Supplementary Material

9. Proof of Theorem 1

The kernel function

$$
k(x, y)=p(\min \{x, y\}) q(\max \{x, y\})
$$

is in fact the Green's function of the Sturm-Liouville operator (Zaitsev \& Polyanin, 2002)

$$
\mathcal{L}:=\frac{d}{d x} \alpha(x) \frac{d}{d x}+\beta(x)
$$

Thus, the inner product induced by k is

$$
\langle f, g\rangle_{k}=\int_{0}^{1} f \mathcal{L} g d x
$$

For any $l \in \mathbb{N}$ and $i \neq j$, the supports of $\phi_{l, i}$ and $\phi_{l, j}$ are $\left[(i-1) 2^{-l},(i+1) 2^{-l}\right]$ and $\left[(j-1) 2^{-l},(j+1) 2^{-l}\right]$, respectively. These two supports are disjoint because both i and j are odd so $\left\langle\phi_{l, i}, \phi_{l, j}\right\rangle_{k}=0$ if $i \neq j$. For any $l, n \in \mathbb{N}$ and any i, j, the supports $\operatorname{supt}\left[\phi_{l, i}\right]$ and $\operatorname{supt}\left[\phi_{n, j}\right]$ are either disjoint or nested. If they are disjoint, then $\left\langle\phi_{n, j}, \phi_{n, i}\right\rangle_{k}=$ 0 . If they are nested, without loss of generality assume $l>n$ and $i \leq j 2^{l-n}$, then because both p and q satisfy

$$
\mathcal{L} p=\mathcal{L} q=0
$$

we have

$$
\begin{aligned}
& \left\langle\phi_{l, i}, \phi_{n, j}\right\rangle_{k} \\
= & \int_{(i-1) 2^{-l}}^{(i+1) 2^{-l}} \phi_{n, j} \mathcal{L} \phi_{l, i} d x \\
= & \int_{(i-1) 2^{-l}}^{(i+1) 2^{-l}} \phi_{n, j} \mathcal{L} \frac{p(x) q_{l, i-1}-q(x) p_{i, l-1}}{p_{l, i} q_{l, i-1}-q_{l, i} p_{l, i-1}} d x \\
= & 0
\end{aligned}
$$

As a result, we have

$$
\left\langle\phi_{l, i}, \phi_{n, j}\right\rangle_{k}=\lambda_{l, i} \delta_{(l, i),(n, j)}
$$

where $\lambda_{l, i}$ is a function of l and i.

10. Proof of Theorem 3

We need the following lemmas.
Lemma 1. Denote $f_{M}=\operatorname{argmin}_{f \in \mathcal{F}_{M}}\left\|f_{0}-f\right\|_{k}$. Then we have

$$
R\left(f_{M}\right)-R\left(f_{0}\right) \leq C M^{-2} \log ^{4 D-4} M\left\|f_{0}\right\|_{k}^{2}
$$

for some constant C.

Proof. According to Assumption 2, we can see that

$$
R\left(f_{M}\right)-R\left(f_{0}\right)=\mathbb{E}\left[m_{y}^{\prime \prime}\left(\mathbf{u}^{*}\right)\left(f_{M}(x)-f_{0}(x)\right)^{2}\right]
$$

In view of Assumption 3, it suffices to prove

$$
\left\|f_{M}-f_{0}\right\|_{L^{2}}^{2}=C M^{-2} \log ^{4 D-4} M\left\|f_{0}\right\|_{k}^{2}
$$

for any $f_{0} \in \mathcal{H}_{k}$ we then can finish the proof. Let $M=$ $\left|\left\{(\mathbf{l}, \mathbf{i}):|\mathbf{l}| \leq n, \mathbf{i} \in B_{\mathbf{l}}\right\}\right|$. According to theorem 2, we have the following expansion:

