f(X?) is the same. Using β-smoothness of
constant β can be taken to be ‖A‖2opLg), we have for any optimal X? and X ′?

〈X? −X ′?,∇f(X ′
?)−∇f(X?)〉

1≥ ‖∇f(X?)−∇f(X ′
β ?)‖2F.

Since X? and X ′? are optimal solution, we have the following two inequalities using the optimality

〈X? −X ′?,∇f(X?)〉 ≤ 0,

〈X ′? −X?,∇f(X ′?)〉 ≤ 0.

Combining the inequalities (1), (2), and (3), we have

‖∇f(X?)−∇f(X ′?)‖F ≤ 0 =⇒ f(X?) = f(X ′?).

This shows that∇f(X?) is unique. Now for any Z?, s ′ ′
? and Z?, s? satisfying the KKT condition, we have

∇f(X?) + C = Z? + s?I

= Z ′? + s′?I

=⇒ Z? − Z ′? = (s′? − s?)I.

f (the

(1)

(2)
(3)

(4)

(5)
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Now using complementarity in step (a) and feasibility of X? in step (b):

(a)
0 = 〈Z? − Z ′?, X 〉 = (s′? ? − s?)〈I,X?〉

(b)
= (s′? − s?)

=⇒ s? = s′?, and Z? = Z ′?.

Hence the dual solution Z? and s? is unique.

(6)

Lemma 2. For almost all C, the strict complementarity condition holds for (1).

Proof. Let us first define indicator function: for any given D ⊂ Rn, we define{
0, x ∈ D

χC(x) =
+∞, x 6∈ D.

Also denote the relative interior of a set D as relint(D). We utilize the result in Drusvyatskiy & Lewis (2011, Corolla
that for almost all C, we have

−C ∈relint(∂(g(AX)

+ χ{tr(X)=1}(X) + χ{X�0}(X))(X?))

(a)
= relint(A∗(∇g)(AX?) + {sI | s ∈ R}

+ {−Z | Z � 0, range(Z) ⊂ nullspace(X?)})
(b)
=A∗(∇g)(AX?) + C + {sI | s ∈ R}

+ {−Z | Z � 0, range(Z) = nullspace(X?)}.

Here we use the sum rule in step (a) as 1 I is in {X | tr(X) = 1} {X | X � 0} (b)n and the interior of . In step , we
sum rule of relative interior. Hence, there is some s? and Z? such that

range(Z?) = nullspace(X?)

=⇒ 〈Z?, X?〉 = 0, and
rank(Z?) + rank(X?) = n.

ry 3.5),

(7)

use the

(8)

and
A∗(∇g)(AX?) + C = Z? + s?I.

We thus conclude (Z?, s?) satisfies the KKT condition (3), and strict complementarity holds.

C. SpecFW: minimizing an upper bound of f(ηXt + V SV >).
When the function f is not fully known or gradient might be hard to query, we may consider the following subp
instead: solve

minimize g(AXt)

+ 〈A(ηXt + V SV >)−AXt, (∇g)(AXt)〉
Lg

+ ‖A(ηXt + V SV >)−AX 2
t‖

2 2

+ 〈C, ηXt + V SV >〉
subject to η + tr(S) = 1, S � 0, and η ≥ 0.

with decision variable S and η. Then set X >
t+1 = ηXt + V SV for the optimal η and S.

roblem

(9)

The above formulation enjoys the advantage of efficient computation in terms of time when m is small and the line
A and 〈C, ·〉 are easy to apply to low rank matrices. One may also save AXt during the process to avoid forming
sketching Xt using idea from Tropp et al. (2017) for storage purpose.

ar map
Xt and
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One could also consider solving

minimize f(Xt)

+ 〈ηXt + V SV > −Xt,∇f(Xt)〉
Lf

+ ‖Xt − (ηXt + V SV >)‖F
2

subject to η + tr(S) = 1, S � 0, and η ≥ 0.