$$
\begin{aligned}
& \left\|f_{M}-f_{0}\right\|_{L^{2}} \\
= & \left\|\sum_{|\mathbf{1}|>n} \sum_{\mathbf{i} \in B_{\mathbf{1}}}\left\langle f_{0}, \frac{\phi_{\mathbf{l}, \mathbf{i}}}{\left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{k}}\right\rangle_{k} \frac{\phi_{\mathbf{l}, \mathbf{i}}(\cdot)}{\left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{k}}\right\|_{L^{2}} \\
= & \left\|\sum_{|\mathbf{1}|>n} \sum_{\mathbf{i} \in B_{\mathbf{i}}} \int_{\mathbf{S}_{\mathbf{l}, \mathbf{i}}} f_{0}(\mathbf{s}) \mathcal{L} \phi_{\mathbf{l}, \mathbf{i}}(\mathbf{s}) d \mathbf{s} \frac{\phi_{\mathbf{l}, \mathbf{i}}(\cdot)}{\left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{k}^{2}}\right\|_{L^{2}} .
\end{aligned}
$$

where $\mathbf{S}_{\mathbf{l}, \mathrm{i}}$ is the support of $\phi_{\mathbf{1 . i}}$. We let

$$
v(\cdot)_{\mathbf{l}}:=\sum_{\mathbf{i} \in B_{\mathbf{i}}} \int_{\mathbf{S}_{\mathbf{1}, \mathbf{i}}} f_{0}(\mathbf{s}) \mathcal{L} \phi_{\mathbf{l}, \mathbf{i}}(\mathbf{s}) d \mathbf{s} \frac{\phi_{\mathbf{l}, \mathbf{i}}(\cdot)}{\left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{k}^{2}}
$$

Our first goal is to estimate v_{1}. From theorem 2 of (Ding \& Zhang, 2018) or direct calculation based on the property of Green's function, we can see that for any $f \in \mathcal{H}_{k}$:

$$
\int_{\mathbf{S}_{\mathbf{l}, \mathbf{i}}} f(\mathbf{s}) \mathcal{L} \phi_{\mathbf{l}, \mathbf{i}}(\mathbf{s}) d \mathbf{s}=\left[\bigotimes_{d=1}^{D} \Delta_{l_{d}, i_{d}}\right] f
$$

where

$$
\begin{aligned}
\Delta_{l_{d}, i_{d}} f & :=\left.\alpha_{l_{d}, i_{d}} f\right|_{x_{d}=z_{l_{d}, i_{d}}} \\
& \quad-\left.\beta_{l_{d}, i_{d}-1} f\right|_{x_{d}=z_{l_{d}, i_{d}-1}}-\left.\beta_{l_{d}, i_{d}+1} f\right|_{x_{d}=z_{l_{d}, i_{d}}} \\
\alpha_{l, i}= & \frac{p_{l, i+1} q_{l, i-1}-p_{l, i-1} q_{l, i+1}}{\left[p_{l, i+1} q_{l, i}-p_{l, i} q_{l, i+1}\right]\left[p_{l, i 1} q_{l, i-1}-p_{l, i-1} q_{l, i}\right]} \\
\beta_{l, i}= & \frac{1}{p_{l, i+1} q_{l, i}-p_{l, i} q_{l, i+1}}
\end{aligned}
$$

and \otimes denotes the tensor product of the $\Delta_{l, i}$ operators. Since both q and p are the solution of the SL-equation, therefore, p, q are twice differentiable. We have

$$
\begin{aligned}
& \frac{1}{p_{l, i+1} q_{l, i}-p_{l, i} q_{l, i+1}} \\
= & \frac{2^{l}}{\left[p_{l, i+1} q_{l, i}-p_{l, i} q_{l, i}\right] / 2^{-l}-\left[p_{l, i} q_{l, i+1}-p_{l, i} q_{l, i}\right] / 2^{-l}} \\
\sim & \frac{2^{l}}{p_{l, i}^{\prime} q_{l, i}-p_{l, i} q_{l, i}^{\prime}} .
\end{aligned}
$$

We notice that $p_{l, i}^{\prime} q_{l, i}-p_{l, i} q_{l, i}^{\prime}$ is the Wronskian of the SLoperator, which is bounded away from 0 . Therefore, $\Delta_{l_{d}, i_{d}}$ acting on f has the following approximation:

$$
\begin{aligned}
\Delta_{l_{d}, i_{d}} f & \sim \frac{\left[\left.2 f\right|_{x_{d}=z_{l_{d}, i_{d}}}-\left.f\right|_{x_{d}=z_{l_{d}, i_{d}-1}}-\left.f\right|_{x_{d}=z_{l_{d}, i_{d}+1}}\right.}{} 2^{-l} \\
& \leq C \max _{j=1,-1}\left\{\frac{|f|_{x_{d}=z_{l_{d}, i_{d}+j}}-\left.f\right|_{x_{d}=z_{l_{d}, i_{d}}}}{} 2^{-l}\right\} .
\end{aligned}
$$

As a result, $\bigotimes_{d=1}^{D} \Delta_{l_{d}, i_{d}}$ acting on f has the following approximation:

$$
\begin{aligned}
& \bigotimes_{d=1}^{D} \Delta_{l_{d}, i_{d}} f \\
\leq & C \prod_{d=1}^{D} \max _{j=1,-1}\left\{\frac{|f|_{x_{d}=z_{l_{d}, i_{d}+j}}-\left.f\right|_{x_{d}=z_{l_{d}, i_{d}}} \mid}{2^{-l}}\right\} .
\end{aligned}
$$

From the same reasoning, we can see that

$$
\left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{k}^{2}=\prod_{d=1}^{D} \alpha_{l_{d}, i_{d}} \sim 2^{|\mathbf{1}|}
$$

We also Taylor expand $\phi_{l_{d}, i_{d}}$ for each $1 \leq d \leq D$ up to second order and from direct calculation, we can have

$$
\phi_{l_{d}, i_{d}}(x) \sim \max \left\{0,1-\frac{\left|x-z_{l_{d}, i_{d}}\right|}{2^{-l_{d}}}\right\}+\mathcal{O}\left(2^{-l_{d}}\right) .
$$

This gives us the approximation up to second order:

$$
\begin{aligned}
& \left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{L_{2}}^{2} \\
= & \int_{\mathbf{S}_{\mathbf{l}, \mathbf{i}}} \prod_{d=1}^{D} \phi_{l_{d}, i_{d}}^{2}\left(s_{d}\right) d \mathbf{s} \\
\sim & \int_{\mathbf{S}_{\mathbf{l}, \mathrm{i}}} \prod_{d=1}^{D}\left[\max \left\{0,1-\frac{\left|s-z_{l_{d}, i_{d}}\right|}{2^{-l_{d}}}\right\}\right]^{2} d \mathbf{s} \\
= & \left(\frac{2}{3}\right)^{D} 2^{-\mid \mathbf{l |}}=\left(\frac{1}{3}\right)^{D} \operatorname{Vol}\left(\mathbf{S}_{\mathbf{l}, \mathbf{i}}\right) .
\end{aligned}
$$

Therefore, we can have the following estimate for v_{1} :

$$
\begin{aligned}
\left\|v_{\mathbf{l}}\right\|_{L^{2}} & =\left\|\sum_{\mathbf{i} \in B_{\mathbf{i}}} \int_{\mathbf{S}_{\mathbf{l}, \mathbf{i}}} f_{0}(\mathbf{s}) \mathcal{L} \phi_{\mathbf{l}, \mathbf{i}}(\mathbf{s}) d \mathbf{s} \frac{\phi_{\mathbf{l}, \mathbf{i}}(\cdot)}{\left\|\phi_{\mathbf{l}, \mathbf{i}}\right\|_{k}^{2}}\right\|_{L^{2}} \\
& \leq\left|2^{-2|\mathbf{|}|} C \sum_{\mathbf{i} \in B_{\mathbf{i}}}\left[\bigotimes_{d=1}^{D} \Delta_{l_{d}, i_{d}} f\right]^{2} \operatorname{Vol}\left(\mathbf{S}_{\mathbf{l}, \mathbf{i}}\right)\right|^{\frac{1}{2}} \\
& \sim 2^{-|\mathbf{1}|}\left\|\prod_{d=1}^{D} \frac{\partial}{\partial x_{d}} f_{0}\right\|_{L^{2}} \\
& \sim 2^{-|\mathbf{1}|}\left\|f_{0}\right\|_{k}
\end{aligned}
$$