Then set Xt+1 = ηXt + V SV > for the optimal η and S. Here Lf is the Lipschitz constant of∇f . This method req
store Xt in each iteration though.

(10)

uires to

D. Combination with matrix sketching idea in Tropp et al. (2017)
When m n
(2017) to achieve storage reduction. We note that if we store A(Xt) = zt and ct = 〈C,Xt〉 at each iteration, then
no problem in doing the small-scale SDP (10), as f(ηXt+V SV >) = g(η(AXt) +A(V SV >)) +η〈C,Xt〉+ 〈C, V
If A and inner product with C can be applied to low rank matrices efficiently, then updating zt and ct is not hard
linearity of our updating scheme Xt+1 = ηXt + V SV >.

Now we explain how to omit storing the iterate Xt. First, we draw two matrices with independent standard normal

Ψ ∈ Rn×k with k = 2r + 1;

Φ ∈ Rl×n with l = 4r + 3;

Here r is chosen by the user. It either represents the estimate of the true rank of the primal solution or the user’s compu
budget in dealing with larges matrices.

We use Y Ct and Y Rt to capture the column space and the row space of Xt:

Y Ct = XtΨ ∈ Rn×k, Y Rt = ΦX l×n
t ∈ R .

Hence we initially have Y C0 = 0 and Y R0 = 0. Notice that SpecFW does not observe matrix Xt directly. Rather, it o
a stream of rank k updates

X >
t+1 = V SV + ηXt,

where V ∈ Rn × k and S ∈ Sk.

In this setting, Y Ct+1 and Y Rt+1 can be directly computed as

Y Ct+1 = V S(V >Ψ) + ηY Ct ∈ Rn×k,
Y Rt+1 = (ΨV )SV > + ηY Rt ∈ Rl×n.

This observation allows us to form the sketch Y Ct and Y Rt from the stream of updates.

We then reconstruct ˆXt and get the reconstructed matrix Xt by

Y C ˆ
t = QtRt, Bt = (ΦQ †

t) Y
R
t , Xt = Qt[Bt]r,

where Q C
tRt is the QR factorization of Yt and [·]r returns the best rank r approximation in Frobenius norm. Spec

the best rank r approximation of a matrix Z is UΣV ∗, where U and V are right and left singular vectors correspon
the r largest singular values of Z and Σ is a diagonal matrix with r largest singular values of Z. In actual impleme
we may only produce the factors ˆ(QU,Σ, V ) defining XT in the end instead of reconstructing X̂t in every iterati
refer the reader to Tropp et al. (2017, Theorem 5.1) for the theoretical guarantees on the reconstruction matrix X̂t.

Hence we can avoid the forming a new iteratre procedure in SpecFW. We remark that the reconstructed matrix X̂
necessarily positive semidefinite. However, this suffices for the purpose of finding a matrices close toXt. More sophi
procedure is available for producing a positive semidefinite approximation of Xt (Tropp et al., 2017, Section 7.3).

is on the order , we can employ the matrix sketching idea developed in Tropp et al. (2017) and Yurtsever et al.
we have
SV >〉.
due to

entries

tational

(11)

bserves

(12)

(13)

(14)

ifically,
ding to
ntation,
on. We

t is not
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E. Proofs for Section 3
We first give the detailed calculation of the derivation for (12).

Continuation of proof of Theorem 3. We need to choose
2

ξ ∈ [0, 1] so that 1 − ξ + ξ β
γ is minimized while k

2 ξλn−r? (Z?) . For 2 ξλn−r? (Zξ β − ≤ 0 ξ β − ?) ≤ 0, we need λ
ξ ≤ n−r? (Z?) . The function q(ξ) = 1 − ξ +6 6 6β

decreasing for γ and increasing for γ . If γ λn−r? (Zξ ≤ ξ ≥ ≤ ?)
2β 2β 2β 6β , then we can pick ξ = γ q(ξ) =2β , and

2

If γ λn−r? (Z?) λn−r? (Z?) , then we can pick λn−r? (Z?) (Z ) λ≥ =⇒ ≤ 3 ξ = , and λ
q(ξ) = 1 − n−r? ? + n−r

2β 6β( ) ?