where the second line is from the fact that supports of $\left\{\phi_{\mathbf{l}, \mathbf{i}}: \mathbf{i} \in B_{\mathbf{l}}\right\}$ are disjoint, the third line is from the Riemann integral approximation and the last line is from the energy estimate assumption of SL-operator (see, for instance, section 6.2.2 of (Evans, 2010)). Finally, we have:

$$
\begin{aligned}
\left\|f_{0}-f_{M}\right\|_{L^{2}} & \leq \sum_{|\mathbf{1}|>n}\left\|v_{\mathbf{l}}\right\|_{L^{2}} \\
& \sim\left\|f_{0}\right\|_{k} \sum_{|\mathbf{1}|>n} 2^{-|\mathbf{1}|} \\
& =\left\|f_{0}\right\|_{k} \sum_{i>n} 2^{-i} \sum_{|\mathbf{1}|=i} 1 \\
& =\left\|f_{0}\right\|_{k} \sum_{i>n} 2^{-i}\binom{i-1}{d-1} \\
& \sim\left\|f_{0}\right\|_{k} 2^{-n} n^{D-1},
\end{aligned}
$$

where the identity of the last line can be verified in (Ding et al., 2019). From (Bungartz \& Griebel, 2004) we also have

$$
M=\mathcal{O}\left(2^{n} n^{D-1}\right)
$$

We can substitute this identity to the previous equation to have the final result.

The $\left(\epsilon, L_{\infty}\right)$-covering number of a function space \mathcal{F}, denoted as $N\left(\epsilon, \mathcal{F},\|\cdot\|_{L_{\infty}}\right)$, is defined as the smallest number N_{0}, so that there exist centers $f_{1}, \ldots, f_{N_{0}}$, and for each $f \in \mathcal{F}$, there exists f_{i} so that $\left\|f-f_{i}\right\|_{L_{\infty}}<\epsilon$.
Lemma 2. The covering number of the unit ball of \mathcal{H}_{k}, denoted as $\mathcal{F}:=\left\{f \in \mathcal{H}_{k}:\|f\|_{k} \leq 1\right\}$, is bounded as follows:

$$
\log N\left(\epsilon, \mathcal{F},\|\cdot\|_{L_{\infty}}\right)=\mathcal{O}\left(\frac{1}{\varepsilon} \log ^{D-\frac{1}{2}} \frac{1}{\varepsilon}\right)
$$

Proof. When $k(\mathbf{x}, \mathbf{y})=e^{-\omega\|\mathbf{x}-\mathbf{y}\|_{1}}$ or $k(\mathbf{x}, \mathbf{y})=$ $\prod_{d=1}^{D} \min \left\{x_{d}, y_{d}\right\}, \mathcal{H}_{k}$ is equivalent to the Sobolev space of mixed first derivative $\mathcal{H}_{\text {mix }}^{1}\left([0,1]^{D}\right)$ (Ding et al., 2019). According to 6.6 of (Dung et al., 2016), we can immediately derive the result. When kernel k differs from these two, the energy property of an SL-operator requires that

$$
\begin{aligned}
\langle f, f\rangle_{k} & =\int_{[0,1]^{D}} f(\mathbf{x})\left[\prod_{d=1}^{D} \mathcal{L}\right] f(\mathbf{x}) d(\mathbf{x}) \\
& \leq C \int_{[0,1]^{D}}\left|\prod_{d=1}^{D} \frac{\partial}{\partial x_{d}} f\right|^{2} d \mathbf{x}
\end{aligned}
$$

which implies that \mathcal{H}_{k} can be embedded on $\mathcal{H}_{\text {mix }}^{1}$. Therefore, the covering number of \mathcal{H}_{k} must be bounded by that of $\mathcal{H}_{\text {mix }}^{1}$.