γ 6β 6β 36γ

λn−r? (Z?) λn−r? (Z?) λ
1 + − 1 ≤ 1− n−r? (Z?)

6β 6γ 12β .

eeping
ξ2β
γ is

1 − γ
4β .

(Z?)

β =

We shall prove Lemma 5 in this section. We restate Lemma 5 in a self-contained way.

Lemma 3. Suppose Y ∈ Sn with eigenvalues λ1(Y ) ≥ · · · ≥ λn(Y ), and λn−r(Y )− λn−r+1(Y ) ≥ δ. Here λi(·)
the operator of taking the i-th largest eigenvalue. Also let v1, . . . , vn be the corresponding orthornomal eigen
Denote the eigenspace corresponding to the last reigenvalus of Y as VY,r and the corresponding orthorgonal pro
P : Rn → Rn which is also a matrix in Rn×nY,r . Let VY,r ∈ Rn×r formed by the last{ r many eigenvectors} vn−r+1

which represents the eigensapce VY,r. Define C (Y ) = V >
r Y,rSV |Y,r S � 0, tr(S) = 1 . Then for any X ∈

tr(X) = 1, X � 0, there is some W ∈ Cr(Y ) such that

δ〈X −W,Y 〉 ≥ ‖X −W‖2F.2

denote
vectors.
jection
, . . . vn
Sn with

Remark 4. We note that as long as range(V ) = range{ }(V ) for some matrix V ∈ Rn×rY,r with orthonormal colu
set Cr(Y ) is the same as V SV > | S � 0, tr(S) = 1 .

mns, the

Proof of Lemma 5. We first decompose X by

X = (X − PY,rXPY,r) +P X︸ ︷︷ ︸ Y,r P︸ ︷︷ Y,r .︸
X1 =:X2

Note that PY,r = P>Y,r, so X2 = PY,rXPY,r is still symmetric. Let 1− ε = tr(PY,rXPY,r). Since tr(X) = 1,
(a)

ε = tr(X − PY,rXPY,r). We have ε ∈ [0, 1] as tr(PY,rXPY,r) = 〈X,PY,rPY,r〉 ≤ ‖PY,r‖optr(X) ≤ 1 where s
is due to Holder’¨ s inequality.

Consider the eigenvalue decomposition of X2 = V2Λ2V
>
2 , where V n

2 ∈ R ×r and Λ2 ∈ Sr with all diagonal nonn
Here the column space of V2 satisfies range(V2) = VY,r.

Because PY,rXPY,r = X2 is a member in Cr(Y ), we know there is an W ∈ Cr(Y ) such that W = V2ΛWV
>
2

ΛW ∈ Sr has nonegative diagonal with tr(ΛW ) = 1 and the difference matrix ∆ = ΛW − Λ2 has nonnegative entr
also have tr(∆) = ε, as the trace of both ΛW and X are one.

we have

tep (a)

egative.

where
ies. We

With such choice of W , let us now analyze 〈X −W,Y 〉 :

〈X −W,Y 〉 = 〈X1, Y 〉+ 〈X2 −W,Y 〉

= 〈X − PY,rXPY,r,
n∑
i=1

λi(Y )viv
>
i 〉︸ ︷︷ ︸

R1

− 〈V2∆V >2 ,

n∑
i=1

λi(Y )viv
>
i 〉︸ ︷︷ ︸

R2

.

(15)
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The first term n
R1 = 〈X − PY,rXPY,r, i=1 λi(Y )viv

>〉i satifies
∑
〈X − PY,rXPY,r,

n

i=1

λi(Y )viv
>
i 〉

(a)
=

n∑
i=1

λi(Y )v>i Xvi −
n∑

i=n−r+1

λi(Y )v>i Xvi

=
n−r∑
i=1

λi(Y )v>i Xvi

(b)

≥(λn−r+1(Y ) + δ)
n−r∑

v>i Xvi.