Lemma 3 shows the the function classes associated with the learning problem are Donsker. We refer to (van der Vaart \& Wellner, 1996) for the definition and properties of Donsker classes. Let $\mathcal{G}_{R}:=\left\{L(y, f(\mathbf{x})):\|f\|_{k} \leq R\right\}$.
Lemma 3. Let P be the probability measure of (x, y). The space \mathcal{G}_{R} is P-Donsker for each $R>0$.

Proof. In view of Theorem 2.5.6 of (van der Vaart \& Wellner, 1996), it suffices to prove that

$$
\int_{0}^{\infty} \sqrt{\log N_{[]}\left(\epsilon, \mathcal{G}_{R},\|\cdot\|_{L_{2}(P)}\right)} d \epsilon<\infty
$$

where $N_{[]}\left(\epsilon, \mathcal{G}_{R},\|\cdot\|_{L_{2}(P)}\right)$ is the covering number with bracketing defined as follows. For function $g: \mathbb{R}^{D} \times \mathbb{R} \rightarrow \mathbb{R}$, its $L_{2}(P)$ norm is defined as $\left[\mathbb{E}[g(x, y)]^{2}\right]^{1 / 2}$. Given functions g_{L}, g_{U} such that $g_{L}(\mathbf{u}, v) \leq g_{U}(\mathbf{u}, v)$ for each (\mathbf{u}, v), define the bracket $\left[g_{L}, g_{U}\right]$ as the set of functions $\left\{g: g_{L}(\mathbf{u}, v) \leq\right.$ $\left.g(\mathbf{u}, v) \leq g_{U}(\mathbf{u}, v)\right\}$. The covering number with bracketing $N_{[]}\left(\epsilon, \mathcal{G}_{R},\|\cdot\|_{L_{2}(P)}\right)$ is the smallest number N_{0} so that there exist brackets $\left[g_{L, 1}, g_{U, 1}\right], \ldots,\left[g_{L, N_{0}}, g_{U, N_{0}}\right]$, such that $\cup_{i=1}^{N_{0}}\left[g_{L, i}, g_{U, i}\right] \supset \mathcal{G}_{R}$, and $\left\|g_{U, i}-g_{L, i}\right\|_{L_{2}(P)} \leq \epsilon$ for all i.
Let $\mathcal{F}_{R}=\left\{f:\|f\|_{k}<R\right\}$. We start with the centers $f_{1}, \ldots, f_{N_{0}}$ with $N_{0}=N\left(\epsilon, \mathcal{F}_{R},\|\cdot\|_{L_{\infty}}\right)=$ $N\left(\epsilon / R, \mathcal{F}_{1},\|\cdot\|_{L_{\infty}}\right)$ so that for each $f \in \mathcal{F}_{R}$, there exists $f_{i}=: \xi(f)$ such that $\left\|f-f_{i}\right\|_{L_{\infty}}<\epsilon$. To bound the covering number with bracketing, we need to construct the associated brackets. The reproduction property implies that $\|f\|_{L_{\infty}} \leq c\|f\|_{k}$ with $c:=\max _{x} k(x, x)$. Then for any $f \in \mathcal{F}_{R}$, by mean value theorem,

$$
\begin{align*}
|L(y, f(\mathbf{x}))-L(y, \xi(f)(\mathbf{x}))| & \leq \sup _{|\mathbf{u}|<c R}\left|\frac{\partial L}{\partial u}(y, \mathbf{u})\right| \epsilon \\
& =: \quad S(y) \epsilon \tag{12}
\end{align*}
$$

Now we define $g_{L, i}(\mathbf{u}, v)=L\left(v, f_{i}(\mathbf{u})\right)-S(v) \epsilon$ and $g_{U, i}(\mathbf{u}, v)=L\left(v, f_{i}(\mathbf{u})\right)+S(v) \epsilon$. Clearly $g_{L, i} \leq g_{U, i}$ and

$$
\left\|g_{U, i}-g_{L, i}\right\|_{L_{2}(P)}=2 \epsilon\left[\mathbb{E}[S(y)]^{2}\right]^{1 / 2}
$$

which is a multiple of ϵ according to Assumptions 2-3. Besides, (12) implies that for all f such that $\left\|f-f_{i}\right\|_{L_{\infty}}<\epsilon$, $L(v, f(\mathbf{u})) \in\left[g_{L, i}, g_{U, i}\right]$. Now we invoke Lemma 2 to find that

$$
\begin{aligned}
& \log N_{[]}\left(2 \epsilon\left[\mathbb{E}[S(y)]^{2}\right]^{1 / 2}, \mathcal{F}_{R},\|\cdot\|_{L_{2}(P)}\right) \\
= & \mathcal{O}\left(\frac{R}{\varepsilon} \log ^{D-\frac{1}{2}} \frac{R}{\varepsilon}\right),
\end{aligned}
$$

which implies the desired result.

To bound the generalization error, we observe that

$$
\begin{aligned}
& R(\hat{f})-R\left(f_{0}\right)=\left\{R(\hat{f})-\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, \hat{f}\left(\mathbf{x}_{i}\right)\right)\right\} \\
+ & \left\{\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, \hat{f}\left(\mathbf{x}_{i}\right)\right)-\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f_{M}\left(\mathbf{x}_{i}\right)\right)\right\} \\
+ & \left\{\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f_{M}\left(\mathbf{x}_{i}\right)\right)-R\left(f_{M}\right)\right\} \\
+ & \left\{R\left(f_{M}\right)-R\left(f_{0}\right)\right\}=: I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

We will bound I_{1} and I_{3} by applying a uniform error bound of empirical processes. For I_{2}, we have

$$
I_{2} \leq \lambda\left\|f_{M}\right\|_{k}^{2}-\lambda\|\hat{f}\|_{k}^{2} \leq \lambda\left\|f_{0}\right\|_{K}^{2}=\mathcal{O}\left(N^{-1 / 2}\right)\left\|f_{0}\right\|_{k}^{2}
$$

where the first inequality follows from the optimality condition

$$
\begin{array}{r}
\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, \hat{f}\left(\mathbf{x}_{i}\right)\right)+\lambda\|\hat{f}\|_{k}^{2} \\
\leq \frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f_{M}\left(\mathbf{x}_{i}\right)\right)+\lambda\left\|f_{M}\right\|_{k}^{2} \tag{13}
\end{array}
$$

The term I_{4} is bounded by Lemma 1 .
Now we turn to I_{1} and I_{3}. To show that $I_{1}=\mathcal{O}_{p}\left(N^{-1 / 2}\right)$ and $I_{3}=\mathcal{O}_{p}\left(N^{-1 / 2}\right)$, it suffices to show that the functions $L(y, \hat{f}(\mathbf{x}))$ and $L\left(y, f_{M}(\mathbf{x})\right)$ fall in a Donsker class (van der Vaart \& Wellner, 1996) with probability arbitrarily close to one. For $L\left(y, f_{M}(\mathbf{x})\right)$, this is clearly true in view of Lemma 3 and the fact that $\left\|f_{M}\right\|_{k} \leq\left\|f_{0}\right\|_{k}$. Therefore, $I_{3}=\mathcal{O}_{p}\left(N^{-1 / 2}\right)$. For $L(y, \hat{f}(\mathbf{x}))$, it suffices to prove that $\|\hat{f}\|_{k}=\mathcal{O}_{p}(1)$. To show this result, we start with the optimality condition (13). In view of Assumption 2, we can write

$$
\begin{array}{r}
L(y, f(\mathbf{x}))-L\left(y, f_{0}(\mathbf{x})\right)=W \cdot\left(f(\mathbf{x})-f_{0}(\mathbf{x})\right) \\
+m_{y}^{\prime \prime}\left(u^{*}\right)\left(f(\mathbf{x})-f_{0}(\mathbf{x})\right)^{2}
\end{array}
$$