∑

i=1

Here in step (a) we uses the fact that PY,rvi = vi for i = n− r + 1, . . . n and is zero for other vi. In step (b), we∑
assumption that and each n−r

λn−r − λn−r+1 ≥ δ v>X i ≥ 0 as X �i v 0. We note that i=1 v
>
i Xvi satifies( ( ))

n∑−r n∑−r (a)
v>i Xvi = tr X viv

>
i = tr(X(I − PY,r))

i=1 i=1

(b)
= tr(X)− tr(PY,rXPY,r) = ε.

Here step (a) uses the PY,r = VY,rV
>
Y,r and we use P 2

Y,r = PY,r and cyclic property of trace in step (b).

Now let us analyze the second term R2:

∑n
R2 = 〈V2∆V >2 , λ v>i(Y )vi i 〉

i=1

n
(a) ∑
= 〈V2∆V >2 , λi(Y )viv

>
i 〉.

i=n−r+1

use the

Here we use the fact that V >2 vi = 0 for all vi, i = 1, . . . n− r. Since VY,r and V2 are both orthonormal representa
VY,r, we know there is an orthonormal matrix O ∈ Rr×r such that VY,r = V2O. Define the linear operator diag : Sn
, which takes the diagonal of a matrix. Let ΛY,r = diag∗ (λn−r+1(Y ), . . . , λn(Y )) , we see R2 further equals to( )

R2 = tr V >
2∆V2 V2OΛY,rO

>V >2
(a) ( )
= tr ∆OΛY,rO

>

(b)

≤ ελn−r+1(Y ).

Here we use the cyclic property in step (a) and the step (b) is an easy consequence of∑ ∆ has nonnegative diagonal a
Neumann’s trace inequality: for symmetric matrices A,B ∈ Sr r

, 〈A,B〉 ≤ i=1 λi(A)λi(B). Combining pieces,
that

〈X −W,Y 〉 ≥ (λn−r+1(Y ) + δ)ε− ελn−r+1(Y ) = δε.

Now we turn to analyzing the term ‖X −W‖2F. Using 〈X1, X2〉 = 0, 〈X1,W 〉 = 0, we find that

‖X −W‖2F = ‖X1‖2F + ‖X2 −W‖2F.

The second term ‖X 2
2 −W‖F satisfies ( )∑r ∑ 2r

‖X2 −W‖F = ‖V2∆V >2 ‖2 = ∆2
ii ≤F ∆ii = ε2.

i=1 i=1

tion of
→ Rn

nd Von
we find
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If we write X in terms of the coordinates given by V2 and its orthogonal compliment say V1, then in this new coo
V = [V1, V2]: [ ] [ ]

A
V >

B
XV = ,

B V >
and V >

A B
X

2 2V
1V = .

X 2 B 0

Then tr(X1) = tr(A). Lemma 5 implies that

‖B‖2 ≤ tr(X2)tr(A) = ε(1− −F ε) = ε ε2.

Hence ‖X1‖2 = ‖A‖2 2
+ 2‖B‖2 ≤F F F (tr(A)) + 2ε− 2ε2 = −ε2 + 2ε. Combining pieces and ε ∈ [0, 1], we find th

‖X −W‖2 2 2≤ 2ε = δε ≤ 〈X −W,Y 〉F δ δ
δ

=⇒ 〈X −W,Y 〉 ≥ ‖X −W‖2F.

rdinate

at

2

Lemma 5. Suppose Y = > > 2

B>
� 0. Then ‖A‖optr(D) ≥ ‖BB ‖∗ = tr(BB ) = ‖B‖

D F.

[ ]
A B

Proof. For any ε > 0, denote A = A + εI and Yε = ε
ε B∗

. We know Y
D ε is psd, as is its Schur comp

D −B>A−1ε B � 0 with trace tr(D)− tr(A−1ε BB>) ≥ 0.

Von Neumann’s lemma for A > −1 ∗ 1
ε, BB � 0 shows tr(Aε BB ) ≥ ‖BB>‖∗. Use this with the previous ine

‖Aε‖op

to see tr(D) ≥ 1 ‖‖ ‖ BB>‖∗.Aε
Multiply by ‖Aε‖op and let ε→ 0 to complete the proof.

op

[
A B

]

lement

quality

F. Lemmas for Section 4
We first give a self-contained proof for the second case of Theorem 6.

Proof of second case of Theorem 6. For any feasible X and the optimal solution X?, we have

(a)

f(X)− f(X?) ≥ 〈∇f(X?), X −X?〉
(b)
= 〈Z? + s?I,X −X?〉
(c)
= 〈Z?, X −X?〉.

Here step (a) is due to the convexity of f . For step (b), we uses the first order condition of KKT condition (3). The
is due to feasibility of X and X?.

Since Z? has rank n− 1, using strict complementarity, we reach that any optimal solution X? has rank 1 with range(
nullspace(Z?). Thus any optimal solution X? is of the form X? = ξvv>, v is the non-zero unit vector in the null s
Z?, and ξ is a nonnegative scaler. Since X? has to be feasible, the constraint tr(X?) = 1 implies that ξ = 1 and he
solution X? is unique. The same argument implies that the set C1(Z?) = {X?} . Hence using Lemma 5 and λn(Z
we see that

λn−1(Z?)
f(X)− f(X?) ≥ 〈Z?, X −X?〉 ≥ ‖X −X?‖2F.2

step (c)

X?) =
pace of
nce the
?) = 0,

Next, we establish the lemma that is core to the proof of Theorem 6 under the assumption of uniqueness.
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Lemma 6. Suppose the following system admits a unique solution X? with rank r? :

〈Z?, X?〉 = 0,AX = b, and X � 0,

for a Z? � 0 such that rank(Z?) + rank(X?) = n, a linear map A : Sn → Rm, and a vector b ∈ Rm. Furthur s
that AX = b =⇒ tr(X) = 1. Then for any X � 0 with tr(X) = 1, we have( )

A 〈 〉‖X −X ‖2 σmax( ) Z?, X
? ≤F 4 + 8

σmin(AV ) λn−r?(Z?)

4
+ ‖A(X)− b‖2.
σ2
min(A 2

V )

(16)

uppose

(17)

Proof. Let V ∈ Rn×r? be a matrix with orthonormal columns correpsonding to the eigenspace V of X?

eigenvalues. Then X? can be written as X? = V S?V
> for some S r

? ∈ S ? such that S? � 0. We claim that the line
AV defined as follows is injective:

AV : Sr? → Rm

S 7→ A(V SV >).

Suppose not, then there is some nonzero S0 ∈ Sr? such that AV (S >
0) = 0. Then V (αS0 + S?)V also satisfies the

(16) for all small enough α. Hence we see that for any S ∈ Sr

1‖V SV > −X?‖F ≤ ‖A(V SV >)−A(X?)‖2
σmin(AV )

1
= ‖A(V SV >)− b‖2.
σmin(AV )

Here σmin(AV ) = min‖S‖F=1 ‖AV (S)‖2 > 0.

Using strict complementarity on Z? and X?, we know V is also a representation of the null space of the Z?. Using
5, we know there is some W = V SV > ∈ Cr?(Z?) such that

(a) λn−r (Z?)〈X,Z?〉 = 〈X −W,Z ?
?〉 ≥ ‖X −W‖2F,2

where step (a) is because λn−r?+1(Z?) = · · · = λn(Z?) = 0. We note if r? = 1, then Cr(Z?) has X? as its only e
as tr(X) = 1 and we are done.

of positive
ar map

system

(18)

Lemma

(19)

lement,

We can bound ‖X −X?‖F

(a)

‖X −X?‖2 ≤F 2‖X −W‖2F + 2‖W −X?‖2F
(b) 2≤ 2‖X −W‖2 + ‖A(W )− b‖2F σ2

min(AV ) 2.