where $W=m_{y}^{\prime}\left(f_{0}(\mathbf{x})\right)$, and u^{*} lies between $f(\mathbf{x})$ and $f_{0}(\mathbf{x})$. Assumption 1 implies that for any $\delta \in \mathcal{H}_{k}$,

$$
\begin{align*}
0 & =\left.\frac{\partial}{\partial t} R\left(f_{0}+t \delta\right)\right|_{t=0} \\
& =\left.\frac{\partial}{\partial t} \mathbb{E} L\left(y, f_{0}(\mathbf{x})+t \delta(\mathbf{x})\right)\right|_{t=0} \\
& =\mathbb{E}\left[m_{y}^{\prime}\left(f_{0}(\mathbf{x})\right) \delta(\mathbf{x})\right] \tag{14}
\end{align*}
$$

where in the last equation we interchange the partial derivative and the expectation, which is valid because of Assumptions 2 and 3 . Let $P_{\mathbf{x}}$ be the probability measure of \mathbf{x}. Since $\delta \in \mathcal{H}_{k}$ is arbitrary, (14) implies

$$
0=\mathbb{E} m_{y}^{\prime}\left(f_{0}(\mathbf{x})\right)=\mathbb{E} W
$$

We then invoke (13) and Assumption 2 to find

$$
\begin{align*}
& \lambda\|\hat{f}\|_{k}^{2} \leq-\frac{1}{N} \sum_{i=1}^{N} W_{i}\left(\hat{f}\left(\mathbf{x}_{i}\right)-f_{0}\left(\mathbf{x}_{i}\right)\right) \\
+ & \left\{\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f_{M}\left(\mathbf{x}_{i}\right)\right)-\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f_{0}\left(\mathbf{x}_{i}\right)\right)\right\} \\
- & V\left(\hat{f}\left(\mathbf{x}_{i}\right)-f_{0}\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\left\|f_{0}\right\|_{k}^{2} \\
= & J_{1}+J_{2}+J_{3}+J_{4} \tag{15}
\end{align*}
$$

for some $V>0$ due to the strong convexity of $m_{y}(\cdot)$. For the first term, we have

$$
\begin{aligned}
J_{1} & \leq\left(\|\hat{f}\|_{k}+1\right) \sup _{f \in \mathcal{H}_{k}} \frac{1}{N} \sum_{i=1}^{N}-W_{i} \frac{f\left(\mathbf{x}_{i}\right)-f_{0}\left(\mathbf{x}_{i}\right)}{\|f\|_{k}+1} \\
& =\left(\|\hat{f}\|_{k}+1\right) \mathcal{O}_{p}\left(N^{-1 / 2}\right)
\end{aligned}
$$

where the last step follows from the fact that $\mathbb{E} W_{i}=0, W_{i}$ is bounded, and Lemma 3.4.3 of (van der Vaart \& Wellner, 1996) and the fact that $\left\|f-f_{0}\right\|_{k} /\left(\|f\|_{k}+1\right)=\mathcal{O}(1)$. Clearly, we have $J_{2}=I_{3}+\mathcal{O}_{p}\left(N^{-1 / 2}\right)=\mathcal{O}_{p}\left(N^{-1 / 2}\right)$ according to the central limit theorem. The third term is clearly non-positive. We also have $J_{4}=\mathcal{O}_{p}\left(N^{-1 / 2}\right)$ by assumption for λ.
Now we conclude from (15) that

$$
\lambda\|\hat{f}\|_{k}^{2} \leq\|\hat{f}\|_{k} \mathcal{O}_{p}\left(N^{-1 / 2}\right)+\mathcal{O}_{p}\left(N^{-1 / 2}\right)
$$

which implies $\|\hat{f}\|_{k}=\mathcal{O}_{p}(1)$. This completes the proof.