Here we use triangle inequality and basic inequality (a+ c)2 ≤ 2a2 + 2c2 for any real a, c in step (a). In step (b),
(18).

We can further bound the term ‖A(W )− b‖2 by

‖A(W )− b‖2 = ‖A(W −X) +A(X)− b‖2
≤ ‖A(W −X)‖2 + ‖A(X)− b‖2.

2 by

(20)

we use

(21)
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Now combining (20), (21) and (a+ c)2 ≤ 2a2 + 2c2 for any a, c ∈ R in the following step (a), we see

(a) ‖A‖X −X?‖2
4 (W −X)‖2≤ 2

F 2‖X −W‖2F +
σ2
min(AV )

4
+ ‖A(X)− b‖2
σ2 (A ) 2(min V

σ2
)

≤ 2 + 4 max(A) ‖X −W‖22 Fσmin(AV )

4
+ ‖A(X)− b‖2
σ2
min(AV ) 2.

Finally using (19) to bound ‖X −W‖F, we reached the inequality we want to prove:(
A 〉‖X − ‖2 σ2
)

( ) 〈Z?, X
X? ≤F 4 + 8 max

σ2 Amin( V ) λn−r?(Z?)

4
+ ‖A(X)− b‖2.
σ2 Amin( V ) 2

We now establish a lemma to handle the general case that the solution might not be unique. For a convex closed set X?, we
define the distance to for an arbitrary X ∈ Sn to it as

dist(X,X?) : = inf
X? ?

Lemma 7. Denote the solution set of the following system as X?:

〈Z?, X?〉 = 0,AX = b, and X � 0,

for a Z? � 0, a linear map A : Sn → Rm, and a vector b ∈ Rm. Suppose the system (16) admits a solution
rank r0? ≥ 1 such that rank(Z?) + rank(X0

? ) = n. Further suppose that AX = b =⇒ tr(X) = 1. Then the c
µ := sup{a ≥ 0 | a · dist(X,X?) ≤ ‖A(X)− b‖2 for all X ∈ Cr?(Z?)} is positive, and for any X � 0 with tr(
we have ( )

σ (A) 〈Z
dist max ?, X〉

(X,X?)2 ≤ 4 + 8
µ λn−r?(Z?)

4
+ ‖A(X)− b‖2
µ2 2.

∈X
‖X −X?‖F.

(22)

X0
? with

onstant
X) = 1,

(23)

Proof. Let V ∈ Rn×r? be a matrix with orthonormal columns corresponding to the eigenspace V of r? zero eigenvalues.
Consider the linear map AV :

AV : Sr? → Rm

S 7→ A(V SV >).

The key replacement of multiple solution setting is to establish an inequality similar to (18), which depicts the inj
ofAV for unique solution setting.

Define the solution set S ⊂ Sr? of the following system:

AV (S) = b, S � 0.

Note that any S ∈ S satisfies that V SV > ∈ X?. Conversely, for any X >
? ∈ X?, it can be written as X? = V S?V f

S? ∈ Sr? such that S? � 0 and AV (S?) = b. Hence we have X? = {X | X = V SV >, S ∈ S}.

ectivity

(24)

or some
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Now if we take the X0
? ∈ X? such that rank(Z 0

?) + rank(X? ) = n, then X0
? = V S0

?V
> for some S0

? ∈ Sr? su
S0
? � 0. This means the system (24) satisfies the condition in Corollary 3 in (Bauschke et al., 1999). By applyi

corollary to (24), we know there is a µ > 0 such that for all S � 0 and tr(S) = 1,

1
dist(S,S) ≤ ‖AV S − b‖2.

µ

Translating the inequality to the space L = {X ∈ S | X = V SV > for some S ∈ Sr?}, we have for all X � 0, tr(
and X ∈ L, i.e., X ∈ Cr?(Z?) :

1
dist(X,X?) ≤ ‖A(X)− b‖2.

µ

This is our replacement of (18) in Lemma 6.

Following the proof of Lemma 6, we know there is some W = V SV > ∈ Cr?(Z?) such that

λn−r (Z?)〈X,Z?〉 = 〈X −W,Z 〉 ≥ ?
? ‖X −W‖2F.2

ch that
ng this

(25)

X) = 1,

(26)

(27)

To bound dist(X,X?), we pick an X? ∈ X? such that it is nearest to W (mote X? is compact as A(X) = b i
tr(X) = 1). Then we have

dist(X,X?)2 ≤ ‖X −X?‖2F
(a)

≤ 2‖X −W‖2 + 2‖W −X?‖2F F

(b)

≤ 2‖X −W‖2 2
F + ‖A(W )− b‖2.

µ2 2

Here we use triangle inequality and basic inequality (a+ c)2 ≤ 2a2 + 2c2 for any real a, c in step (a). In step (b),
(18). The rest of the proof is exactly the same as those in Lemma 6.

mplies

(28)

(29)

we use

The following Lemma establishes the linear convergence of G-BlockFW under quadratic growth condition.
Lemma 8. Suppose f β γ

and k ≥ r? = rank(X?), where X? is an optimal solution of Problem (1), then the generalized Block FW 2 co
linearly:

γ
ht+1 ≤ (1− )ht,

2β

where ht = f(Xt)− f(X?) for each t.

of Problem (1) is smooth and Problem (1) satisfies quadratic growth with parameter . If η = γ
β

nverges

Proof. Denote Ŷ = V diag(Λ)V >. The Lipschitz smoothness of f shows that

η2βˆf(Xt+1) ≤ f(Xt) + η〈Y − ‖ ˆXt,∇f(Xt)〉+ Y −Xt‖2F.2

Using a similar argument as Allen-Zhu et al. (2017, Lemma 3.1), we have

η2βˆ ˆ ˆY = arg min η〈Y −Xt,∇f(Xt)〉+ ‖Y −Xt‖2F.
Y ∈Sn,rank(Y )≤r? 2

Hence, we can replace Ŷ in (30) by X? in the following step (a),
(a) η2β

f(Xt+1) ≤ f(Xt) + η〈X? −Xt,∇f(Xt)〉+ ‖X? −Xt‖2F2
(b) η2β≤ f(Xt)− η(f(Xt)− f(X?) + (f(Xt)− f(X?)),

2γ

where step (b) is due to the qudratic growth of Problem (1). Now subtract both sides by f(X?), and let ht = f(Xt)−
for each t, we find that

η2β
ht+1 ≤ (1− η + )ht.

2γ

Our choice η = γ set
2

(1− η + η β ) = 1− γ which is what we desired.

(30)

(31)

f(X?)

β 2γ 2β
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G. Additional Numerics
We include extra numerics for n = 100, 200, 400 in Figure 1, 2. As can be seen, SpecFW in these cases are a bit slow
G-BlockFW when τ = 0.5 and c = 0.5. SpecFW is as good as FW when k is miss specified.

What if∇f(X?) = 0? Here we also discuss an interesting situation that c = 0, and τ = 1, then we see X? = U\U
optimal solution and gradient in this case is 0. Such situation means strict complementarity fails and the small pertu
to τ will result in a higher-rank solution, meaning the convex relaxation (20) is ill-posed for the purpose of low-rank
recovery [Lemma 2](Garber, 2019). Indeed, this is where SpecFW is not advantageous comparing to G-BlockFW as
in Figure 3. τ = 1 and c = 0.

er than

>
\ is an
rbation
matrix
shown
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Figure 1. Comparison of algorithms under τ = 1 c
2

and noise level = 0.5.
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Figure 2. Comparison of algorithms under τ = 1 c
2

, noise level = 0.5, and k = 2 < r?.
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Figure 3. Comparison of algorithms under τ = 1, noise level c = 0, and k = 4 > r?.




